Solving the 3D Ising Model with the Conformal Bootstrap

based on D. Poland, D. Simmons-Duffin, AV 1109.5176 S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, AV, 1203.6064

Alessandro Vichi

April 3, 2012

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

2 CFT Handbook

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
CET's: why bother?				

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
CFT's: why bother?				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Scale invariance often a good bargain:

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
CET's: why bother?				

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

- Scale invariance often a good bargain:
 - in 2D: buy 1 get ∞ free!

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
CFT's: why bother?				

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

- Scale invariance often a good bargain:
 - in 2D: buy 1 get ∞ free!
 - in higher D: buy 1 get D free!

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
CFT's: why bother?				

- Large scales separation ⇔ scale invariance through several length scales
- Scale invariance often a good bargain:
 - in 2D: buy 1 get ∞ free!
 - in higher D: buy 1 get D free!
- AdS/CFT and Supersymmetry excellent tools, but some questions cannot be addressed.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
CFT's: why bother?				

- Large scales separation ⇔ scale invariance through several length scales
- Scale invariance often a good bargain:
 - in 2D: buy 1 get ∞ free!
 - in higher D: buy 1 get D free!
- AdS/CFT and Supersymmetry excellent tools, but some questions cannot be addressed.
- We would like to have a more general technique to deal with any CFT.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
Ising model				

Model to describe critical phenomena (ex: phase transition in ferromagnetism).

Based on a spin lattice with nearest-neighbors interactions:

$$H = -\frac{1}{T} \sum_{i} \sum_{j \sim i} \sigma_i \sigma_j$$

Continuum limit: iteratively sum the spins in a block of size n and replace σ_i with the average value.

QFT described by a scalar field $\sigma(x)$ with non local interactions.

Why should we care about CFT's? ○●○	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
Ising model				

Model to describe critical phenomena (ex: phase transition in ferromagnetism).

Based on a spin lattice with nearest-neighbors interactions:

$$H = -\frac{1}{T} \sum_{i} \sum_{j \sim i} \sigma_i \sigma_j$$

Continuum limit: iteratively sum the spins in a block of size n and replace σ_i with the average value.

QFT described by a scalar field $\sigma(x)$ with non local interactions.

At the critical temperature the QFT flows to an IR fixed point. How can we deal with such a theory?

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	00	0000000000	00

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	0000000	00	0000000000	00

Techniques for 3D:

- MonteCarlo simulations
- ϵ -expansion: family of fixed points interpolates between 4 and 3 dimensions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Techniques for 3D:

- MonteCarlo simulations
- ϵ -expansion: family of fixed points interpolates between 4 and 3 dimensions.

Good agreements with experiments but

- theoretical uncertainty
- ϵ -expansion: family of fixed points interpolates between 4 and 3 dimensions.

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Techniques for 3D:

- MonteCarlo simulations
- ϵ -expansion: family of fixed points interpolates between 4 and 3 dimensions.

Good agreements with experiments but

- theoretical uncertainty
- ϵ -expansion: family of fixed points interpolates between 4 and 3 dimensions.

Can we do better? Can we characterize a CFT without flowing to it from something else?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	•000000	00	000000000	00

Conformal Algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶

∃ 990

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Conformal Algebra

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Conformal Algebra

Completeness of States ⇒ Operator Product Expansion

$$\mathcal{O}(x)_{\Delta_1,0} \times \mathcal{O}(0)_{\Delta_2,0} = \frac{1}{|x|^{\Delta_1 + \Delta_2}} \sum_{\Delta,l} C_{\Delta,l}(\mathcal{O}(0)_{\Delta,l} + \text{descendants})$$

3

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	00	0000000000	00

The power of conformal invariance

Two point function: completely fixed

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{1}{|x-y|^{2d}} \qquad d = [\mathcal{O}]$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	00	0000000000	00

The power of conformal invariance

Two point function: completely fixed

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{1}{|x-y|^{2d}} \qquad d = [\mathcal{O}]$$

Three point function: fixed modulo a constant

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}'(z)\rangle = \frac{C_{\Delta,l}}{|x-y|^{2d-\Delta}|y-z|^{\Delta}|x-z|^{\Delta}} \qquad \Delta = [\mathcal{O}']$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	00	0000000000	00

The power of conformal invariance

Two point function: completely fixed

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{1}{|x-y|^{2d}} \qquad d = [\mathcal{O}]$$

Three point function: fixed modulo a constant

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}'(z)\rangle = \frac{C_{\Delta,l}}{|x-y|^{2d-\Delta}|y-z|^{\Delta}|x-z|^{\Delta}} \qquad \Delta = [\mathcal{O}']$$

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Use OPE to reduce higher point functions to smaller ones

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Four point functions

Recall the OPE

$$\mathcal{O} \times \mathcal{O} = \sum_{\mathcal{O}_{\Delta,l}'} C_{\Delta,l} (\mathcal{O}_{\Delta,l}' + \text{descendants})$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Four point functions

Recall the OPE

$$\mathcal{O} \times \mathcal{O} = \sum_{O'_{\Delta,l}} C_{\Delta,l} (\mathcal{O}'_{\Delta,l} + \text{descendants})$$

Then

$$\langle \underbrace{\mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)}_{\bigsqcup} \rangle \sim u^{-d} \sum_{O'_{\Delta,l}} C^2_{\Delta,l} \left(\langle O'_{\Delta,l} O'_{\Delta,l} \rangle + \text{descendants} \right)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Four point functions

Recall the OPE

$$\mathcal{O} \times \mathcal{O} = \sum_{O'_{\Delta,l}} C_{\Delta,l} (\mathcal{O}'_{\Delta,l} + \text{descendants})$$

Then

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)\rangle \sim u^{-d}\sum_{O'_{\Delta,l}} C^2_{\Delta,l}\left(\langle O'_{\Delta,l}O'_{\Delta,l}\rangle + \mathsf{descendants}\right)$$

Conformal Blocks

$$g_{\Delta,l}(u,v) = \langle O'_{\Delta,l}O'_{\Delta,l} \rangle + \text{descendants}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

They sum up the contribution of an entire representation

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
More on Conformal	Blocks			

Old idea (70's) but none could use them for long time, until..

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
More on Conforma	l Blocks			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Old idea (70's) but none could use them for long time, until..

'03: Dolan, Osborn

Eigenvector of a differential equation

(Casimir)
$$g_{\Delta,l}(u,v) = \lambda_{\Delta,l} g_{\Delta,l}(u,v)$$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

'03: Dolan, Osborn

Eigenvector of a differential equation

(Casimir)
$$g_{\Delta,l}(u,v) = \lambda_{\Delta,l} g_{\Delta,l}(u,v)$$

Explicit expression

- even dimension
- external scalar fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
Mana an Oracle	Disala			

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

'03: Dolan, Osborn

Eigenvector of a differential equation

(Casimir)
$$g_{\Delta,l}(u,v) = \lambda_{\Delta,l} g_{\Delta,l}(u,v)$$

Explicit expression

- even dimension
- external scalar fields

'11: Dolan, Osborn

Power series for l = 0 but any dimension

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
Mana an Oantanaa	Disalia			

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

'03: Dolan, Osborn

Eigenvector of a differential equation

(Casimir)
$$g_{\Delta,l}(u,v) = \lambda_{\Delta,l} g_{\Delta,l}(u,v)$$

Explicit expression

- even dimension
- external scalar fields

'11: Dolan, Osborn

Power series for l = 0 but any dimension

'12: El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, AV

- closed form for any dimension l = 0, 1 (but u, v related)
- Taylor expansion for any dimension and any *l*

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Which expansion is the right one?

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)$$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
-				

Which expansion is the right one?

$$\langle \mathcal{O}(x) \mathcal{O}(y) \mathcal{O}(z) \mathcal{O}(w) \rangle \quad \mathrm{VS}$$

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

They must produce the same result:

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Which expansion is the right one?

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)\rangle$$
 vs

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)$$

They must produce the same result:

Constraint $u^{-d}\left(1+\sum_{\Delta,l}C^2_{\Delta,l}g_{\Delta,l}(u,v)\right) = v^{-d}\left(1+\sum_{\Delta,l}C^2_{\Delta,l}g_{\Delta,l}(v,u)\right)$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Which expansion is the right one?

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)\rangle$$
 vs

$$\langle \mathcal{O}(x)\mathcal{O}(y)\mathcal{O}(z)\mathcal{O}(w)$$

They must produce the same result:

Constraint
$$u^{-d}\left(1+\sum_{\Delta,l}C^2_{\Delta,l}g_{\Delta,l}(u,v)\right) = v^{-d}\left(1+\sum_{\Delta,l}C^2_{\Delta,l}g_{\Delta,l}(v,u)\right)$$

Crossing symmetry \Rightarrow Sum Rule

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

• $F_{d,\Delta,l}$ known functions • $C_{\Delta,l}^2$ unknown coefficients

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

 All possible sums of vectors with positive coefficients define a cone

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied ⇔ 1 is inside the cone

イロト 不得 トイヨト イヨト

ъ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied ⇔ 1 is inside the cone

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

 Restrictions on the spectrum make the cone narrower
Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied ⇔ 1 is inside the cone
- Restrictions on the spectrum make the cone narrower
- A cone too narrow can't satisfy crossing symmetry: inconsistent spectrum

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	00	0000000000	00

How can we distinguish feasible spectra from unfeasible ones?

・ロト・西ト・ヨト ・ヨト・ 白・ うらぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

How can we distinguish feasible spectra from unfeasible ones?

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

990

For unfeasible spectra it exists a plane separating the cone and the vector.

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

How can we distinguish feasible spectra from unfeasible ones?

For unfeasible spectra it exists a plane separating the cone and the vector.

More formally...

Look for a Linear functional

$$\Lambda[F_{d,\Delta,l}] \equiv \sum_{n,m}^{N_{\text{max}}} \lambda_{mn} \partial^n \partial^m F_{d,\Delta,l}$$

such that

 $\Lambda[F_1, \Delta, l] > 0$ and $\Lambda[1] < 0$

Why should we care about CFT's?	CFT Handbook	Simple results ●○	The Ising Model: 2D vs 3D	Summary 00
Which spectrum?				

Ex: Scalar field in 4D

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
Which spectrum?				

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Give me a spectrum and I'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

• Take a scalar field ϕ with dimension d.

Why should we care about CFT's?	CFT Handbook	Simple results ●○	The Ising Model: 2D vs 3D	Summary 00
Which spectrum?				

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_0 .

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Why should we care about CFT's?	CFT Handbook	Simple results ●○	The Ising Model: 2D vs 3D	Summary 00
Which spectrum?				

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_0 .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

• Question: how large can Δ_0 be?

Why should we care about CFT's?	CFT Handbook	Simple results ●○	The Ising Model: 2D vs 3D	Summary 00
Which spectrum?				

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_0 .
- Question: how large can Δ_0 be?

When $d \lesssim 1.6$, no CFT exists without relevant operator in $\phi \times \phi$

ヘロト ヘロト ヘヨト ヘヨト 一日

200

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	0•	0000000000	00

Which OPE coefficient?

Same story with OPE coefficients

Why should we care about CFT's?	CFT Handbook 0000000	Simple results	The Ising Model: 2D vs 3D	Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Which OPE coefficient?

Same story with OPE coefficients

Ex: Scalar field in 4D

• Take a scalar field ϕ with dimension *d*.

Why should we care about CFT's?	CFT Handbook	Simple results ○●	The Ising Model: 2D vs 3D	Summary 00
M# 1 0 005 //	 			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Which OPE coefficient?

Same story with OPE coefficients

- Take a scalar field ϕ with dimension d.
- Assume $\phi \times \phi$ contains an operator $\mathcal{O}_{\Delta_0, l_0}$ and OPE C_0 .

Why should we care about CFT's?	CFT Handbook 0000000	Simple results ○●	The Ising Model: 2D vs 3D	Summary 00

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Which OPE coefficient?

Same story with OPE coefficients

- Take a scalar field ϕ with dimension d.
- Assume $\phi \times \phi$ contains an operator $\mathcal{O}_{\Delta_0, l_0}$ and OPE C_0 .
- Substitute in the RHS of the Sum Rule: $1 \longrightarrow 1 C_0 F_{\Delta,l}$
- Question: how large can C₀ be?

Why should we care about CFT's?	CFT Handbook	Simple results ○●	The Ising Model: 2D vs 3D	Summary 00

Which OPE coefficient?

Same story with OPE coefficients

- Take a scalar field ϕ with dimension d.
- Assume $\phi \times \phi$ contains an operator $\mathcal{O}_{\Delta_0, l_0}$ and OPE C_0 .
- Substitute in the RHS of the Sum Rule: $1 \longrightarrow 1 C_0 F_{\Delta,l}$
- Question: how large can C₀ be?

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
Comparison with 2D	results			

Minimal models: family of 2D CFT's completely solved:

・ロト・雪ト・ヨト ・ヨー うへの

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D •••••••	Summary 00

Minimal models: family of 2D CFT's completely solved:

 $\sigma \times \sigma \sim 1 + \epsilon + \dots$

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ □ ● の < @

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D •0000000000	Summary 00

Minimal models: family of 2D CFT's completely solved:

$$\sigma \times \sigma \sim 1 + \epsilon + \dots$$

Consider the plane Δ_{σ} , Δ_{ϵ} :

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

・ロト ・ 四ト ・ 日ト ・ 日ト

э

Sac

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D •000000000	Summary 00

Minimal models: family of 2D CFT's completely solved:

 $\sigma\times\sigma\sim 1+\epsilon+.....$

Consider the plane Δ_{σ} , Δ_{ϵ} :

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Bound on maximal value of Δ_{ϵ}

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D •••••••	Summary 00

Minimal models: family of 2D CFT's completely solved:

 $\sigma\times\sigma\sim 1+\epsilon+.....$

Consider the plane $\Delta_{\sigma}, \Delta_{\epsilon}$:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

A kink signals the presence of the Ising Model

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D 0000000000	Summary 00

(Re)discovering 2D Ising

Experimentally only one parameter must be tuned to reach the critical point \Rightarrow only 1 relevant scalar

^{*3} instead of 2 to exclude generalized free theories. In Ising $\Delta_{\epsilon'} = 4 + \epsilon = + \epsilon = + \epsilon = -2$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D ○●○○○○○○○○	Summary 00
(Re)discovering 2D	Ising			

Experimentally only one parameter must be tuned to reach the critical point \Rightarrow only 1 relevant scalar

Allowed region in Δ_{σ} , Δ_{ϵ} plane if $\Delta_{\epsilon'} \geq 3^*$?

^{*3} instead of 2 to exclude generalized free theories. In Ising $\Delta_{\epsilon'} = 4$ + $\exists \Rightarrow + \exists \Rightarrow + \exists \Rightarrow + \exists \Rightarrow - \Im \land \circlearrowright$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D 0000000000	Summary 00

(Re)discovering 2D Ising

Experimentally only one parameter must be tuned to reach the critical point \Rightarrow only 1 relevant scalar

Allowed region in Δ_{σ} , Δ_{ϵ} plane if $\Delta_{\epsilon'} \geq 3^*$?

Tip ending at Ising Model: Ising first CFT with only one relevant operator!

Important

No use of Virasoro algebra. Extend the method to 3D right away

^{*3} instead of 2 to exclude generalized free theories. In Ising $\Delta_{\epsilon'} = 4 + \epsilon = + \epsilon = -2$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00
OD Jairan Mardal				

$$\begin{aligned} \sigma\times\sigma &\sim 1+\epsilon+\epsilon'+\epsilon''+\dots, \quad L=0\\ &+ T_{\mu\nu}+T'+\dots, \quad L=2\\ &+ C+C'+\dots, \quad L=4 \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some notation:

Allowed regions in Δ_{σ} , Δ_{ϵ} plane ?

Why should we care about CFT's?	CFT Handbook 0000000	Simple results	The Ising Model: 2D vs 3D	Summary 00

$$\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + \epsilon'' + \dots \qquad L = 0$$

+ $T_{\mu\nu} + T' + \dots \qquad L = 2$
+ $C + C' + \dots \qquad L = 4$

Some notation:

Allowed regions in Δ_{σ} , Δ_{ϵ} plane ?

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

 σ

3D Ising Model

$$\begin{array}{rcl} \times \, \sigma & \sim & 1 + \epsilon + \epsilon' + \epsilon'' + \dots & L = 0 \\ & + & T_{\mu\nu} + T' + \dots & L = 2 \\ & + & C + C' + \dots & L = 4 \end{array}$$

Some notation:

Allowed regions in Δ_{σ} , Δ_{ϵ} plane ?

Already excluding part of ϵ -expansion prediction

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ の � @

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

$$\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + \epsilon'' + \dots \qquad L = 0$$

+ $T_{\mu\nu} + T' + \dots \qquad L = 2$
+ $C + C' + \dots \qquad L = 4$

Some notation:

Allowed regions in Δ_{σ} , Δ_{ϵ} plane if $\Delta_{\epsilon'} \geq 3$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Some notation:

$$\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + \epsilon'' + \dots \qquad L = 0$$

+ $T_{\mu\nu} + T' + \dots \qquad L = 2$
+ $C + C' + \dots \qquad L = 4$

Allowed regions for in Δ_{σ} , Δ_{ϵ} plane if $\Delta_{\epsilon'} \geq 3.4$?

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Some notation:

$$\begin{aligned} \sigma\times\sigma &\sim 1+\epsilon+\epsilon'+\epsilon''+\dots \quad L=0\\ + & T_{\mu\nu}+T'+\dots \quad L=2\\ + & C+C'+\dots \quad L=4 \end{aligned}$$

Allowed regions in Δ_{σ} , Δ_{ϵ} plane if $\Delta_{\epsilon'} \geq 3.8$?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D 000000●0000	Summary 00
3D Ising Model				

$$\sigma \times \sigma \sim 1 + \epsilon + \epsilon' + \epsilon'' + \dots \qquad L = 0$$

+ $T_{\mu\nu} + T' + \dots \qquad L = 2$
+ $C + C' + \dots \qquad L = 4$

Some notation:

What about L=2 ?

• What about $\Delta_{T'}$?

Why should we care about CFT's?	CFT Handbook 0000000	Simple results	The Ising Model: 2D vs 3D	Summary 00

Assumptions

- Conformal symmetry at the fixed point
- safe assumptions on $\Delta_{\epsilon'}$
- safe assumptions on $\Delta_{T'}$

 $\Rightarrow \quad (\Delta_{\sigma}, \Delta_{\epsilon}) \text{ predicted with good accuracy}$

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ □ ● の < @

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Assumptions

- Conformal symmetry at the fixed point
- safe assumptions on $\Delta_{\epsilon'}$
- safe assumptions on $\Delta_{T'}$
 - Δ_{σ} , Δ_{ϵ} are the best measured quantities:
 - $\Delta_{\sigma}^{exp} = 0.5183(4), \qquad \Delta_{\epsilon}^{exp} = 1.412(1)$
 - one would like to assume them and predict the others

 $\Rightarrow \quad (\Delta_{\sigma}, \Delta_{\epsilon}) \text{ predicted with good accuracy}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Why should we care about CFT's?	CFT Handbook 0000000	Simple results	The Ising Model: 2D vs 3D 0000000€00	Summary 00
Back to 2D Ising Mo	odel			

Compute bounds on OPE coefficients assuming $\Delta_{\sigma} = 1/8, \Delta_{\epsilon} = 1$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary

Back to 2D Ising Model

Compute bounds on OPE coefficients assuming $\Delta_{\sigma} = 1/8$, $\Delta_{\epsilon} = 1$

ヘロト 人間 とく ヨン 人 ヨン

ъ

990

Clear evidence of peaks: are they physical?

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Back to 2D Ising Model

Compute bounds on OPE coefficients assuming $\Delta_{\sigma} = 1/8, \Delta_{\epsilon} = 1$

Clear evidence of peaks: are they physical?

Position determines the dimension Δ_O operators entering the $\sigma \times \sigma$ OPE

Height determines the OPE coefficient C_O of operators entering the $\sigma\times\sigma$ OPE

Why should we care about CFT's? CFT	Handbook S	imple results	The Ising Model: 2D vs 3D	Summary
000 000	00000 0	0	0000000000	00

Now 3D Ising Model

Compute bounds on OPE coefficients assuming $\Delta_{\sigma} \sim 0.5182, \Delta_{\epsilon} \sim 1.412$

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary 00

Now 3D Ising Model

Compute bounds on OPE coefficients assuming $\Delta_{\sigma} \sim 0.5182, \Delta_{\epsilon} \sim 1.412$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Again evidence of peaks:
Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	0000000	00	0000000000	00

Now 3D Ising Model

Compute bounds on OPE coefficients assuming $\Delta_{\sigma} \sim 0.5182, \Delta_{\epsilon} \sim 1.412$

Again evidence of peaks:

L=4	
$\Delta_C \sim 5.$?	
$\Delta_{C'} \sim 7.3?$	
) 2 (

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	0000000	00	000000000	00

What is the central charge of the Ising Model?

Allowed values of c_T as function of Δ_{σ} :

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	0000000	00	000000000	00

What is the central charge of the Ising Model?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary
000	000000	00	000000000	00

What is the central charge of the Ising Model?

The minimum is in correspondence of Ising. It predicts $c_T^{\rm Ising}/c_T^{\rm free}\sim 0.94-0.95$

No accurate measurement nor calculation to compare with. $\epsilon-{\rm expansion}$ at first order gives $c_T^{\rm lsing}/c_T^{\rm free}\sim 0.98$

Note on 2D

Similar methods give $c_T^{\text{lsing}} \sim 0.4999$ and $c_T^{\text{exact}} = 0.5$.

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary ●O
Ising: Summary				

• Incredible agreement between results and experimental observations points to the conclusion that Ising 3D is a true CFT.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary •O
Ising: Summarv				

• Incredible agreement between results and experimental observations points to the conclusion that Ising 3D is a true CFT.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Bootstrap unveils a structure.

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary •O
Ising: Summary				

- Incredible agreement between results and experimental observations points to the conclusion that Ising 3D is a true CFT.
- Bootstrap unveils a structure.
- More tools are needed to precisely reveal this structure: ex combine

 $\langle \sigma \sigma \sigma \sigma \sigma \rangle$ and $\langle \sigma \sigma \epsilon \epsilon \rangle$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary •O
Ising: Summary				

- Incredible agreement between results and experimental observations points to the conclusion that Ising 3D is a true CFT.
- Bootstrap unveils a structure.
- More tools are needed to precisely reveal this structure: ex combine

 $\langle \sigma \sigma \sigma \sigma \sigma \rangle$ and $\langle \sigma \sigma \epsilon \epsilon \rangle$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

• Hunting for 4D Ising model?

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary ⊙●
Conclusions				

 Conformal bootstrap gives us insights about genuine strongly coupled CFT's

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why should we care about CFT's?	CFT Handbook 0000000	Simple results	The Ising Model: 2D vs 3D	Summary O
Conclusions				

 Conformal bootstrap gives us insights about genuine strongly coupled CFT's

• We built a machinery that deals with space-time dimensions democratically (although in even dimension we have more tools)

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary O

Conclusions

- Conformal bootstrap gives us insights about genuine strongly coupled CFT's
- We built a machinery that deals with space-time dimensions democratically (although in even dimension we have more tools)
- SCT's can be explored in a similar fashion. $\mathcal{N}=1$ already started, $\mathcal{N}=2,4$ on the "to-do" list.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary O

Conclusions

- Conformal bootstrap gives us insights about genuine strongly coupled CFT's
- We built a machinery that deals with space-time dimensions democratically (although in even dimension we have more tools)
- SCT's can be explored in a similar fashion. $\mathcal{N}=1$ already started, $\mathcal{N}=2,4$ on the "to-do" list.

• Compare with AdS/CFT techniques.

Why should we care about CFT's?	CFT Handbook	Simple results	The Ising Model: 2D vs 3D	Summary O

Conclusions

- Conformal bootstrap gives us insights about genuine strongly coupled CFT's
- We built a machinery that deals with space-time dimensions democratically (although in even dimension we have more tools)
- SCT's can be explored in a similar fashion. $\mathcal{N}=1$ already started, $\mathcal{N}=2,4$ on the "to-do" list.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

- Compare with AdS/CFT techniques.
- Bootstrap in Mellin space?