TOWARDS & COMPLETE THEORY OF GAUGE MEDIATION

October 2008

Tomer Volansky (Institute for Advanced Study, Princeton)

Base on:

C. Csaki, A. Falkowski, Y. Nomura, TV, [arXiv:0809.4492] C. Csaki, A. Falkowski, Y. Nomura, TV, in writing. N. Seiberg, TV, B. Wecht, [arXiv:0809.4437] TV, B. Wecht, work in progress.

MOTIVATION

WHY?

- Thanks to the "spilled helium" incident, we can all relax again and continue guessing what we'll be found at the LHC..
- One of the favorite candidates for the LHC is SUSY.
- Nevertheless, we are still far from finding a completely satisfactory model.
- Among the open questions:
 - Mechanism of SUSY breaking.
 - Mechanism of mediation.
 - Spectrum.
- The SUSY-flavor problem points towards gauge mediation.

GAUGE MEDIATION

• Idea: SUSY-breaking is mediated through gauge interactions.

[Dine, Fischler, Nappi, Ovrut, Alvarez-Gaume, Claudson, Wise..]

- Theory is very predictive, especially in the minimal form.
- Soft masses take the form:

$$M_a \approx g_a^2 \frac{N}{16\pi^2} \Lambda, \quad m_I^2 \approx \sum_{a=1,2,3} \frac{g_a^4 C_I^a}{8\pi^2} \frac{N}{16\pi^2} \Lambda^2.$$

• Λ is the effective SUSY breaking scale. In perturbative theory: $\Lambda = F/M$.

GAUGE MEDIATION

Still GMSB suffers from various problems:

- Little hierarchy.
- μ - B_{μ} .
- SUSY-CP.
- A complete model is typically complicated not found yet.

In this talk we take a new approach to resolve many if not all of these issues.

OUTLINE

- The μB_{μ} Problem
- A New Approach to μB_{μ}
- Flavor and CP
- Phenomenology
- Realizations:
 - 5D RS model
 - 4D Semi-direct Gauge Mediation
- Outlook and Summary

THE $\mu - B_{\mu}$ problem

THE μ problem in the mssm

- The vacuum solution in MSSM is determined by the parameters of the Higgs sector: μ , B_{μ} , m_{H_u} , m_{H_d} .
- Minimization of tree-level potential:

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1},$$

$$\sin 2\beta = \frac{2B_\mu}{2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2}.$$

- The first eq. demonstrates the μ -problem: The SUSY preserving μ parameter must be related to the SUSY-breaking soft masses. In the absence of tuning $\Rightarrow \mu \sim \mathcal{O}(m_Z)$
- In the limit $\mu \to 0$, MSSM has an enhanced PQ symmetry.
- If SUSY breaking breaks PQ, a μ parameter is generated.

THE MPROBLEM IN GMSB

- The above solution works well in gravity mediation but not in GMSB.
- Reason: Gauge interactions do not break PQ.
- The Higgs fields must be directly coupled to SUSY breaking sector.
- Such couplings typically generate μ and B_{μ} at one loop.

THE MPROBLEM IN GMSB

• Thus in GMSB: $B_{\mu} \sim 16\pi^2 \mu^2 \gg \mu^2$.

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1}$$
(1)

$$\sin 2\beta = \frac{2B_{\mu}}{2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2}$$
(2)

• Two possibilities:

 $-m_{H_u}^2 \sim m_{H_d}^2 \sim \mu^2 \Rightarrow (2) \text{ has no solution.}$ $-m_{H_u}^2 \sim m_{H_d}^2 \sim B_\mu \Rightarrow \text{ Fine tuning since } \mu \gtrsim m_Z.$

This is the $\mu - B_{\mu}$ problem.

[Dvali, Giudice, Pomarol, 1996]

A NEW APPROACH TO $\mu - B_{\mu}$

BASICIDEA

- The common lore: Solution must reduce hierarchy, $\mu^2 \sim B_{\mu}$, through non-trivial dynamics.
- This is not necessary. It is sufficient that $2B_{\mu} < m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2$.
- This suggests the solution:

$$m_{H_d}^2 \gg B_\mu \gg m_{H_u}^2 \sim \mu^2$$

• Consider mass parameters:

 $\mu \approx \epsilon \Lambda_H \qquad B_\mu \approx \epsilon \Lambda_H^2$ $m_{H_u}^2 \approx \epsilon^2 \Lambda_H^2 \qquad m_{H_d}^2 \approx \Lambda_H^2$

• For EWSB, two conditions must be fulfilled:

$$2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2 > 2B_\mu \tag{1}$$

$$(B_\mu)^2 > (|\mu|^2 + m_{H_u}^2)(|\mu|^2 + m_{H_d}^2) \tag{2}$$

• (1) is fulfilled due to $m_{H_d}^2 \gg B_{\mu}$. One finds,

$$\tan\beta \approx \frac{m_{H_d}^2}{B_{\mu}} \approx \frac{1}{\epsilon}.$$

- (2) usually requires negative $m_{H_u}^2$. Typically generated through running with large \tilde{m}_t .
- In this case there is no need for RGEs to trigger EWSB:

EWSB is triggered by (possibly strong) dynamics that generate μ and B_{μ} .

• Naively, m_Z^2 is naturally obtained without fine tuning:

$$m_Z^2 \simeq -\mu^2 - m_{H_u}^2 + \frac{m_{H_d}^2}{\tan^2 \beta} \sim \epsilon^2 \Lambda_H^2$$

- The situation is more complicated. As we show, to eliminate all fine tuning from this sector, H_d needs to be strongly coupled.
- LEP-II bound on $m_h \gtrsim 114$ GeV suggests some fine tuning. Without resolving this little hierarchy, there is no compelling reason to eliminate fine tuning in μ - B_{μ} .

IMPLEMENTATION

- The above solution to the μ - B_{μ} requires dynamics to naturally generate the pattern.
- For that we couple $H_{u,d}$ directly to supersymmetry breaking sector. At scale M where supersymmetry breaking effects are mediated to SSM:

$$\mathcal{L} = \int d^2\theta \left(\lambda_u H_u \mathcal{O}_u + \lambda_d H_d \mathcal{O}_d \right) + \text{h.c.}$$

- $\mathcal{O}_{u,d}$ operators consisting of fields in supersymmetry breaking sector (for example, messenger fields).
- We use convention where $\lambda_{u,d}$ are dimensionless.

$$\underbrace{\tilde{h}_{u}}_{\text{SUSY}} \underbrace{\tilde{h}_{d}}_{h_{u}} \underbrace{h_{u}}_{\text{SUSY}} \underbrace{h_{d}}_{h_{u,d}} \underbrace{h_{u,d}}_{\text{SUSY}} \underbrace{F_{H_{u,d}}}_{\text{SUSY}} \underbrace{F_{H_{u,d}}}_{\text{SUSY}} \underbrace{F_{H_{u,d}}}_{\text{SUSY}} \underbrace{h_{u,d}}_{\text{SUSY}} \underbrace{F_{H_{u,d}}}_{\text{SUSY}} \underbrace{F_{H_{u,d}}}_{\text{SUSY$$

• Integrating out the SUSY-breaking sector at M:

$$\delta \mathcal{L} = \int d^4 \theta \, \left[\langle \mathcal{O}_u^{\dagger} \mathcal{O}_u \rangle |\lambda_u H_u|^2 + \langle \mathcal{O}_d^{\dagger} \mathcal{O}_d \rangle |\lambda_d H_d|^2 + (\lambda_u \lambda_d \langle \mathcal{O}_u \mathcal{O}_d \rangle H_u H_d + \text{h.c.}) \right]$$

• The correlators are parametrized as

$$\begin{aligned} \langle \mathcal{O}_{u}^{\dagger} \mathcal{O}_{u} \rangle &= \hat{Z}_{u} + (\theta^{2} \,\mathcal{C}_{A_{u}} + \bar{\theta}^{2} \,\mathcal{C}_{A_{u}}^{*}) \Lambda_{H} + \theta^{2} \bar{\theta}^{2} \,\mathcal{C}_{m_{u}} \Lambda_{H}^{2} \\ \langle \mathcal{O}_{d}^{\dagger} \mathcal{O}_{d} \rangle &= \hat{Z}_{d} + (\theta^{2} \,\mathcal{C}_{A_{d}} + \bar{\theta}^{2} \,\mathcal{C}_{A_{d}}^{*}) \Lambda_{H} + \theta^{2} \bar{\theta}^{2} \,\mathcal{C}_{m_{d}} \Lambda_{H}^{2} \\ \langle \mathcal{O}_{u} \mathcal{O}_{d} \rangle &= \hat{Z}_{ud} + (\theta^{2} \,\mathcal{C}_{\bar{\mu}} + \bar{\theta}^{2} \,\mathcal{C}_{\mu}) \Lambda_{H} + \theta^{2} \bar{\theta}^{2} \,\mathcal{C}_{B_{\mu}} \Lambda_{H}^{2} \end{aligned}$$

- Λ_H is the effective SUSY-breaking scale in the Higgs sector. $\Lambda_H \simeq \Lambda$ (normal gauge-mediation scale) up to order one coefficients.
- If SUSY sector is perturbative, $\Lambda_H = F/M$.

• Diagrams generate (ignoring A-terms for the moment):

$$\mu \approx \lambda_u \lambda_d \, \mathcal{C}_\mu \Lambda_H \qquad \qquad m_{H_u}^2 \approx |\lambda_u|^2 \mathcal{C}_{m_u} \Lambda_H^2 \\ B\mu \approx \lambda_u \lambda_d \, \mathcal{C}_{B\mu} \Lambda_H^2 \qquad \qquad m_{H_d}^2 \approx |\lambda_d|^2 \mathcal{C}_{m_d} \Lambda_H^2$$

- The usual solution assumes some dynamics such that $C_{B_{\mu}} \lesssim C_{\mu}^2$.
 - In perturbative case, $C_{B_{\mu}}$ arises at two loop.
 - In strongly coupled case this is due to renormalization in the hidden sector.
- For our solution we assume no special structure. Through NDA:

$$\mathcal{C}_{A_{u,d}} \approx \mathcal{C}_{m_{u,d}} \approx \mathcal{C}_{\mu} \approx \mathcal{C}_{\mu} \approx \mathcal{C}_{B\mu} \approx \frac{N_H}{16\pi^2}.$$

 N_H is the effective number of messengers in Higgs sector.

• If we further take $\lambda_u \sim \lambda_d$,

$$B \equiv \frac{B\mu}{\mu} \approx \Lambda_H \approx O(10 - 100) \text{ TeV}$$

implying that all the Higgs sector parameters cannot be of order m_Z . This is the μ - B_{μ} problem.

• We therefore have,

$$\mu \approx \lambda_u \lambda_d \frac{N_H}{16\pi^2} \Lambda_H \qquad B_\mu \approx \lambda_u \lambda_d \frac{N_H}{16\pi^2} \Lambda_H^2 \qquad m_{H_{u,d}}^2 \approx \lambda_{u,d}^2 \frac{N_H}{16\pi^2} \Lambda_H^2$$

• To generate the hierarchy we take

$$\lambda_u \ll \lambda_d \qquad \Longrightarrow \qquad \mu^2 \sim m_{H_u}^2 \ll B_\mu \ll m_{H_d}^2$$

- The hierarchy depends on physics above the scale M and is completely calculable.
- Ignoring for a moment quantum corrections, we can substitute the solution into m_Z^2 :

$$m_Z^2 \sim |\lambda_u|^2 \frac{N_H}{16\pi^2} \left[-|\lambda_d|^2 \frac{N_H}{16\pi^2} + \epsilon_{FT} \right] \Lambda_H^2$$

• To have no fine tuning, this suggests a strongly coupled H_d :

$$\lambda_d \simeq \frac{4\pi}{\sqrt{N_H}} \qquad \epsilon \equiv \frac{\lambda_u}{\lambda_d}.$$

- For smaller values of λ_d , cancellation of order ϵ_{FT} is required.
- Quantum corrections may (for a heavy stop) reintroduce the tuning. Without resolving this "irreducible" fine tuning, there is no need to consider large λ_d .

- Constraints on λ_d :
 - 1. SUSY breaking sector must be strongly coupled otherwise λ_d hits a Landau pole.
 - 2. Large λ_d violates "messenger parity" and may therefore lead to large FI for $U(1)_Y$.
- Large FI terms generate masses of order $\delta m^2 \sim g_1^2 Y \xi$ through the diagram:

• Messenger parity ensures no FI term through the symmetry:

$$V_Y \leftrightarrow -V_Y \qquad \eta \leftrightarrow \bar{\eta}$$

• Even without messenger parity, the above is solved if λ_d is slightly smaller than $4\pi/\sqrt{N_H}$.

HIGH ENERGY BEHAVIOR OF $\lambda_{u,d}$

- How do we obtain the hierarchy $\lambda_u \ll \lambda_d$?
- Consider the couplings at some high scale $M_* \gg M$ (e.g. GUT or $M_{\rm Pl}$):

$$\mathcal{L} = \int d^2\theta \left(\tilde{\lambda}_u H_u \mathcal{O}_u + \tilde{\lambda}_d H_d \mathcal{O}_d \right) + \text{h.c.},$$

- $\lambda_{u,d}$ are obtained by evolving $\tilde{\lambda}_{u,d}$ from M_* down to M and multiplying by appropriate powers of M.
- If theory is weakly coupled above M:

$$\dim(\mathcal{O}_{u,d}) \simeq 2 \qquad \tilde{\lambda}_u(M_*) \ll \tilde{\lambda}_d(M_*)$$

This is completely natural for dimensionless couplings.

HIGH ENERGY BEHAVIOR OF $\lambda_{u,d}$

• If theory is strongly coupled above M, large anomalous dimensions can generate the hierarchy,

$$\lambda_{u,d} \sim \left(\frac{M}{M_*}\right)^{\dim(\mathcal{O}_{u,d})-2}$$

- As opposed to strongly coupled theories that generate $C_{B_{\mu}} \ll C_{\mu}$, such solution is calculable.
- This has a dual Randall-Sundrum description which we discuss later.

FLAVOR AND CP

THE SUSY FLAVOR PROBLEM

- SUSY breaking parameters are generated by gauge mediation and direct higgs couplings. They are therefore flavor universal.
- No flavor problem if:
 - 1. No additional sources for SSM SUSY breaking parameters.
 - 2. Low energy radiative corrections do not induce large flavor violation.
- Direct couplings between SUSY sector and SSM at the scale M, are typically forbidden with the use of discrete symmetries.
- Couplings to SSM are possible through non-renormalizable interactions (e.g. if hidden sector is strongly coupled), but those are highly suppressed.

THE SUSY FLAVOR PROBLEM

• Both $m_{H_d}^2$ and $\tan \beta$ are enhanced \Rightarrow could lead to dangerous flavor violation through radiative corrections:

$$(m_Q^2)_{ij} \simeq \frac{1}{2} (m_D^2)_{ij}^{\dagger} \simeq -\frac{(y_d^{\dagger} y_d)_{ij}}{8\pi^2} \left(m_{H_d}^2 + |A_{H_d}|^2 \right) \ln \frac{M}{m_{H_d}}$$

- $A_{H_d} \simeq \lambda_d^2 \frac{N_H}{16\pi^2} \Lambda_H$ are only important if $\lambda_d \sim 4\pi / \sqrt{N_H}$.
- In the super-CKM basis $(y_{u,d} \text{ are diagonal})$, the enhanced contribution to non-diagonal masses appear only in left-handed up-type squarks.
- The only mass insertion contributing to FCNCs is δ^{u}_{LL} .
- Largest constraint is still weak: $(\delta_{LL}^u)_{12} \lesssim (10^{-2} 10^{-1})$

$$\bar{u} \underbrace{\tilde{g}}_{c} \underbrace{\tilde{g}}_{\tilde{c}_{L}^{*} \times \tilde{u}_{L}^{*}} \underbrace{\tilde{g}}_{\tilde{g}} \bar{c}_{L}^{*} \underbrace{\tilde{u}_{L}^{*}}_{u} u$$

SUSY CP PROBLEM

• Flavor diagonal phases may in principle exist:

 $\phi_{A,a} = \arg(A_f M_a^*) \qquad \phi_{B,a} = \arg(B M_a^*)$

• For TeV scale soft masses, the latter are constrained through EDMs to be $\phi_{A,B} \lesssim 10^{-2}$.

This is the SUSY-CP problem.

SUSY CP PROBLEM

- Our framework allows for simple solution.
- Assume the SUSY-breaking sector preserves CP.
- Then the phases in $\lambda_{u,d}$ can be rotated away through a redefinition of $H_{u,d}$.

$$\phi_{A,a} = \phi_{B,a} = 0$$

- Phases are reabsorbed in Yukawa couplings and have no physical effects.
- Possible example for CP preserving sector is the 3-2 model with extra messenger fields.
- This solution is special for the linear couplings. Typically, imposing CP on hidden sector is not enough (e.g. Giudice-Masiero).

BASIC PHENOMENOLOGY

- Our framework leads to several distinct phenomenological consequences.
- The hierarchy $\mu^2 \sim m_{H_u}^2 \ll B_\mu \ll m_{H_d}^2$ implies heavy CP-odd neutral Higgs:

$$m_{A^0}^2 = m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2 \gg m_Z^2$$

- This is the decoupling limit of the MSSM one Higgs doublet at low [Gunion, Huber, 2003]
- The Higginos are light (of order μ) \Rightarrow light charginos and neutralino is Higgssino-like for $\mu < M_1$.
- Large m_{H_d} induces large corrections through RGEs: (I). Large negative corrections to third generation down squarks:

$$m_{\tilde{q}_3}^2 \simeq \frac{1}{2} m_{\tilde{b}}^2 \simeq \frac{y_b^2}{8\pi^2} (m_{H_d}^2 + |A_{H_d}|^2) \ln \frac{M}{m_{H_d}}$$

This sets an upper bound on $\tan \beta$.

(II) Large $m_{H_d}^2$ induces large FI D-term for $U(1)_Y$: Tr Ym^2 .

• This contributes to soft masses through RGEs:

$$\delta m_I^2 \simeq Y_I \frac{3g_1^2}{40\pi^2} m_{H_d}^2 \ln \frac{M}{m_{H_d}}$$

• Typically in gauge mediation this contribution vanishes and two sum-rules result:

$$\operatorname{Tr} Y m^2 = \operatorname{Tr} (B - L) m^2 = 0.$$

[Meade, Seiberg, Shih, 2008]

(Trace over one generation).

• In our case, $\text{Tr}Ym^2 - \frac{5}{4}\text{Tr}(B-L)m^2 = 0$ is approximately RG invariant for first two generations. Thus,

$$6m_Q^2 + 3m_U^2 - 9m_D^2 - 6m_L^2 + m_E^2 = 0$$

while the traditional sum-rule becomes:

$$\mathrm{Tr}Ym^2 \simeq \frac{g_1^2}{4\pi^2} m_{H_d}^2 \ln \frac{M}{m_{H_d}}$$

• Such measurement would point towards large $m_{H_d}^2$ and therefore this scenario.

- Tevatron searches constrains $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_1^+}$ which translates into bound on μM_1 plane (applies if NLSP decays in detector).

[Reece, Talk at KITP, 2008]

EXAMPLES

	Λ		Λ_H	λ_u	λ_d	$\tan eta$	$m_{H_u}^2$	μ	m_{h^0}	m_{A^0}	$m_{ ilde{\chi}_1^0}$	$m_{\tilde{\chi}_1^+}$	$m_{ ilde{t}_1}$	$m_{ ilde{t}_2}$	$m_{ ilde{ au}_1}$
M1	6	0	18	0.50	2.795	8.01	$(521)^2$	160	115	4030	150	159	1360	1516	353
M2	40		25	0.22	1.66	10.71	$(303)^2$	164	113	3330	140	158	923	1038	190
M3	19	35	10	0.28	3.05	8.47	$(251)^2$	160	106	2470	119	148	450	576	195
M4	19	35	10	0.27	3.93	9.35	$(280)^2$	209	106	3150	140	193	438	577	137

- M1: Conservative. Minimal GMSB with heavy stop. Higgs sufficiently heavy, but theory suffers from usual ('irreducible') fine tuning.
- M2: Minimal GMSB. Stop is lighter, but (possibly) small new contributions to Higgs quartic is required.
- M3,M4: Squashed spectrum by assuming different $\Lambda_{1,2,3} = (F/M)_{1,2,3}$. Stop mass is lowered (fine tuning of 10%). Sizable extra contribution to quartic is required.
 - In all cases, $m_{H_{\mu}}^2$ is positive at low energy, μ is small, m_{A^0} is above TeV.

5D REALIZATION

- Dual to a spontaneously broken SCFT at scale M.
- SM fields are elementary and reside on UV brane. Higgs and gauge fields are in the bulk and interact with strongly coupled sector.
- The profiles of $H_{u,d}$ generate the hierarchy $\lambda_u \ll \lambda_d$.
- Soft masses are induced by bulk gauge/gaugino loops. One finds,

$$m_{\tilde{f}}^2 = \sum_a \frac{C_2^a}{16\pi^2} m_{1/2}^a g_*^2,$$
 [Nomura, Tucker-Smith, 2003]

• Result is precisely that of gauge mediation through the AdS/CFT.

SEMI-DIRECT GAUGE MEDIATION

- The scenario above still requires a full 4D description that incorporates the sector that breaks supersymmetry.
- To date, there is no simple and fully working model of gauge mediation.
- The two main approaches are minimal and direct gauge mediation.
 - Direct gauge mediation typically suffers from Landau pole problem.
 - No completely satisfactory MGM models are complicated and singlets acquire large tadpoles.
- A new approach is to have something in between minimal and direct.
- Messengers are directly coupled to SUSY-breaking gauge group, but do not participate in the breaking dynamics.

MODEL

• The model is the 3-2 model with extra messengers. $G_{\text{hidden}} = SU(3) \times SU(2)$ with matter content:

	SU(3)	SU(2)
Q_A^r		
\tilde{u}_r		1
$ ilde{d}_r$		1
L^A	1	
ℓ^{Ai}	1	

and an $Sp(N_f) \times U(1) \times U(1)_R$ invariant superpotential:

$$W_{eff} = \frac{hQ\tilde{d}L}{Q^2\tilde{u}\tilde{d}} + \frac{\Lambda_3^7}{Q^2\tilde{u}\tilde{d}} + \frac{m}{2}\mathcal{J}_{ij}\ell^{Ai}\ell^{Bj}\epsilon_{AB}$$

- The minimum of the theory is not influenced by the presence of the heavy messengers and is calculable for $h \ll g_2 \ll g_3$.
- *h* controls SUSY-breaking:

 $\langle \Phi \rangle \propto h^{-1/7} \qquad F_{\Phi} \propto h^{5/7}$

MESSENGER SPECTRUM

- The goal is to compute the SUSY-breaking spectrum of the messengers, l^{Ai} which in turn transmit the breaking to the SSM.
- The analysis is conveniently done in a specific Unitary gauge around a point on the moduli space $\phi_0 \in \mathcal{M}$ which satisfies $\phi_{(0)}^{\dagger} T^I \phi_{(0)} = 0$:

$$\phi_{(0)}^{\dagger}T^{I}\Phi = 0.$$

• Upon integration out of the vector bosons one obtains a non-canonical Kahler potential at tree-level:

$$K_{\text{eff}} = \Phi^{\dagger}\Phi - \frac{1}{2} (\delta \Phi^{\dagger} T^{I} \delta \Phi) \lambda_{IJ}^{-1} (\delta \Phi^{\dagger} T^{J} \delta \Phi) + (\delta \Phi^{5}) \qquad \Phi = \phi_{(0)} + \delta \Phi$$

MESSENGER SPECTRUM

• The non-trivial metric corresponds to non-vanishing D-terms even though the minimum lies on the moduli space,

$$D_I \sim \frac{F^{\dagger} T^I F}{|\phi_{(0)}|^2} \propto h^{12/7}$$

- This induces soft diagonal messenger masses, $m_d^2 l^{\dagger} l$, which are independent of g and m.
- Off-diagonal mass terms of the form $m_{od}l^2$ (as in minimal gauge mediation) are generated at one loop:

$$m_{od} \sim \alpha_2 m \frac{F_{\Phi}}{\phi_{(0)}} \propto m h^{6/12}$$

MESSENGER SPECTRUM

• The messenger mass squared matrix is therefore:

$$\tilde{n}^{2} \simeq \begin{pmatrix} m^{2} + \frac{F_{\Phi}^{2}}{\phi_{(0)}^{2}} & \alpha_{2}m\frac{F_{\Phi}}{\phi_{(0)}} \\ \alpha_{2}m\frac{F_{\Phi}}{\phi_{(0)}} & m^{2} + \frac{F_{\Phi}^{2}}{\phi_{(0)}^{2}} \end{pmatrix}$$

Compare to usual minimal gauge mediation:

$$\tilde{m}_{MGM}^2 \simeq \left(\begin{array}{cc} M^2 & F \\ F & M^2 \end{array}\right)$$

• Therefore m interpolates between D-term breaking and F-term breaking.

PHENOMENOLOGY

- No Landau poles
- Messenger parity automatically exist. It will be broken once $\lambda_{u,d}$ are turned on to couple l to $H_{u,d}$. Large FI D-terms can probably still be prevented rather simply (work in progress).
- Sector is CP even.
- R-symmetry is broken.
- Problem gaugino masses vanish to leading order in F/M. This can probably be solved by considering $F/M \sim 1$ which is still calculable (work in progress).

SUMMARY AND OUTLOOK

SUMMARY & OUTLOOK

- Gauge mediation is still the most attractive framework around.
- It suffers from several problems, e.g. μB_{μ} , SUSY-CP, fine tuning etc.
- The μ - B_{μ} problem calls for a new approach which allows for EWSB and minimal fine tuning.
- The hierarchy $\mu^2 \ll B_{\mu}$ is not required to be solved.
- This approach can naturally solve the SUSY-CP and allow for gauge coupling unification.

SUMMARY & OUTLOOK

- The scenario predicts unique phenomenology:
 - Decoupled second Higgs doublet.
 - Light Higgsinos,
 - Large violation of traditional sum-rule.
 - Large corrections to sbottom and stau.
- A 5D toy model is simple to construct.
- 4D model is expected to naturally be realized in Semi-direct gauge mediation.

EWSB AND FINE TUNING

• RGEs change this picture. Two large contributions arise from

$$\delta m_{H_u}^2 = -\frac{3}{4\pi^2} y_t^2 m_{\tilde{t}}^2 \ln \frac{M}{m_{\tilde{t}}} \quad < 0$$

$$\delta m_{H_u}^2 = \frac{3}{80\pi^2} g_1^2 m_{H_d}^2 \ln \frac{M}{m_{H_d}} > 0$$

- LEP-II constrains $m_h \gtrsim 114$ GeV. For small A_t , this amounts to $m_{\tilde{t}} \gtrsim 1$ TeV.
- Thus,

$$\delta m_{H_u}^2 \gtrsim (500 \text{ GeV})^2$$

• This is an 'irreducible' amount of fine tuning of order 3%. Without a solution there is no motivation to insist on large λ_d .

- The 'irreducible' fine-tuning can be removed by additional sources to Higgs quartic.
- Quartics arising from direct coupling to SUSY-breaking sector become significant for $\lambda_u \gtrsim 0.8$.
- Further contribution can arise with extra singlets (e.g. NMSSM).

If stop is heavy:

- Typically stop-top loop is cancelled by $|\mu|^2$ term.
- In this scenario μ is always small, and top-stop contribution must be cancelled by contribution from direct coupling at M:

$$m_{H_u}^2 \simeq \lambda_u^2 \frac{N_H}{16\pi^2} \Lambda_H^2$$

or FI contribution, depending on $\tan \beta$.

CONTRIBUTION TO QUARTIC

• Strong dynamics generate couplings of the form,

$$\frac{1}{4} \int d^4x \left[g_u |H_u|^4 + 2g_{ud} |H_u|^2 |H_d|^2 + g_d |H_d|^4 \right].$$

• Using NDA,

$$g_{u,d} \simeq |\lambda_{u,d}|^4 \frac{N_H}{16\pi^2}, \qquad g_{ud} \simeq |\lambda_u \lambda_d|^2 \frac{N_H}{16\pi^2}.$$

• Ignoring for simplicity order coefficients one finds to leading order,

$$(\Delta m_h^2)_{\text{strong}} = 2 \frac{|\lambda_u|^4}{g'^2 + g^2} \frac{N_H}{16\pi^2} m_Z^2 \tan^2 \beta \left[\frac{(m_Z^2 - 2)\cos^2(2\beta)}{\sqrt{(2 - m_Z^2)^2 + 4^2 m_Z^2 \sin^2(2\beta)}} + 1 \right].$$

