Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup

Supersymmetric Vortex Loops in 3d Gauge Theories

A. Kapustin, B. Willett, IY - arXiv:1211.2861

Itamar Yaakov

Princeton University

May 7, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
●00	000000	0000000000	00000	00	
Defects					

- Operators in a QFT which are not field insertions
 - Specify some boundary conditions/singularities for the fundamental fields.
 - Have some forms belong to a non-trivial cohomology class (topological disorder).
 - Change the domain of the path integral in some other way.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Some examples
 - Twist operators in 2d CFT.
 - The 't Hooft loop operator in 4d gauge theory.
 - Monopole operators in 3d CFT.

Introduction ○●○	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions 00	Backup
Motivatio	on				

- Why study defects?
 - Theory can be "incomplete" without them (they appear in OPEs).
 - Duality exchanges them with "normal" operators.
 - Study phases of gauge theories.
- Why supersymmetric defects?
 - Exact computation possible via localization even for strongly coupled theories.

- Comparison to known field theory/gravity duals.
- Supersymmetric versions of examples exist.

Introduction 00●	Definition of the vortex loop 000000	Localization 0000000000	Applications 00000	Conclusions	Backup
The vorte	ex loop				

- Vortices are solitons in 3d gauge theory
 - Classical ANO vortices have supersymmetric versions on the Higgs branches of $\mathcal{N}=2$ theories.
 - Exchanged with elementary excitations in 3d mirror symmetry.
 - The (closed) worldline of a heavy vortex gives a loop operator analogous to a 4d 't Hooft loop for the monopole.
- Virtues of vortex loops
 - Easy to define in the UV even in the absence of gauge fields (use background gauging).
 - Gauge invariant operators that may be used to learn about phases of the theory.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Have supersymmetric versions.
- Transform nicely under duality.

Introduction 000	Definition of the vortex loop •00000	Localization 0000000000	Applications 00000	Conclusions 00	Backup
A vorte	× gauge field confi	guration			
• :	Specify (Witten (1988), Moore (1989)) • a loop γ • a symmetry group G	Seiberg,))		
	• an element $\beta \in \mathfrak{g}$		-))		
•	Gauge <i>G</i> with connection already gauged then jus	on A (if it's t add A)	· · · ·]	F _{μν}	linking loop
	 A has holonomy β and linking loop. equivalently F_A = β s function on the loop) 	round a small \star $[\gamma]$ (a delta	dl	X	
٩	Large gauge transforma (Gukov, Witten (2006))	tions imply		A_{μ}	

$$q=rac{eta_{\mathsf{abelian}}}{2\pi}, \qquad q\in\left(-rac{1}{2},rac{1}{2}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction 000	Definition of the vortex loop 00000	Localization 0000000000	Applications 00000	Conclusions	Backup
Witten's	$SL(2,\mathbb{Z})$ action				

Take 3d CFT with a conserved U(1) current J

$$Z_{J,\alpha}[A] = \int \mathcal{D}\Phi e^{iS[\Phi] + i \int \sqrt{g} d^3 x J^{\mu} A_{\mu} + \dots + \frac{i\alpha}{4\pi} \int A \wedge dA}$$

Define generators T, S

• T: shift the CS level

$$(T \cdot Z_{J,\alpha})[A] = Z_{J,\alpha+1}[A]$$

• S: use off-diagonal CS term to gauge $\star dA$ then make A dynamical.

 $(S \cdot Z_{J,\alpha})[A] = \int \mathcal{D}A' \mathcal{D}\Phi e^{iS[\Phi] + i \int \sqrt{g} d^3 \times J^{\mu} A'_{\mu} + \dots + \frac{i\alpha}{4\pi} \int A' \wedge dA' + \frac{i}{2\pi} \int A \wedge dA'}$

and check¹

$$S^2 = C, \qquad (ST)^3 = I$$

¹Witten (2003)

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions 00	Backup
Vortex vi	a $SL(2,\mathbb{Z})$				

Addition of an abelian Wilson loop

$$e^{iq\int_{\gamma}A} \to e^{\frac{i}{2\pi}\int\omega\wedge A} \to e^{\frac{i}{2\pi}\int A\wedge dA_{\omega}}$$
$$(W_{\omega}\cdot Z_{J,\alpha})[A] := \int \mathcal{D}\Phi e^{iS[\Phi]+i\int\sqrt{g}d^{3}xJ^{\mu}A_{\mu}+\ldots+\frac{i\alpha}{4\pi}\int A\wedge dA+\frac{i}{2\pi}\int A_{\omega}\wedge dA$$

Globally $\omega = 2\pi q \delta_{\gamma}$ and locally $A_{\omega} = q d\theta$ (the connection of a defect!). Adding a defect amounts to

$$(D_{\omega} \cdot Z_{J,\alpha}[A]) = Z_{J,\alpha}[A + A_{\omega}]$$

Check that the algebra (up to global phases) is

$$[T, W_{\omega}] = 0, \qquad S^{-1} W_{\omega} S = D_{\omega}$$

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions 00	Backup
Another	perspective				

The topological current of an abelian gauge theory

$$J_{top} = rac{1}{2\pi} \star dA_{ ext{dynamical}}$$

a defect in J_{top} is the usual dynamical Wilson loop

$$D_{\omega} \cdot Z_{J_{ ext{top}}, \alpha}[A] = \left\langle e^{iq \int_{\gamma} A_{ ext{dynamical}}}
ight
angle$$

The "gauge defect" (a different operation)

$$A_{
m dynamical}
ightarrow A_{
m dynamical} + A_{\omega}$$

is equivalent in CS_k to a Wilson loop with charge $\propto k^2$

²Moore, Seiberg (1989)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	0000000000	00000	00	
Supersyn	nmetry				

 $\textit{SL}(2,\mathbb{Z})$ generalizes to theories with $\mathcal{N}=2$ supersymmetry

- CFT \rightarrow SCFT
- Conserved current $J \rightarrow$ linear multiplet $\Sigma(\sigma, A, \lambda, D)$
- Connection $A \rightarrow$ vector superfield $V(\sigma, A, \lambda, D)$
- \bullet diagonal/off-diagonal abelian CS term \rightarrow

$$\begin{split} S_{\mathsf{BF}} &= \frac{k_{ij}}{4\pi} \int d^3 x d^2 \theta d^2 \bar{\theta} \Sigma^i V^j \\ &= \frac{k_{ij}}{4\pi} \int d^3 x \left(\varepsilon^{\mu\nu\rho} A^j{}_\mu \partial_\nu A^i{}_\rho - \frac{1}{2} \bar{\lambda}^j \lambda^i + D^i \sigma^j \right) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions 00	Backup
Supersym	nmetric loops				

An $\mathcal{N}=2$ Wilson loop (1/2 BPS)

$$\exp\left(iq\oint_{\gamma}(A-i\sigma d\ell)
ight)$$

has an associated defect operator (the supersymmetric vortex loop)

$$dA=2\pi q\delta_\gamma, \ \ \star D=-2\pi iq\delta_\gamma\wedge d\ell$$

which solves the BPS equation (here on S^3 with unit radius)

$$\delta\lambda = (-\frac{i}{2}\varepsilon^{\mu\nu\rho}F_{\mu\nu}\gamma_{\rho} - D + i\gamma^{\mu}D_{\mu}\sigma + \sigma)\varepsilon$$

They are $SL(2,\mathbb{Z})$ buddies!

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	●000000000	00000	00	
The basic	s of localization				

Deformation

- Identify an appropriate conserved fermionic charge: Q.
- Choose V such that {Q, V} is a positive semi-definite functional (Q should square to 0 on V).
- Deform the action by a total Q variation $S \rightarrow S + t\{Q, V\}$. The resulting path integral is independent of t!
- Add some Q closed operators (Wilson loops, defect operators).

Localization

- Take the limit $t \to \infty$.
- The measure exp(-S) is very small for $\{Q, V\} \neq 0$.
- The semi-classical approximation becomes exact, but there may be many saddle points to sum over ("the zero locus").
- Integrate over the zero locus of $\{Q, V\}$ (+ small fluctuations)

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	000000000	00000	00	
Ingredien	ts for the matrix	model			

On S^3 we localize to a single matrix³

$${\cal A}_{\mu}=0, \lambda=\lambda^{\dagger}=0, D=-\sigma=a({\it const})$$

The integration measure for the matrix model is

$$\frac{1}{\operatorname{Vol}(G)} da|_{a \in \operatorname{Ad}(\mathfrak{g})} \tag{1}$$

The contribution of a level k Chern-Simons term

 $e^{-i\pi k \operatorname{Tr}(a^2)}$

Insertion of a supersymmetric Wilson loop in a representation ${\cal R}$ gives a factor of

$$W(a) = rac{1}{\dim(R)} \operatorname{Tr}_{R}\left(e^{2\pi a}
ight) \xrightarrow[\operatorname{abelian}]{} e^{2\pi q a}$$

³Kapustin,Willett,IY (2009)

Introduction 000	Definition of the vortex loop 000000	Localization 000000000	Applications 00000	Conclusions	Backup
Fluctuatio	ons				

Every dynamical gauge multiplet contributes

$$Z_{1 \text{ - loop}}^{\text{gauge multiplet}}(\textbf{\textit{a}}) = \frac{\text{det}\mathcal{O}_{\text{gauginos}}}{\sqrt{\text{det}\mathcal{O}_{\text{vectors}}}} = \prod_{\rho \in \text{roots}(\mathfrak{g})} 2\sinh(\pi\rho(\textbf{\textit{a}}))$$

and every dynamical chiral multiplet contributes

$$Z_{1 \text{-loop}}^{\mathsf{chiral multiplet}}(a, \Delta) = \frac{\mathsf{det}\mathcal{O}_{\mathsf{F}}}{\sqrt{\mathsf{det}\mathcal{O}_B}} = \prod_{\rho \in R} \exp\left(\ell\left(z(\rho(a), \Delta)\right)\right)$$

where ρ are the weights of R and

$$\ell(z) = -z \log \left(1 - e^{2\pi i z}\right) + \frac{i}{2} \left(\pi z^2 + \frac{1}{\pi} \operatorname{Li}_2\left(e^{2\pi i z}\right)\right) - \frac{i\pi}{12}$$
$$z(\rho(a), \Delta) = i\rho(a) - \Delta + 1$$

Supercym	metric Deformat	ions			
Introduction 000	Definition of the vortex loop	Localization 000000000	Applications 00000	Conclusions	Backup

Mass terms

Real mass terms are supersymmetric configurations for background flavor symmetry gauge fields $V_m\propto\theta\bar\theta\,m$

$$S_{mass} = -\int d^3x d^2 heta d^2ar{ heta} \sum_{matter} \left(\phi^\dagger e^{2V_m}\phi + ilde{\phi}^\dagger e^{-2V_m} ilde{\phi}
ight)$$

in the matrix model this just shifts $\rho(a) \rightarrow \rho(a) + m$.

Fayet-Iliopoulos (FI) terms

Fayet-Iliopoulos (FI) terms for the U(1) factors of the gauge group are equivalent to gauging topological symmetries $\hat{V}_{FI} \propto \theta \bar{\theta} \eta$

$$S_{FI} = Tr \int d^3x d^2 heta d^2 ar{ heta} \Sigma \hat{V}_{FI}
ightarrow e^{2\pi i \eta t r_f(a)}$$

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	0000●00000	00000	00	
Adding a	defect				

We should localize the theory in the presence of the background defect

$$dA = 2\pi q \delta_{\gamma}, \quad \star D = -2\pi i q \delta_{\gamma} \wedge d\ell$$

- Doesn't introduce new zero modes⁴.
- Doesn't modify the classical contributions (the exception is a "gauge defect" in CS theory).
- Will modify the fluctuation determinant for the charged fields (in chiral multiplets). Evaluate by
 - Using the $SL(2,\mathbb{Z})$ definition.
 - Smearing out the defect.
 - Working with a regularized background.

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Definition of the vortex loop} & \mbox{Localization} & \mbox{Applications} & \mbox{Conclusions} & \mbox{Backup} \\ \hline \mbox{A quick evaluation using } SL(2,\mathbb{Z}) \end{array}$

Define the defect insertion as

$$D_q = S^{-1} W_q S$$

The SCFT depends on the modulus m (the vev of σ in the same supermultiplet as A)

$$Z(m)
ightarrow (S \cdot Z)(\eta) = \int dm Z(m) e^{2\pi i \eta m}$$

Insert the supersymmetric Wilson loop

$$(W_qS\cdot Z)(\eta)=e^{2\pi q\eta}\int dm Z(m)e^{2\pi i\eta m}$$

$$(S^{-1}W_1S \cdot Z)(m') = \int e^{-2\pi i\eta m'} e^{2\pi q\eta} \int dm Z(m) e^{2\pi i\eta m}$$

hence (assuming the integral converges)

$$\frac{(D_q \cdot Z)(m) = Z(m + iq)}{(D_q \cdot Z)(m)}$$

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	00000000000	00000	00	
Working	on <i>S</i> ³				

We will work in toroidal coordinates on S^3

$$ds^2 = d\eta^2 + \sin^2 \eta d\theta^2 + \cos^2 \eta d\phi^2$$

- Surfaces of constant η are tori, which degenerate to great circles at $\eta = 0, \frac{\pi}{2}$.
- There is a Killing spinor and an associated Killing vector field

$$abla_{\mu}\varepsilon = rac{i}{2}\gamma_{\mu}\varepsilon, \qquad \mathbf{v} = \varepsilon^{\dagger}\gamma^{\mu}\varepsilon\partial_{\mu} = rac{\partial}{\partial\theta} + rac{\partial}{\partial\phi}$$

• S^3 is a U(1) bundle over S^2 (Hopf fibration), v points along the fiber and the one form

$$v = \sin^2 \eta d\theta + \cos^2 \eta d\phi, \qquad dv = 2 \star v$$

Introduction 000	Definition of the vortex loop 000000	Localization 000000000000	Applications 00000	Conclusions	Backup
Smearing	:				

Define a smeared (abelian) Wilson loop (the usual loop has a singular f)

$$\mathcal{O}_{f} = \exp\left(i\int_{S^{3}}\sqrt{g}d^{3}xf(x)(v^{\mu}A_{\mu} - i\sigma)\right)$$
$$f(x) = \frac{q}{\pi} + f_{o}(x), \qquad \int_{S^{3}}\sqrt{g}d^{3}xf_{o} = 0 \Rightarrow f_{o} = \nabla^{2}g$$

We can prove that for f_0 independent of the fiber direction the smearing is gauge invariant and "Q exact":

$$\delta_{arepsilon}(\int\sqrt{g}d^{3}x\epsilon^{\dagger}\gamma^{\mu}(\partial_{\mu}g)\lambda)=\int\sqrt{g}d^{3}x(
abla^{2}g)(\mathbf{v}^{\mu}A_{\mu}-i\sigma)$$

The $SL(2,\mathbb{Z})$ dual of $f = \frac{q}{\pi}$ is a non-singular background

$$F = 2q \star v = qdv, \quad D = -2iq$$

Introduction 000	Definition of the vortex loop 000000	Localization 0000000000	Applications 00000	Conclusions	Backup
Resolving	the singular bac	kground			

Introduce a smoothing function

$$f_2 = rac{g(\eta/\epsilon)}{2\pi\epsilon\sin\eta\cos\eta} \xrightarrow[\epsilon \to 0]{} \delta(\eta), \qquad G' = g$$

and use the non-singular configuration

$$F = 2\pi q \ f_2 \star v = \frac{q}{\epsilon} g(\eta/\epsilon) d\eta \wedge (d\theta - d\phi)$$
$$D = -2\pi i q f_2 = -\frac{i q \ g(\eta/\epsilon)}{\epsilon \sin \eta \cos \eta}$$

We still have a connection

$$dF = 0 \Rightarrow A = qG(\eta/\epsilon)d\theta - q(G(\eta/\epsilon) - 1)d\phi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction 000	Definition of the vortex loop	Localization 000000000	Applications 00000	Conclusions	Backup
The resu	t				

- The smeared loop leads to a determinant of a scalar Laplacian and a Dirac operator twisted by v (easy to compute).
- The resolved loop leads to complicated differential operators, but many modes cancel.
- Either method leads to

$$Z_{ ext{1 - loop}}^{ ext{chiral multiplet}}(a, \Delta) = rac{\det \mathcal{O}_F}{\sqrt{\det \mathcal{O}_B}} o Z_{ ext{1 - loop}}^{ ext{chiral multiplet}}(a + iq, \Delta)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- At |q| = 1/2 we see a new bosonic zero mode of the charged fields emanating from a = 0.
- The result is naively periodic in *q* (one needs to continue canceling modes between bosons and fermions even for negative bosonic "masses").

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications ●0000	Conclusions	Backup
Some cor	ntext				

- The supersymmetric vortex loop is the reduction of the 4d Gukov-Witten surface operator⁵.
- Works for non-abelian groups⁶
 - For a global non-abelian symmetry: rotate the data into the Cartan.
 - For a non-abelian gauge symmetry: the operator (partially) breaks gauge invariance at the loop.
 - For Chern-Simons theory: carefully quantize the charge.

⁵Gukov,Witten (2006); Drukker, Gomis,Young (2008) ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

⁶Drukker, Okuda, Passerini (2012)

000	000000	0000000000	00000	00	Баскир
Mirror S	/mmetrv				

Basics of 3d mirror symmetry

- Relates the IR limit (strong coupling!) of different supersymmetric quiver gauge theories.
- Can be realized with S-duality in type IIB brane construction.
- Duality exchanges the Higgs and Coulomb branches of the moduli space.
- Abelian mirror symmetry is closely related to $SL(2,\mathbb{Z})$.

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	0000000000	00000	00	
Duality					

U(1) N = 4 gauge theory with a single charged flavor is IR equivalent to a free twisted hypermultiplet⁷
 Exchanges U(1)_J (topological) with U(1)_{flavor} (and the FI term with the real mass)

• Exchanges Wilson loops and (flavor) defect operators (no Wilson loops in the dual!)

$$W_{q}Z_{U(1),N_{f}=1}^{\mathcal{N}=4}(\eta) = \int d\lambda \frac{e^{2\pi i\eta\lambda}e^{2\pi q\lambda}}{2\cosh(\pi\lambda)}$$
$$= \frac{1}{2\cosh\pi(\eta - iq)} = D_{q}Z_{\text{free twisted hyper}}^{\mathcal{N}=4}(\eta)$$

⁷Kapustin,Strassler (1999)

Introduction 000	Definition of the vortex loop 000000	Localization 0000000000	Applications 000●0	Conclusions	Backup
More dua	lity				

- Knowing the mapping of global symmetries is enough to determine the mapping of (single) loop operators.
- There is an interesting algebra of Wilson loops in Chern-Simons-matter theories⁸ and possibly of defects.
- Duality can mix the two objects and insertions need not commute⁹.

⁸Kapustin,Willett (2013)

⁹In abelian mirror symmetry: Dimofte, Gaiotto, Gukov (2011) हि र रहेर हे जिल्ल

Introduction 000	Definition of the vortex loop 000000	Localization 0000000000	Applications 0000●	Conclusions	Backup
Converge	nce				

• Gauge theories with CS level k = 0 seem to support only Wilson loops with small enough charge. For $U(1), N_f = 1$

$$\int d\lambda \frac{e^{2\pi q\lambda}}{2\cosh(\pi\lambda)} < \infty \Longleftrightarrow |q| < \frac{1}{2}$$

or for $N_f > 1$

$$\int d\lambda \frac{e^{2\pi q\lambda}}{2\cosh^{N_f}(\pi\lambda)} < \infty \iff |q| < \frac{N_f}{2}$$

• The defect description provides a natural analytic continuation past $q = N_f/2$ (it is periodic). Note

$$q_{\text{defect}} = rac{q}{N_f}$$

• An addition bosonic zero mode for charged fields at $q_{defect} = \pm 1/2$ (fermionic zero modes at other values). This is hard to see in the mirror (Wilson loop) description.

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions ●○	Backup
Conclusio					

- The definition
 - Simple UV definition even in the absence of gauge fields.
 - Associated to a conserved current and an important part of the $SL(2,\mathbb{Z})$ action.
 - Supersymmetric version available. The "data" is in a vector multiplet with non-standard reality conditions.
- Localization
 - All regularizations lead to the same result.
 - The answer is consistent with compactified 4d theories.
 - Implies that mirror symmetry exchanges Wilson loops with vortex loops.

• Gives a continuation to Wilson loops with large charge (physical?).

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	0000000000	00000	O	
Thank yo	ou				

Figure: Abrikosov vortex lattice (H. Hess 1988)

Thank you!

イロト イロト イヨト イヨト 三日

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	0000000000	00000	00	
Path inte	gral localization				

Deformation

- Identify an appropriate conserved fermionic charge: Q.
- Choose V such that {Q, V} is a positive semi-definite functional (Q should square to 0 on V).
- Deform the action by a total Q variation $S \rightarrow S + t\{Q, V\}$. The resulting path integral is independent of t!
- Add some Q closed operators (Wilson loops, defect operators).

Localization

- Take the limit $t \to \infty$.
- The measure exp(-S) is very small for $\{Q, V\} \neq 0$.
- The semiclassical approximation becomes exact, but there may be many saddle points to sum over ("the zero locus").
- Integrate over the zero locus of $\{Q, V\}$ (+ small fluctuations)

Introduction 000	Definition of the vortex loop 000000	Localization 0000000000	Applications 00000	Conclusions	Backup
Supersyn	nmetry on S^3				

- We wish to compute all expectation values on S^3 .
- After a conformal transformation
 - All derivatives become covariant.
 - Scalars with a kinetic term get a conformal mass (proportional to the Ricci scalar).
- (Covariantly) constant spinors exist only on ricci flat manifolds.
- Manifolds of constant curvature have Killing spinors satisfying $\nabla_{\mu}\varepsilon = \alpha \gamma_{\mu}\varepsilon$.
- On the three sphere $abla_{\mu}\varepsilon = \pm rac{i}{2}\gamma_{\mu}\varepsilon$ (two of each).
- Actions with fermionic symmetries may be constructed using these spinors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Definition of the vortex loop	Localization	Applications	Conclusions	Backup
000	000000	0000000000	00000	00	
$\mathcal{N}=2$ V	ector multiplets				

• The vector multiplet

$$\sigma$$
, D (real) λ_{lpha} (complex) A_{μ} (real)

- Additional gauge fixing fields: c, \bar{c} and b.
- The gaugino variation is (I have set the radius r = 1)

$$\delta\lambda = (-rac{1}{2}\gamma^{\mu
u}F_{\mu
u} - D + i\gamma^{\mu}D_{\mu}\sigma - \sigma)arepsilon$$

• We actually consider a combined supercharge

$$ilde{Q} = Q_{arepsilon} + Q_{BRST}, \qquad V = Tr\left(\{ ilde{Q},\lambda\}^{\dagger}\lambda + ar{c}\partial^{\mu}A_{\mu}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

000	000000		00000	00	
Vector I	multiplet localizat	tion			

• The localizing functional is similar to a normal Yang-Mills action

$$\begin{split} S_{Q} = t \int_{\mathcal{M}} \sqrt{g} \, Tr \Big(\frac{1}{2} F^{\mu\nu} F_{\mu\nu} + D^{\mu} \sigma D_{\mu} \sigma + (D + \sigma)^{2} + i \lambda^{\dagger} \not\!\!D \lambda \\ + i [\lambda^{\dagger}, \sigma] \lambda - \frac{1}{2} \lambda^{\dagger} \lambda + \nabla^{\mu} \bar{c} D_{\mu} c + b \nabla^{\mu} A_{\mu} \Big) \end{split}$$

Localizing to

$$S_Q=0 \Leftrightarrow A_\mu=0, \lambda=\lambda^\dagger=0, c=0, ar{c}=0, D=-\sigma=\sigma_0(const)$$

and with *b* unrestricted.

• Path integral reduces to

$$\int_{\sigma=const} S_{original}[\sigma=const] \text{ (one loop determinant)}$$

Introduction 000	Definition of the vortex loop 000000	Localization 0000000000	Applications 00000	Conclusions	Backup
Gauge se	ctor matrix mode	el			

• The fluctuation determinant is

$$\prod_{\alpha}\prod_{l=0}^{\infty}\frac{\left((l+i\alpha(a))(-l-1+i\alpha(a))\right)^{l(l+1)}}{\left((l+1)^2+\alpha(a)^2\right)^{l(l+2)}}=\prod_{\alpha\in\mathsf{roots}}\frac{2\sinh(\pi\alpha(a))}{(\pi\alpha(a))}$$

• The supersymmetric Chern-Simons action becomes

$$\frac{ik}{4\pi}tr_f \int\limits_{\mathcal{M}} \sqrt{g}(2D\sigma) \to \exp(-i\pi ktr_f(a^2))$$

• The supersymmetric Wilson loop

$$W_{1/2} \equiv \mathcal{P} \operatorname{Tr}_R \exp[\oint (iA_\mu dx^\mu + \sigma |\dot{x}|)] \rightarrow \operatorname{Tr}_R exp(2\pi a)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions	Backup
The Cher	m-Simons matrix	model			

The matrix integral

• The expectation value of the Wilson loop has been reduced to a matrix integral

$$\int da \frac{\exp(-ik\pi tr(a^2))}{\text{classical CS term}} \frac{\det_{Ad} 2\sinh(\pi a)/(\pi a)}{1 \text{ loop det}} \frac{tr_R \exp(2\pi a)}{\text{Wilson loop}}$$

Consistency checks

- The above matrix model was derived independently by other means for pure CS theory.
- Exact results for U(N) are available and compare well with known results.
- The supersymmetric computation demands a specific "framing".

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions	Backup
Matter fi	elds				

• Component fields and fermion transformations

$$\phi$$
,F (complex) ψ_{α} (complex)

$$\delta\psi = (-i\gamma^{\mu}\nabla_{\mu}\phi - i\sigma\phi + \frac{1}{2}\phi)\varepsilon, \qquad \delta\psi^{\dagger} = \varepsilon^{T}F^{\dagger}$$

• The localizing term is

$$\begin{split} S_Q = t \int\limits_{\mathcal{M}} \sqrt{g} \, Tr \Big[\nabla^{\mu} \phi^{\dagger} \nabla_{\mu} \phi + i \phi^{\dagger} v^{\mu} \nabla_{\mu} \phi + \phi^{\dagger} \sigma_0 \phi + \frac{1}{4} \phi^{\dagger} \phi \\ + F^{\dagger} F + \psi^{\dagger} \Big(i \nabla \!\!\!\!/ - i \sigma_0 + \Big(\frac{1 + \not\!\!\!/}{2} \Big) \Big) \psi \Big], \qquad v_{\mu} \equiv \varepsilon^{\dagger} \gamma_{\mu} \varepsilon \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• No additional zero modes arise. All fields are set to 0.

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions	Backup
The mat	er determinant				

self dual representation
$$R \oplus R^*$$
 (like a hypermultiplet) $Z_{1 \text{ loop}}^{\text{matter}} = \prod_{\rho \in \text{weights}} \frac{1}{\cosh(\pi \rho(a))}$

A general chiral superfield of conformal dimension Δ

$$\begin{split} \delta\psi &= (-i\gamma^{\mu}\nabla_{\mu}\phi - i\sigma\phi + \Delta\phi)\varepsilon, \qquad \delta\psi^{\dagger} = \varepsilon^{T}F^{\dagger}\\ Z_{1\ \text{loop}}^{\text{matter}} &= \prod_{\rho\in\text{weights}} \exp^{\ell(\frac{1}{2} + i\rho(\textbf{a}))} \end{split}$$

where

А

$$\ell(z) = -z log \left(1 - e^{2\pi i z}\right) + rac{i}{2} \left(\pi z^2 + rac{1}{\pi} L i_2 \left(1 - e^{2\pi i z}\right)\right) - rac{i\pi}{12}$$

is a solution to $\partial_z \ell(z) = -\pi z cot(\pi z)$

Introduction 000	Definition of the vortex loop	Localization 0000000000	Applications 00000	Conclusions 00	Backup
A Wilson	loop in ABJM				

A(harony)B(ergman)J(afferis)M(aldacena)

- \bullet A superconformal $\mathcal{N}=6$ Chern-Simons matter theory.
- Gauge group $U(N) \times U(N)$ with CS levels (k, -k).
- Two hypermultiplets in the (N, \overline{N}) representation.
- Conjectured to be the low energy limit of $\mathcal{N} = 8$ SYM and holographically dual to M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$.

An $\mathcal{N} = 2$ Wilson loop

• A loop operator preserving 2 real supercharges

$$W_{1/2} \equiv \mathcal{P} \operatorname{Tr}_R \exp[\oint (iA_\mu dx^\mu + \sigma |\dot{x}|)] \rightarrow \operatorname{Tr}_R exp(2\pi a)$$

• There is a 1/2 BPS (in the $\mathcal{N} = 6$ sense of ABJM) version in the same cohomology class (Drukker, Trancanelli)