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e Introduction. False vacuum.
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The rate of critical bubble formation (per unit timexvolume) wg ~ exp(—Action).
e Fuclidean-space calculation

Decay rate = imaginary part (x(—2)) of the false vacuum energy. The path integral

Z—N / = exp(—EyuT)

= wp =2Im(In2Z)/VT.
e Bounce

Stationary configuration: O(d)-symmetrical solution of field equations with ¢ — ¢4 at r — oo and

p~¢_ atr=0.
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Pre-exponent

wo = T exp(—Se)
od=2
I'= o

=2V 5 for a model with N fermions having zero mode on the kink (in the ¢ — 0 limit). 2NV —=the

in a model with no fermions

number of final states for kink-antikink.

Some details on d = 2:
v — closed curve in d = 2.
Effective action: S[vy| = u P[vy] — € A[y].

2y = [ exp(=Sh) Dy

i and e are the renormalized parameters supplied by the ‘microscopic’ theory.
Stationary curve: circle with R = p/e, Sy = wp?/e.

Let 7(0) be the polar parametriztion of . Hamiltonian form:
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which up to the constant —u?/(2¢) is a Euclidean-space Hamiltonian for a harmonic oscillator with the

frequency w? = —1.

= The path integral for Z; is Gaussian in a finite neighborhood of the stationary point p = 0,q = 0.

= wy = 5= exp(—mu?/€) is exact up to higher exponents. (No power corrections in €/p?)

One known exact case (M. Stone ‘76): Sine-Gordon staircase
1 2 (87 .7 r ., N 0 -0
5 (u0)? + 73 €056+ T o iy D — 50"+ i+ eA%)
B2/dm = (1+g/m)~ ', 01A° = J, e = 2/B.
Schwinger process: pair creation in external field E. At 3% = 47 the Thirring model is free, g = 0, =

€ u?
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exact result



e d = 3 The ‘low-energy’ effective action for 2-d closed surface v in 3-d
S = p Arealy] — e Volumely]

is not renormalizable. Still some universality remains:

A
= — _SC
wo = —73 exp(—Sa)

A depends on the parameters (masses, couplings) of the ‘microscopic’ theory, but not on e.
Specific ¢* model: G. Miinster and S. Rotsch ‘00, general case MV ‘04

e d = 4 Any universality of I' is totally lost — essential dependence on details of the model. Latest
work: G.Dunne and H. Min, Phys.Rev.D72:125004,2005. hep-th/0511156.



e Catalysis by presence of a particle. (Particle decay — true vacuum.)
Energy transfer when the particle field has zero mode on the wall. (Boson of the master field, or
fermion.)

Initial state 6 F = m (the particle mass). Final state: 6FE = 0 (particle ‘rides’ as a bound state on the
bubble wall).
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Decay rate: I' = K wg. K - catalysis factor.
d=2



Capillarity problem. 2ucosa =m

2
Sy =1 s (1) -

Tunneling through the barrier 2u — 2eR at energy E = m.

Same applies to collisions at energy F.
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Figure 1: The barrier penetration function b(F), the excitation function ¢(F), and their sum vs. w =
E &2 /i3, At the point w. = 4/27 and beyond the barrier disappears, hence b(E) = 0 and the sum coincides
with c¢(F).

For mR < Sp, but still mR > 1: K = C - exp(2mR).
Calculation of C' is the subject.

e mR < Sp - arbitrary d.

em~2uind=2.



e Boson

Consider the particle propagator in the ¢4 vacuum (o(x) = ¢(x) — ¢4 ):

D(x,y) = % / o(z)o(y) e o1Dg ...

Bounce contribution at L = |z —y| > R
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3D(w,y) = s wo [ d?z Fw =2,y —2) Dol — ) Doly — 2)
Dy(x) - free progator. Use saddle point in the dz, integration. Then at L > R

)
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with Fy given by the alignment in Figure b). Compare with effect of m? — m? 4 dm?:

SmD(z,y) = —dm? /ddz Do(z — 2) Do(y — 2)



e 6m? = —(i/2) wo Fy, which corresponds to the particle decay rate I' = Fywg/(2m) = the catalysis

factor K is found as
F
K="
2m
For the bosons of the master field Fy is found from asymptotic form of (classical) bounce field profile

o(r) — ¢ — —2v exp[—m(r — R)] — CDy(r).
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Vg1 = n@=D/2 RA=1/T[(d + 1)/2] is the spatial (d — 1 dimensional) volume of the critical bubble.

Enhancement of K: classical exp(2mR) and an extra factor m?>~¢v? - inverse of the (small) coupling

constant for ¢.



e Infrared complication in d = 2

Soft modes: distorsion of the shape of the bounce. Eigenvalues A\, = ¢,/ R2.

d = 2 normalized eigenmode (p ~ mv?):

muv. fm o
on(r) ~ TRQ (r=F) ke (r—F)

= mode contribution to dD(ry,r2):
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Classical part: ~ v2e2mft g=m(ritr2) —
Mode contrib. m R

Classical V2

Although, as expected, suppressed by the small coupling 1/v?, is infrared unstable at large R.



e Solution

Effective action for the soft modes (polar-coordinate parametrization of the bounce shape, (r(6),0))
o 2 L o ™y Ty 4
S:/ ,u\/r2—|—r2—§er d9:—+/ 5(,0 — p?)df+ O(p)
0 € 0

R=pfe, p(0) =r(0) — R, p=dp/db.
Modes: ), o< (n? —1).

One negative mode: pg = 1//27.
Two types of n > 0 modes:

1 1
P = — cosnf, and p? =—snnd; (n=1,2,...)

Vi N m

Only the fluctuations of the vertical size of the bounce contribute to §D(z,y):
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The sum p(0) + p(m) is not vanishing only for the negative mode and for the positive modes of the first
type, p?(ll), with even n, i.e. n = 2k. Thus
(1(0) + p()) o 5 + 3 a7 =0
2 Lk 1

The theory cures itself from the inrared problem by cancellation between one negative and the sum over

the positive modes.



e Fermionic case. d = 2.
If a fermion field is present in the theory (no actual fermions in the false vacuum), such that the fermion
mass m(¢) changes sign between ¢ and ¢_, the fermion has a zero mode on the bubble wall and affects

the spontaneous decay rate of the false vacuum: in d = 2 it makes wy — 2wg. Two (degenerate) final
states: F(kink,antikink)=(+1/2,-1/2) and F(kink,antikink)=(-1/2,+1/2).

e Fermion present in the false vacuum.
Consider the bounce contribution to the fermion Green function G(z,y) = (1 (x)1(y)).
Fermion zero mode, [0;0; + m(¢)] g =0

= \/E exp{~ [ mlo(r] b x(o) ( _://22 )

X (¢) is a one-dimensional fermion field living on the bounce boundary and (nominally) depending on the
length parameter £ = R along the boundary. Classical equation for x: x = 0. C} is the normalization

factor:
20% /exp [—Q/RT m(¢) dr'] dr=1.
Switch to é’f:
Cy exp {— /r m[e(r')] d?“'} — Cy exp[my(R— )]

R
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Generally

f - dimensionless function of m;/m with m standing for other mass parameters in the false vacuum.



For ms/m — 0, f(ms/m) — 1. In a ¢* theory with m = the boson mass

22¢ I'(u+1/2)

JW) = = Tt
Contribution of the zero mode to G(z,y):
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with g(£1,02) = (x(¢1)x"(¢3)) the propagator of x.
g(ﬁl,fg) = (1/2) Sign(ﬁl — 62) == g(O,ﬂ'R) = —1/2

Compare with my — my + dmy:
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SmG(z,y) = —0my d*z Go(z — 2) Go(z — y) — —dmy d*z m (1+01)

am Viz —z[ly — 2|

Go(@,y) = 5 (=030 + m) Ko(my |z — y]) =
2
Iy = gf (m > Rwg exp(2mys R) = gf (—f) exp <—7T5 —|—2mfR>

wo = (e/m) exp(—mp?/e) and R = p/e
For the fermion indeed Ky ~ R exp(2mR).



Meson decay in sine-Gordon model

e Weak coupling )
Lsa = 5 (09)° + 55 cos(89) + (¢ 3/27) ¢
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The catalysis factor for a boson is
K — g H p2Mbp/€

mp =boson mass.

e Strong coupling
Equivalent: Thirring model in external electric field
T r . ~ :
Lrn = i0,7"Y — 5 9" Jv + 1y + Ao Jo
g = (1+ %)_1, J, = ¥y,0, p= soliton mass in the sine-Gordon model, 0,4 = €.
Small ¢g: the SG boson is a shallow bound state of fermion-antifermion, m; = 21 — ug?.
The near-threshold dynamics of the fermion-antifermion (soliton-antisoliton) pair can be described by

the nonrelativistic Hamiltonian )

H:p——ex—Qg(S(a?)
[

Boson-induced vacuum decay = ionization of the bound state in U(x)

= —2gd(z) by ext. electric field e.



Equation for the Green function (E = —x2/pu):

G(0,0; —r*/p)

G(0,0: =K*/1) = T 670 2 T30

with Ge(z,y; F) the Green function in linear potential (—ex)
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The pole (in k) is determined by
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70 = 2k /€. The decay rate (due to ionization):
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