Pulling Out All the Stops

Brock Tweedie PITT PACC, University of Pittsburgh @ Rutgers 22 April 2014

* Bai, Katz, Tweedie (1309.6631) Han, Katz, Son, Tweedie (1211.4025) Liu & Tweedie (1405.XXXX)

Motivation

Dimopolous & Giudice (hep-ph/9507282) Cohen, Kaplan, Nelson (hep-ph/9607394) Kats, Meade, Reece, Shih (1110.6444) Brust, Katz, Lawrence, Sundrum (1110.6670) Papucci, Ruderman, Weiler (1110.6926)

•••••

 \tilde{b}_R

Motivation

 H_{u}

Hu

Implications of RPV

All decay chains end in jets $W_{\Delta L=1} = \frac{1}{2} \lambda^{ijk} L_i L_j \overline{e}_k + \lambda'^{ijk} L_i Q_j \overline{d}_k + \mu'^i L_i H_u$ $W_{\Delta B=1} = \frac{1}{2} \lambda''^{ijk} \overline{u}_i \overline{d}_j \overline{d}_k$

+ soft terms + Kähler terms

- $\Delta L \text{ or } \Delta B$, not both simultaneously
- If active, LSP is unstable
 - anybody can be the LSP
 - lose dark matter
 - gain a "rich" set of new SUSY signals at colliders
- Contingent on limits from direct searches, rare processes
 - often depend sensitively on detailed spectrum/mixings
 - even tiny couplings can yield prompt decays

Stop on the Bottom

Baryon # Violating Stop Decay

- 100% decays to 2 down-type quarks
 - prompt if λ " > 10⁻⁷
 - non-identical flavors: ds / db / sb
 - if MFV, 96% contain bottom

Stop Production in Cascades

Stop Production in Cascades

Lisanti, Schuster, Strassler, Toro (1107.5055) Allanach & Gripaios (1202.6616) Han, Katz, Son, Tweedie (1211.4025) Berger, Perelstein, Saelim, Tanedo (1302.2146) Evans, Kats, Shih, Strassler (1310.5758) Bhattacherjee, Chakraborty (1311.5785) ATLAS-CONF-2013-007 ATLAS (1308.1841)

sbottom pair to stops and leptonic W^(*)s

Brust, Katz, Sundrum (1206.2353)

* Not studied in detail

ATLAS Exclusion via Gluinos

ATLAS CONF-2013-007 SS dilepton + (b-)jets

ATLAS (1308.1841) multi-(b-)jets + MET

* Always decays to sb, λ " ~ 1

Predicted / Recast Exclusions

Han, Katz, Son, Tweedie (1211.4025)

Evans, Kats, Shih, Strassler (1310.5758)

* No flavor assumptions, λ " can be << 1

Going After the Stop Bump

traditional jet reco: "best pair-of-pairs" amidst leading n jets (choose n carefully!)

OR jet substructure reco: highest-p⊤ fat-jet (after top-jet veto) * Will be even more important at 13+ TeV

Direct Production

Franceschini & Torre (1212.3622) Bai, Katz, Tweedie (1309.6631)

Pursuing Direct Production

• Minimal model-dependence

- rate/kinematics depend only on mass
- inclusive analysis should ignore jet flavor (structure of λ ")
- but still assuming prompt decays
- Benchmark for QCD pair-produced new physics searches
 - minimal color, spin, # decay products, flavor
 - not necessarily SUSY (generic triplet diquark)
- Current limits are less than m_{top}!
 - LEP: 90 GeV
 - Tevatron: 100 GeV
 - LHC: No limit!

Trigger Creep at the LHC

All searches to date are untagged None use 8 TeV data

Why Jet Substructure?

- Focus on high-p_T "boosted" signal production
 - less combinatoric ambiguity
 - better S/B
- Flexible partition of decay radiation to individual "quarks"
 - better rejection of pileup, etc
 - better mass resolution
- Nearly scale-free procedure
 - bypass "4-jet" division of phase space, 4j trigger thresholds
 - background processed into "featureless" spectrum

Change of Perspective

* Inspired by Butterworth, Davison, Rubin, Salam (0802.2470)

Basic Ingredients

- Jet-H_T trigger: offline $H_T > 900$
- Pre-trim event to remove pileup
 - Fixed minijet p_T threshold, tuned to remove $\langle N_{\text{PV}} \rangle \sim 20$
- Capture stop decays in R ~ $\pi/2$ fat-jets
 - maximize mass reach, minimize steepness of background
- Decluster into subjets using BDRS-like prescription
 - relative-p_T measure (as in Hopkins top-tagger)
 - extra demand on m/p_T of softer cluster
- Impose kinematic cuts, run a bump-hunt over (m₁+m₂)/2

Jet Clustering History

Jet Substructure via Declustering

Monte Carlo Gory Details

- Signal matched up to 1 extra parton
 - MadGraph5 + PYTHIA6
 - k_T-MLM @ 30 GeV
 - (beware Pythia8 power shower)
- QCD background matched up to 4 partons
 - MadGraph5 + Pythia8
 - CKKW-L, Durham-k_T @ 50 GeV
- 0.1×0.1 calorimeter grid
- Smear subjet energies
 - e.g., p_T = 200 GeV smeared by 7%

Example Event, m(stop) = 100

Example Event, m(stop) = 100

+ pileup

Example Event, m(stop) = 100

+ trimming

ΔR Distributions

*Passing all analysis cuts

Start with H_T-triggered sample (conventional jets), run substructure procedure to get subjets

* LHC8, 20/fb

Small asymmetry between declustered fat-jet masses

Centrally produced in CM frame

Subjets not hierarchical in energy

Average-Mass Spectrum

**Be careful of top background!

Average-Mass Spectrum

**Be careful of top background!

QCD Estimation 4-Ways

Smooth function fit (CMS style)

 $\frac{d\sigma}{dm_{avg}} = \frac{P_0(1 - m_{avg}/\sqrt{s})^{P_1}}{(m_{avg}/\sqrt{s})^{P_2 + P_3 \ln(m_{avg}/\sqrt{s})}} \quad (+ \text{ signal bump})$

- ABCD (ATLAS style)
 - control regions defined in asym and CM angle
 - signal-region spectrum derived bin-by-bin
- Asymmetry sideband
 - primitive 2D fit over m_{avg} and asym ($\Leftrightarrow m_1m_2$ -plane)
- Jet-mass template \bullet
 - derive m_{avg} spectrum from spectra of individual fat-jets
 - a control region with ~infinite statistics

2012 Sensitivities, Inclusive

exclude ~300 GeV

discover ~150 GeV

* $\Delta \chi^2$ discriminator, Statistical errors ONLY

2012 Sensitivities, b-Tagged

exclude 350~400 GeV

* $\Delta \chi^2$ discriminator, Statistical errors ONLY, Not re-optimized

Looking Ahead to Future Runs

- 14 TeV, 300 fb⁻¹
 - H_T trigger assumed scaled up to 1600 GeV
- Inclusive analysis continues to improve
 - 100 GeV still visible with ${>}5\sigma$
 - ~10 σ for 200-300, discoverable up to 500
 - exclusion up to 650
- See also Snowmass projections Duggan, et al (1308.3903)
 - standard 4j style analysis
 - similar reach (though nothing below 300 GeV)

Pushing Further in Multijets?

- Direct Higgsino pairs to 6j (or more) via RPV
 - cross section ~15x smaller than stops,
 ~500x smaller than gluinos
 - but more structure & guaranteed flavor biases
- Generic colored $X \rightarrow n$ jets
 - BU axigluon for Tevatron top A_{FB} anomaly
 - complex all-hadronic light gluino cascades
 - (insert your favorite model here)
- Color-singlet pairs to 4j
 - light W'/Z' or analog...depends on couplings, spin
 - may be impossible without b/c flavor tags

Thinking Outside the Beampipe

$$c\tau_{\rm RPV} \sim 0.1 {
m mm} \left(\frac{100 {
m ~GeV}}{\tilde{m}} \right) \left(\frac{10^{-6}}{\lambda} \right)^2$$

Displaced RPV Stop Back-of-the-Envelope

- $m(\tilde{t}) = 150 \& \sqrt{\hat{s}} > 400 \implies \sigma \sim 30 \text{ pb via}$ direct QCD pair production
- ~50% chance to get neutral stop-hadron
- ~50% pass basic acceptance, ~5% reco efficiency for $c\tau \sim 40$ cm
- luminosity ~ 20,000 pb⁻¹
- TOTAL: 30 * 0.5 * 0.5 * 0.05 * 20,000 = 7,500 events
- O(1) background \Rightarrow limit is ~4 events

CMS PAS EXO-12-038

Recast Limits

* Decays to light flavors

(b-quarks similar! Also covers dRPV decay to 2b via Kähler QQD⁺)

Liu & Tweedie (1405.XXXX)

Summary

Summary

- Stop LSP may be sitting in the data now, hidden in multijets
 - mass as low as 100 GeV still allowed
 - direct production might be our best shot if m(gluino) > 1 TeV
 - but traditional jet analyses throw much of the signal away due to triggers, sculpted continuum backgrounds
- Can be dug out using jet substructure approach
 - one dimensionful cut (H_T), otherwise scale-invariant
 - covers complete mass range
 - 2012 data probes up to 300 (400) GeV inclusively (b-tagged MFV)
 - 2015+ will uniformly improve by ~2×

Summary

- Sets the stage for other ambitious fully jetty pair production searches
 - for strongly-produced particles, we can handle minimal color/spin/multiplicity/flavor....what else can we do?
- Displaced decays?
 - non-dedicated limits are already very strong
 - perhaps an observation of prompt RPV stops could have interesting implications for cosmology

Conclusion

- The number of places for SUSY to hide is shrinking, but....
- Exotic creatures may still be hiding in the data!

Smaller Fat-Jets?

- ~2x steeper background
- 100 GeV signal acceptance up 30%, with slightly smaller S/B and slightly larger S/ \sqrt{B}
- Higher-mass stop acceptances radically degrade (would need a separate "resolved" analysis)

Vs BDRS

Takeaway points

- Traditional filtering is a bad idea (introduces mass scales via maximum R=0.3 for subjets)
- Otherwise, the *major* difference w.r.t. BDRS is that our subjet m/p_T criterion gives more consistent slope and suppresses the tail
- Unfiltered BDRS mass-asymmetry control region becomes less reliable; ABCD still looks okay; shape is trickier with default formula; 1j template, not sure...

Matched Vs Unmatched QCD

* Both approaches show good agreement with traditional 4j analysis

Performance of "Data-Driven" QCD Estimators

* Error bars are MC statistics (effective lumi ~ 20/fb)

Performance of "Data-Driven" QCD Estimators

* Error bars are MC statistics (effective lumi ~ 20/fb)

Performance of "Data-Driven" QCD Estimators (Unmatched)

Lessons on Signal Showering

p⊤(stop1+stop2)

$p_T(stop1) + p_T(stop2) + \Sigma p_T(j)$

b-Triggered 4-Jet Analysis

~50 for 100 & 200 GeV

Franceschini & Torre (1212.3622)