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• Introduction. False vacuum.
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The rate of critical bubble formation (per unit time×volume) w0 ∼ exp(−Action).
• Euclidean-space calculation
Decay rate = imaginary part (×(−2)) of the false vacuum energy. The path integral

Z = N
∫
e−S[φ,...] Dφ . . . = exp(−EvacT )

⇒ w0 = 2 Im(lnZ)/V T .
• Bounce
Stationary configuration: O(d)-symmetrical solution of field equations with φ→ φ+ at r → ∞ and
φ ≈ φ− at r = 0.
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Pre-exponent

w0 = Γ exp(−Scl)

• d = 2
Γ = ε

2π in a model with no fermions
Γ = 2N ε

2π for a model with N fermions having zero mode on the kink (in the ε→ 0 limit). 2N =the
number of final states for kink-antikink.

Some details on d = 2:
γ — closed curve in d = 2.
Effective action: S[γ] = μP [γ] − εA[γ].

Z1 =
∫

exp(−S[γ])Dγ

μ and ε are the renormalized parameters supplied by the ‘microscopic’ theory.
Stationary curve: circle with R = μ/ε, Scl = πμ2/ε.
Let r(θ) be the polar parametriztion of γ. Hamiltonian form:

Z1 =
∫

exp
(
−
∫
p dq +

∫
H dθ

) DpDr
2π

p = μ ṙ/
√
r2 + ṙ2 H =

1
2
ε r2 − r

√
μ2 − p2

|p| < μ — no self-intersections of γ.
Canonical transform (r, p) → (q, p) with q = r −√μ2 − p2/ε:

H(q, p) =
p2

2ε
+
ε

2
q2 − μ2

2ε



which up to the constant −μ2/(2ε) is a Euclidean-space Hamiltonian for a harmonic oscillator with the
frequency ω2 = −1.

⇒ The path integral for Z1 is Gaussian in a finite neighborhood of the stationary point p = 0, q = 0.

⇒ w0 = ε
2π exp(−πμ2/ε) is exact up to higher exponents. (No power corrections in ε/μ2)

One known exact case (M. Stone ‘76): Sine-Gordon staircase

1
2
(∂μφ)2 +

α

β2
cos βφ+ Jφ↔ iψ̄γ · ∂ψ − 1

2
gjμjμ +mψ̄ + eA0j0

β2/4π = (1 + g/π)−1, ∂1A
0 = J , e = 2π/β.

Schwinger process: pair creation in external field E. At β2 = 4π the Thirring model is free, g = 0, ⇒
exact result

w0 = − ε

2π
ln

[
1 − exp

(
−πμ

2

ε

)]



• d = 3 The ‘low-energy’ effective action for 2-d closed surface γ in 3-d

S = μArea[γ] − ε V olume[γ]

is not renormalizable. Still some universality remains:

w0 =
A

ε7/3
exp(−Scl)

A depends on the parameters (masses, couplings) of the ‘microscopic’ theory, but not on ε.
Specific φ4 model: G. Münster and S. Rotsch ‘00, general case MV ‘04

• d = 4 Any universality of Γ is totally lost — essential dependence on details of the model. Latest
work: G.Dunne and H. Min, Phys.Rev.D72:125004,2005. hep-th/0511156.



• Catalysis by presence of a particle. (Particle decay → true vacuum.)
Energy transfer when the particle field has zero mode on the wall. (Boson of the master field, or
fermion.)
Initial state δE = m (the particle mass). Final state: δE = 0 (particle ‘rides’ as a bound state on the
bubble wall).
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Decay rate: Γ = K w0. K - catalysis factor.
d = 2



2α

m

Capillarity problem. 2μ cosα = m

Seff =
μ2

ε

⎡
⎣2 arccos

(
m

2μ

)
− m

μ

√
1 − m2

4μ2

⎤
⎦

Tunneling through the barrier 2μ− 2εR at energy E = m.

Same applies to collisions at energy E.



d = 4
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Figure 1: The barrier penetration function b(E), the excitation function c(E), and their sum vs. w =
E ε̃2/μ̃3. At the point wc = 4/27 and beyond the barrier disappears, hence b(E) = 0 and the sum coincides
with c(E).

For mR	 SB , but still mR
 1: K = C · exp(2mR).
Calculation of C is the subject.
• mR	 SB - arbitrary d.
• m ≈ 2μ in d = 2.



• Boson
Consider the particle propagator in the φ+ vacuum (σ(x) = φ(x) − φ+):

D(x, y) =
1
Z

∫
σ(x)σ(y) e−S[φ,...] Dφ . . .

Bounce contribution at L = |x− y| 
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δD(x, y) =
i

2
w0

∫
ddz F (x− z, y − z)D0(x− z)D0(y − z) ,

D0(x) - free progator. Use saddle point in the dz⊥ integration. Then at L
 R

δD(x, y) =
i

2
w0 F0

∫
ddz D0(x− z)D0(y − z) ,

with F0 given by the alignment in Figure b). Compare with effect of m2 → m2 + δm2:

δmD(x, y) = −δm2
∫
ddz D0(x− z)D0(y − z)



• δm2 = −(i/2)w0 F0, which corresponds to the particle decay rate Γ = F0w0/(2m) ⇒ the catalysis
factor K is found as

K =
F0

2m

For the bosons of the master field F0 is found from asymptotic form of (classical) bounce field profile
φ(r) − φ+ → −2v exp[−m(r −R)] → CD0(r).

D0(r) =
md/2−1

(2π)d/2 rd/2−1
K d

2
−1(mr)

⇒ C = −4 (2π)d/2−1m(3−d)/2R(d−1)/2 v em R

F0 = C2 ⇒
K = 2d+1 π(d−3)/2 Γ

(
d+ 1

2

)
m2−d v2 Vd−1 e

2m R

Vd−1 = π(d−1)/2Rd−1/Γ[(d+ 1)/2] is the spatial (d− 1 dimensional) volume of the critical bubble.
Enhancement of K: classical exp(2mR) and an extra factor m2−d v2 - inverse of the (small) coupling
constant for φ.



• Infrared complication in d = 2
Soft modes: distorsion of the shape of the bounce. Eigenvalues λn = cn/R

2.

d = 2 normalized eigenmode (μ ∼ mv2):

σn(r) ∼ mv√
μR

e−m(r−R) ∼
√
m

R
e−m(r−R)

⇒ mode contribution to δD(r1, r2):

R2

cn
σn(r1)σn(r2) ∼ c−1

n (mR) e2mR e−m(r1+r2)

Classical part: ∼ v2 e2mR e−m(r1+r2) ⇒
Mode contrib.

Classical
∼ mR

v2

Although, as expected, suppressed by the small coupling 1/v2, is infrared unstable at large R.



• Solution
Effective action for the soft modes (polar-coordinate parametrization of the bounce shape, (r(θ), θ))

S =
∫ 2π

0

(
μ
√
r2 + ṙ2 − 1

2
ε r2

)
dθ =

π μ2

ε
+
∫ 2π

0

ε

2
(ρ̇2 − ρ2) dθ +O(ρ4)

R = μ/ε, ρ(θ) = r(θ) −R, ρ̇ = dρ/dθ.
Modes: λn ∝ (n2 − 1).
One negative mode: ρ0 = 1/

√
2π.

Two types of n > 0 modes:

ρ(1)
n =

1√
π

cosnθ , and ρ(2)
n =

1√
π

sinnθ ; (n = 1, 2, . . .)

Only the fluctuations of the vertical size of the bounce contribute to δD(x, y):

〈[ρ(0) + ρ(π)]2〉 ∝
∑
n

[ρn(0) + ρn(π)]2

n2 − 1

The sum ρ(0) + ρ(π) is not vanishing only for the negative mode and for the positive modes of the first
type, ρ(1)

n , with even n, i.e. n = 2k. Thus

〈[ρ(0) + ρ(π)]2〉 ∝ −1
2

+
∞∑

k=1

1
4 k2 − 1

= 0

The theory cures itself from the inrared problem by cancellation between one negative and the sum over
the positive modes.



• Fermionic case. d = 2.
If a fermion field is present in the theory (no actual fermions in the false vacuum), such that the fermion
mass m(φ) changes sign between φ+ and φ−, the fermion has a zero mode on the bubble wall and affects
the spontaneous decay rate of the false vacuum: in d = 2 it makes w0 → 2w0. Two (degenerate) final
states: F(kink,antikink)=(+1/2,-1/2) and F(kink,antikink)=(-1/2,+1/2).

• Fermion present in the false vacuum.
Consider the bounce contribution to the fermion Green function G(x, y) = 〈ψ(x)ψ(y)〉.
Fermion zero mode, [σi∂i +m(φ)]ψ0 = 0

ψ0(r, θ) = Cf

√
R

r
exp

{
−
∫ r

R
m[φ(r′)] dr′

}
χ(�)

⎛
⎝ e−i θ/2

ei θ/2

⎞
⎠

χ(�) is a one-dimensional fermion field living on the bounce boundary and (nominally) depending on the
length parameter � = Rθ along the boundary. Classical equation for χ: χ̇ = 0. Cf is the normalization
factor:

2C2
f

∫
exp

[
−2
∫ r

R
m(φ) dr′

]
dr = 1 .

Switch to C̃f :

Cf exp
{
−
∫ r

R
m[φ(r′)] dr′

}
→ C̃f exp [mf (R − r)]

Generally

C̃2
f =

mf

2
f

(
mf

m

)

f - dimensionless function of mf/m with m standing for other mass parameters in the false vacuum.



For mf/m→ 0, f(mf/m) → 1. In a φ4 theory with m = the boson mass

f(u) =
22u

√
π

Γ(u+ 1/2)
Γ(u+ 1)

Contribution of the zero mode to G(x, y):

δG(x, y) = − i

2
w0

2
d2z C̃2

f e
2 mf RR

e−|x−y|√|x− z| |y − z| (1 + σ1) g(0, πR)

with g(�1, �2) = 〈χ(�1)χ†(�2)〉 the propagator of χ.
g(�1, �2) = (1/2) sign(�1 − �2) ⇒ g(0, πR) = −1/2
Compare with mf → mf + δmf :

δmG(x, y) = −δmf d
2z G0(x− z)G0(z − y) → −δmf d

2z
m

4π
(1 + σ1)

e−|x−y|√|x− z| |y − z|
G0(x, y) = 1

2π (−σi∂i +m)K0(mf |x− y|) ⇒

Γf =
π

2
f

(
mf

m

)
Rw0 exp(2mf R) =

μ

2
f

(
mf

m

)
exp

(
−π μ

2

ε
+ 2mf R

)

w0 = (ε/π) exp(−π μ2/ε) and R = μ/ε

For the fermion indeed Kf ∼ R exp(2mfR).



Meson decay in sine-Gordon model
• Weak coupling

LSG =
1
2

(∂φ)2 +
α

β2
cos(βφ) + (ε β/2π)φ

The catalysis factor for a boson is

K =
32
β2

μ

ε
e2 mbμ/ε

mb =boson mass.

• Strong coupling
Equivalent: Thirring model in external electric field

LTh = iψ̄∂νγ
νψ − 1

2
g jνjν + μ ψ̄ψ +A0 j0

β2

4π = (1 + g
π )−1, jν = ψ̄γνψ, μ= soliton mass in the sine-Gordon model, ∂xA0 = ε.

Small g: the SG boson is a shallow bound state of fermion-antifermion, mb = 2μ− μg2.
The near-threshold dynamics of the fermion-antifermion (soliton-antisoliton) pair can be described by
the nonrelativistic Hamiltonian

H =
p2

μ
− ε x− 2g δ(x)

Boson-induced vacuum decay = ionization of the bound state in U(x) = −2gδ(x) by ext. electric field ε.



Equation for the Green function (E = −κ2/μ):

G(0, 0;−κ2/μ) =
Gε(0, 0;−κ2/μ)

1 − 2g Gε(0, 0;−κ2/μ)

with Gε(x, y;E) the Green function in linear potential (−εx)

Gε

(
0, 0;−κ

2

μ

)
=
∫ ∞

0

√
μ

4π τ
exp

(
ε2

12μ
τ3 − κ2

μ
τ

)
dτ

The pole (in κ) is determined by

2g Gε

(
0, 0;−κ

2

μ

)
= 1

��

Im τ

Re τ�
�

τ0

τ0 = 2κ/ε. The decay rate (due to ionization):

Γ = 2μ g2 exp

(
−4

3
g3 μ

2

ε

)


