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Defects

Operators in a QFT which are not field insertions

Specify some boundary conditions/singularities for the
fundamental fields.
Have some forms belong to a non-trivial cohomology class
(topological disorder).
Change the domain of the path integral in some other way.

Some examples

Twist operators in 2d CFT.
The ’t Hooft loop operator in 4d gauge theory.
Monopole operators in 3d CFT.
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Motivation

Why study defects?

Theory can be “incomplete” without them (they appear in
OPEs).
Duality exchanges them with “normal” operators.
Study phases of gauge theories.

Why supersymmetric defects?

Exact computation possible via localization even for strongly
coupled theories.
Comparison to known field theory/gravity duals.
Supersymmetric versions of examples exist.
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The vortex loop

Vortices are solitons in 3d gauge theory

Classical ANO vortices have supersymmetric versions on the
Higgs branches of N = 2 theories.
Exchanged with elementary excitations in 3d mirror symmetry.
The (closed) worldline of a heavy vortex gives a loop operator
analogous to a 4d ’t Hooft loop for the monopole.

Virtues of vortex loops

Easy to define in the UV even in the absence of gauge fields
(use background gauging).
Gauge invariant operators that may be used to learn about
phases of the theory.
Have supersymmetric versions.
Transform nicely under duality.
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A vortex gauge field configuration

Specify (Witten (1988), Seiberg,
Moore (1989))

a loop γ
a symmetry group G (we take U(1))
an element β ∈ g

Gauge G with connection A (if it’s
already gauged then just add A)

A has holonomy β around a small
linking loop.
equivalently FA = β ? [γ] (a delta
function on the loop)

Large gauge transformations imply
(Gukov, Witten (2006))
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Witten’s SL (2,Z) action

Take 3d CFT with a conserved U(1) current J

ZJ,α[A] =

ˆ
DΦe iS[Φ]+i

´ √
gd3xJµAµ+...+ iα

4π

´
A∧dA

Define generators T ,S

T: shift the CS level

(T · ZJ,α)[A] = ZJ,α+1[A]

S: use off-diagonal CS term to gauge ?dA then make A
dynamical.

(S ·ZJ,α)[A] =

ˆ
DA′DΦe iS[Φ]+i

´ √
gd3xJµA′

µ+...+ iα
4π

´
A′∧dA′+ i

2π

´
A∧dA′

and check1

S2 = C , (ST )3 = I

1Witten (2003)
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Vortex via SL (2,Z)

Addition of an abelian Wilson loop

e iq
´
γ A → e

i
2π

´
ω∧A → e

i
2π

´
A∧dAω

(Wω·ZJ,α)[A] :=

ˆ
DΦe iS[Φ]+i

´ √
gd3xJµAµ+...+ iα

4π

´
A∧dA+ i

2π

´
Aω∧dA

Globally ω = 2πqδγ and locally Aω = qdθ (the connection of a
defect!). Adding a defect amounts to

(Dω · ZJ,α[A]) = ZJ,α[A + Aω]

Check that the algebra (up to global phases) is

[T ,Wω] = 0, S−1WωS = Dω
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Another perspective

The topological current of an abelian gauge theory

Jtop =
1

2π
? dAdynamical

a defect in Jtop is the usual dynamical Wilson loop

Dω · ZJtop,α[A] =
〈
e iq
´
γ Adynamical

〉
The “gauge defect” (a different operation)

Adynamical → Adynamical + Aω

is equivalent in CSk to a Wilson loop with charge ∝ k2

2Moore, Seiberg (1989)
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Supersymmetry

SL(2,Z) generalizes to theories with N = 2 supersymmetry

CFT → SCFT

Conserved current J → linear multiplet Σ (σ,A, λ,D)

Connection A→ vector superfield V (σ,A, λ,D)

diagonal/off-diagonal abelian CS term →

SBF =
kij
4π

ˆ
d3xd2θd2θ̄ΣiV j

=
kij
4π

ˆ
d3x

(
εµνρAj

µ∂νA
i
ρ −

1

2
λ̄jλi + D iσj

)
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Supersymmetric loops

An N = 2 Wilson loop (1/2 BPS)

exp

(
iq

˛
γ

(A − iσd`)

)
has an associated defect operator (the supersymmetric vortex loop)

dA = 2πqδγ , ?D = −2πiqδγ ∧ d`

which solves the BPS equation (here on S3 with unit radius)

δλ = (− i

2
εµνρFµνγρ − D + iγµDµσ + σ)ε

They are SL (2,Z) buddies!
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The basics of localization

Deformation

Identify an appropriate conserved fermionic charge: Q.

Choose V such that {Q,V } is a positive semi-definite
functional (Q should square to 0 on V).

Deform the action by a total Q variation S → S + t{Q,V }.
The resulting path integral is independent of t!

Add some Q closed operators (Wilson loops, defect operators).

Localization

Take the limit t →∞.

The measure exp(−S) is very small for {Q,V } 6= 0.

The semi-classical approximation becomes exact, but there
may be many saddle points to sum over (”the zero locus”).

Integrate over the zero locus of {Q,V } (+ small fluctuations)
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Ingredients for the matrix model

On S3 we localize to a single matrix3

Aµ = 0, λ = λ† = 0,D = −σ = a(const)

The integration measure for the matrix model is

1

Vol(G )
da|a∈Ad(g) (1)

The contribution of a level k Chern-Simons term

e−iπkTr(a2)

Insertion of a supersymmetric Wilson loop in a representation R
gives a factor of

W (a) =
1

dim(R)
TrR

(
e2πa

)
−−−−→
abelian

e2πqa

3Kapustin,Willett,IY (2009)
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Fluctuations

Every dynamical gauge multiplet contributes

Z gauge multiplet
1 - loop (a) =

detOgauginos√
detOvectors

=
∏

ρ∈roots(g)

2 sinh(πρ(a))

and every dynamical chiral multiplet contributes

Z chiral multiplet
1 - loop (a,∆) =

detOF√
detOB

=
∏
ρ∈R

exp (` (z(ρ(a),∆)))

where ρ are the weights of R and

`(z) = −z log
(
1− e2πiz

)
+

i

2

(
πz2 +

1

π
Li2
(
e2πiz

))
− iπ

12

z(ρ(a),∆) = iρ(a)−∆ + 1
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Supersymmetric Deformations

Mass terms

Real mass terms are supersymmetric configurations for background
flavor symmetry gauge fields Vm ∝ θθ̄m

Smass = −
ˆ

d3xd2θd2θ̄
∑

matter

(φ†e2Vmφ+ φ̃†e−2Vm φ̃)

in the matrix model this just shifts ρ(a)→ ρ(a) + m.

Fayet-Iliopoulos (FI) terms

Fayet-Iliopoulos (FI) terms for the U(1) factors of the gauge group
are equivalent to gauging topological symmetries V̂FI ∝ θθ̄η

SFI = Tr

ˆ
d3xd2θd2θ̄ΣV̂FI → e2πiηtrf (a)
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Adding a defect

We should localize the theory in the presence of the background
defect

dA = 2πqδγ , ?D = −2πiqδγ ∧ d`

Doesn’t introduce new zero modes4.

Doesn’t modify the classical contributions (the exception is a
“gauge defect” in CS theory).

Will modify the fluctuation determinant for the charged fields
(in chiral multiplets). Evaluate by

Using the SL (2,Z) definition.
Smearing out the defect.
Working with a regularized background.

4for generic q!
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A quick evaluation using SL (2,Z)

Define the defect insertion as

Dq = S−1WqS

The SCFT depends on the modulus m (the vev of σ in the same
supermultiplet as A)

Z (m)→ (S · Z )(η) =

ˆ
dmZ (m)e2πiηm

Insert the supersymmetric Wilson loop

(WqS · Z )(η) = e2πqη

ˆ
dmZ (m)e2πiηm

(S−1W1S · Z )(m′) =

ˆ
e−2πiηm′

e2πqη

ˆ
dmZ (m)e2πiηm

hence (assuming the integral converges)

(Dq · Z )(m) = Z (m + iq)
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Working on S3

We will work in toroidal coordinates on S3

ds2 = dη2 + sin2 ηdθ2 + cos2 ηdφ2

Surfaces of constant η are tori, which degenerate to great
circles at η = 0, π2 .

There is a Killing spinor and an associated Killing vector field

∇µε =
i

2
γµε, v = ε†γµε∂µ =

∂

∂θ
+

∂

∂φ

S3 is a U(1) bundle over S2 (Hopf fibration),v points along
the fiber and the one form

v = sin2 ηdθ + cos2 ηdφ, dv = 2 ? v
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Smearing

Define a smeared (abelian) Wilson loop (the usual loop has a
singular f )

Of = exp

(
i

ˆ
S3

√
gd3xf (x)(vµAµ − iσ)

)
f (x) =

q

π
+ fo(x),

ˆ
S3

√
gd3xfo = 0⇒ fo = ∇2g

We can prove that for f0 independent of the fiber direction the
smearing is gauge invariant and “Q exact”:

δε(

ˆ √
gd3xε†γµ(∂µg)λ) =

ˆ √
gd3x(∇2g)(vµAµ − iσ)

The SL (2,Z) dual of f = q
π is a non-singular background

F = 2q ? v = qdv , D = −2iq
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Resolving the singular background

Introduce a smoothing function

f2 =
g(η/ε)

2πε sin η cos η
−−→
ε→0

δ (η) , G ′ = g

and use the non-singular configuration

F = 2πq f2 ? v =
q

ε
g(η/ε)dη ∧ (dθ − dφ)

D = −2πiqf2 = − iq g(η/ε)

ε sin η cos η

We still have a connection

dF = 0⇒ A = qG (η/ε)dθ − q(G (η/ε)− 1)dφ
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The result

The smeared loop leads to a determinant of a scalar Laplacian
and a Dirac operator twisted by v (easy to compute).

The resolved loop leads to complicated differential operators,
but many modes cancel.

Either method leads to

Z chiral multiplet
1 - loop (a,∆) =

detOF√
detOB

→ Z chiral multiplet
1 - loop (a + iq,∆)

At |q| = 1/2 we see a new bosonic zero mode of the charged
fields emanating from a = 0.

The result is naively periodic in q (one needs to continue
canceling modes between bosons and fermions even for
negative bosonic “masses”).
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Some context

The supersymmetric vortex loop is the reduction of the 4d
Gukov-Witten surface operator5.

Works for non-abelian groups6

For a global non-abelian symmetry: rotate the data into the
Cartan.
For a non-abelian gauge symmetry: the operator (partially)
breaks gauge invariance at the loop.
For Chern-Simons theory: carefully quantize the charge.

5Gukov,Witten (2006); Drukker, Gomis,Young (2008)
6Drukker, Okuda, Passerini (2012)
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Mirror Symmetry

(a) (b)

NS5 NS5

N D3 branes N D3 branes

NS5

D5

D5

D5

D5

NS5

NS5

NS5

D5

D5

D5

NS5

Basics of 3d mirror symmetry

Relates the IR limit (strong coupling!) of different
supersymmetric quiver gauge theories.

Can be realized with S-duality in type IIB brane construction.

Duality exchanges the Higgs and Coulomb branches of the
moduli space.

Abelian mirror symmetry is closely related to SL (2,Z).
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Duality

U(1) N = 4 gauge theory with a single charged flavor is IR
equivalent to a free twisted hypermultiplet7

Exchanges U(1)J (topological) with U(1)flavor (and the FI
term with the real mass)

1

coshπω η↔ω
←→

ˆ
dσ

e2πiση

coshπσ
.

Exchanges Wilson loops and (flavor) defect operators (no
Wilson loops in the dual!)

WqZ
N=4
U(1),Nf =1 (η) =

ˆ
dλ

e2πiηλe2πqλ

2 cosh(πλ)

=
1

2 coshπ(η − iq)
= DqZ

N=4
free twisted hyper (η)

7Kapustin,Strassler (1999)
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More duality

Knowing the mapping of global symmetries is enough to
determine the mapping of (single) loop operators.

There is an interesting algebra of Wilson loops in
Chern-Simons-matter theories8 and possibly of defects.

Duality can mix the two objects and insertions need not
commute9.

8Kapustin,Willett (2013)
9In abelian mirror symmetry: Dimofte, Gaiotto, Gukov (2011)
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Convergence

Gauge theories with CS level k = 0 seem to support only
Wilson loops with small enough charge. For U(1),Nf = 1ˆ

dλ
e2πqλ

2 cosh(πλ)
<∞⇐⇒ |q| < 1

2

or for Nf > 1ˆ
dλ

e2πqλ

2 coshNf (πλ)
<∞⇐⇒ |q| < Nf

2

The defect description provides a natural analytic continuation
past q = Nf /2 (it is periodic). Note

qdefect =
q

Nf

An addition bosonic zero mode for charged fields at
qdefect = ±1/2 (fermionic zero modes at other values). This is
hard to see in the mirror (Wilson loop) description.
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Conclusions about vortex loops

The definition

Simple UV definition even in the absence of gauge fields.
Associated to a conserved current and an important part of the
SL (2,Z) action.
Supersymmetric version available. The “data” is in a vector
multiplet with non-standard reality conditions.

Localization

All regularizations lead to the same result.
The answer is consistent with compactified 4d theories.
Implies that mirror symmetry exchanges Wilson loops with
vortex loops.
Gives a continuation to Wilson loops with large charge
(physical?).
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Thank you

Figure: Abrikosov vortex lattice (H. Hess 1988)

Thank you!
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Path integral localization

Deformation

Identify an appropriate conserved fermionic charge: Q.

Choose V such that {Q,V } is a positive semi-definite
functional (Q should square to 0 on V).

Deform the action by a total Q variation S → S + t{Q,V }.
The resulting path integral is independent of t!

Add some Q closed operators (Wilson loops, defect operators).

Localization

Take the limit t →∞.

The measure exp(−S) is very small for {Q,V } 6= 0.

The semiclassical approximation becomes exact, but there
may be many saddle points to sum over (”the zero locus”).

Integrate over the zero locus of {Q,V } (+ small fluctuations)
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Supersymmetry on S3

We wish to compute all expectation values on S3.

After a conformal transformation

1 All derivatives become covariant.
2 Scalars with a kinetic term get a conformal mass (proportional

to the Ricci scalar).

(Covariantly) constant spinors exist only on ricci flat
manifolds.

Manifolds of constant curvature have Killing spinors satisfying
∇µε = αγµε.

On the three sphere ∇µε = ± i
2γµε (two of each).

Actions with fermionic symmetries may be constructed using
these spinors.
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N = 2 Vector multiplets

The vector multiplet

σ, D (real) λα (complex) Aµ (real)

Additional gauge fixing fields: c, c̄ and b.

The gaugino variation is (I have set the radius r = 1)

δλ = (−1

2
γµνFµν − D + iγµDµσ − σ)ε

We actually consider a combined supercharge

Q̃ = Qε + QBRST , V = Tr
(
{Q̃, λ}†λ+ c̄∂µAµ

)
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Vector multiplet localization

The localizing functional is similar to a normal Yang-Mills
action

SQ =t

ˆ

M

√
gTr

(1

2
FµνFµν + DµσDµσ + (D + σ)2 + iλ†D/ λ

+ i [λ†, σ]λ− 1

2
λ†λ+∇µc̄Dµc + b∇µAµ

)
Localizing to

SQ = 0⇔ Aµ = 0, λ = λ† = 0, c = 0, c̄ = 0,D = −σ = σ0(const)

and with b unrestricted.

Path integral reduces to
ˆ
σ=const

Soriginal [σ = const] (one loop determinant)
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Gauge sector matrix model

The fluctuation determinant is∏
α

∞∏
l=0

((l + iα(a))(−l − 1 + iα(a)))l(l+1)

((l + 1)2 + α(a)2)
l(l+2)

=
∏

α∈roots

2 sinh(πα(a))

(πα(a))

The supersymmetric Chern-Simons action becomes

ik

4π
trf

ˆ

M

√
g(2Dσ)→ exp(−iπktrf (a2))

The supersymmetric Wilson loop

W1/2 ≡ PTrR exp[

˛
(iAµdx

µ + σ |ẋ |)]→ TrRexp(2πa)
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The Chern-Simons matrix model

The matrix integral

The expectation value of the Wilson loop has been reduced to
a matrix integral

ˆ
da

exp(−ikπtr(a2))

classical CS term

detAd2 sinh(πa)/(πa)

1 loop det

trR exp(2πa)

Wilson loop

Consistency checks

The above matrix model was derived independently by other
means for pure CS theory.

Exact results for U(N) are available and compare well with
known results.

The supersymmetric computation demands a specific
”framing”.
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Matter fields

Component fields and fermion transformations

φ,F (complex) ψα (complex)

δψ = (−iγµ∇µφ− iσφ+
1

2
φ)ε, δψ† = εTF †

The localizing term is

SQ =t

ˆ

M

√
gTr

[
∇µφ†∇µφ+ iφ†vµ∇µφ+ φ†σ0φ+

1

4
φ†φ

+ F †F + ψ†
(
i∇/ − iσ0 +

(1 + v/

2

))
ψ
]
, vµ ≡ ε†γµε

No additional zero modes arise. All fields are set to 0.
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The matter determinant

A self dual representation R ⊕ R∗ (like a hypermultiplet)

Zmatter
1 loop =

∏
ρ∈weights

1

cosh(πρ(a))

A general chiral superfield of conformal dimension ∆

δψ = (−iγµ∇µφ− iσφ+ ∆φ)ε, δψ† = εTF †

Zmatter
1 loop =

∏
ρ∈weights

exp`(
1
2

+iρ(a))

where

`(z) = −zlog
(
1− e2πiz

)
+

i

2

(
πz2 +

1

π
Li2
(
1− e2πiz

))
− iπ

12

is a solution to ∂z`(z) = −πzcot(πz)
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A Wilson loop in ABJM

A(harony)B(ergman)J(afferis)M(aldacena)

A superconformal N = 6 Chern-Simons matter theory.

Gauge group U(N)× U(N) with CS levels (k,−k).

Two hypermultiplets in the
(
N, N̄

)
representation.

Conjectured to be the low energy limit of N = 8 SYM and
holographically dual to M-theory on AdS4 × S7/Zk .

An N = 2 Wilson loop

A loop operator preserving 2 real supercharges

W1/2 ≡ PTrR exp[

˛
(iAµdx

µ + σ |ẋ |)]→ TrRexp(2πa)

There is a 1/2 BPS (in the N = 6 sense of ABJM) version in
the same cohomology class (Drukker, Trancanelli)
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