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At present, we lack a complete theoretical framework for cosmology.

Central goal: formulate quantum gravity on cosmological spacetimes
and understand the degrees of freedom that describe these solutions.

Important progress in quantum gravity:
I AdS/CFT correspondence;
I entropy/area laws (black holes, de Sitter)

S =
Area
4GN

In some examples, S understood microscopically in terms of dual
gauge theory.
[Maldacena; Strominger-Vafa; Callan-Maldacena; ...]

Formulate cosmology holographically?



Problems in generalizing AdS/CFT to cosmology:

• Absence of non-fluctuating time-like boundary; no spatial infinity.
• Dynamical gravity also present in the dual theory

(see e.g. dS/CFT, dS/dS, FRW/CFT)

• Cosmological horizons, observer dependent. Microstates?

Goal: find cosmological solutions in string theory that admit a
brane interpretation.

Basic strategy: “uplift” AdS/CFT adding magnetic flavor branes.

See [Polchinski, Silverstein] for AdS case, and [DHST] for dS

We will find a holographic duality

(
FRWd solutions with
scale factor a(t) = ct

)
⇐⇒

(
Time-dependent QFTd−1

w/magnetic flavors

)
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Road map for FRW holography

1. Uplifting AdS/CFT to cosmology

2. FRW sols sourced by magnetic flavors

3. Degrees of freedom in FRW holography

4. Dynamics of particles and branes



1. Uplifting AdS/CFT to cosmology

Let’s re-formulate AdS/CFT in a way that can be extended to
cosmology.

Consider Nc color D3 branes at
the tip of the cone over S5

(i.e. R6).

w

R(w)

N

c

color branes

S

5

Supergravity ansatz:

S = (M10)8
∫ √

−g(10)

[
e−2φ(R(10) + (∇φ)2)− 1

2
|F5|2

]
+ . . .

ds2 = e2A(w) ηµνdxµdxν + dw2 + R(w)2dΩ2
5 , F5 ∝ εS5



• 1) Probe limit: ignore backreaction (e2A = 1, F5 = 0).

10d Einstein’s eqs:
(dR/dw)2

R2 ∼ +
1

R2 ⇒ R(w) = w

• 2) Near horizon limit adding flux backreaction:

(dR/dw)2

R2 ∼ +
1

R2−
N2

c g2
s

R10 ⇒ R4 = gsNc

e2A ∼ e2w/R , F5 = Nc εS5

X

R

1,d-1

N

c

X
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Compactification and effective potential

Compactify 10d theory on S5, and treat gs and R as fields in a 5d
theory. In Einstein frame,

Ueff = (M5)5
(

g2
s

R5

)5/3

R5
(
− 1

g2
s

1
R2 +

N2
c

R10

)
= (M5)5 (−η2 + N2

c η
5)

where η ≡ 1
R

(
g2

s

R5

)1/3

.

Minimum : η3 =
1

N2
c

⇒ R4 = gsNc
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Uplifting AdS/CFT to de Sitter

d-dim de Sitter in string theory using classical sources:

U = (MP,d )d
(

a(σ)η2 − b(σ)η(d+2)/2 + c(σ)ηd
)

• 1) Branes with tension 1/g2
s that ‘uplift’ curvature and give a > 0

• 2) Orientifold to provide the negative η(d+2)/2 term

• 3) Fluxes from color-branes that give ηd with c > 0



• String realization: brane/antibrane system w/magnetic flavors [DHST]

R′(w)2

R2 ∼ − 1
Rn1

+
gs

Rn2
⇒ R′(w)2

R2 ∼ − 1
Rn1

+
gs

Rn2
−g2

s N2
c

R2n

plus dynamical gravity ...

• Macroscopics: dS/dS correspondence [Silverstein et al]

ds2
dSd

= dw2+sin2 w ds2
dSd−1

⇒ two throats, dual on dSd−1 +gravity
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2. FRW sols sourced by magnetic flavors

Now focus on the FRW phase, where the ‘uplifting’ branes give the
dominant contribution:

U

* FRW phase * de Sitter

η

For concreteness, consider AdS5 × S5 case.
[View S5 as S1 Hopf fibration over P2]

 (p,q) 7-branes play role of uplifting ingredient.
They wrapp AdS5 × S1

f × Σ2(⊂ P2)



� (p,q) 7-branes compete with curvature: they are codimension 2
and have tension T7 ∼ 1/g2

s .

E.g. 24 7-branes exactly cancel the curvature of P1.

For n 7-branes,

UR ∝
∆n
R2 , ∆n ≡ n − nflat

� They add electric and magnetic flavors to the gauge theory on
D3s. Field theory well-understood for ∆n < 0.
[Sen; Banks, Douglas, Seiberg; Argyres, Douglas; ...]

• ∆n < 0: AdS/CFT sols, studied by [Aharony, Fayazzudin, Maldacena;
Polchinski, Silverstein]

• ∆n ≥ 0: no static sol.  cosmology!

We will present time-dependent cosmologies for ∆n > 0, and study
the holographic duals.



� (p,q) 7-branes compete with curvature: they are codimension 2
and have tension T7 ∼ 1/g2

s .

E.g. 24 7-branes exactly cancel the curvature of P1.

For n 7-branes,

UR ∝
∆n
R2 , ∆n ≡ n − nflat

� They add electric and magnetic flavors to the gauge theory on
D3s. Field theory well-understood for ∆n < 0.
[Sen; Banks, Douglas, Seiberg; Argyres, Douglas; ...]

• ∆n < 0: AdS/CFT sols, studied by [Aharony, Fayazzudin, Maldacena;
Polchinski, Silverstein]

• ∆n ≥ 0: no static sol.  cosmology!

We will present time-dependent cosmologies for ∆n > 0, and study
the holographic duals.



Cosmological 10d solution

Late time solution (string frame):

ds2
s = −dt2

s +
t2
s

c2 dH2
4 +

t2
s

c2 dB2
4 + dx2

f , c2 =
7
3

with B4 is a compact 4-dim hyperbolic space.

N Arises at late times in the D3-(p,q)7 system with ∆n > 0.
- Color flux and metric flux from S1 fiber subdominant.
- 5d spacetime is open FRW (instead of AdS5). B4: uplifted P2.

N It is also an exact Ricci flat vacuum sol to Einstein’s eqs.

N More general set of FRW solutions:

ds2
s = −dt2

s +
t2
s

c2 dH2
d−1 +

t2
s

ĉ2 dB2
2m + dx2

f

c2 =
d + 2m − 2

d − 2
, ĉ2 =

d + 2m − 2
2m − 1

(Earlier work on a different class of sols: [Kleban, Redi])



Compactify to d-dimensions. Einstein frame metric: t ∼ tc2

s ,

ds2
E = −dt2 + c2t2 dH2

d−1 , dH2
d−1 = dχ2 + cosh2 χdH2

d−2

This is sourced only by magnetic flavors: ∆n > 0 ⇐⇒ c > 1.
(c = 1 is Minkowski space in Milne coords.)

Goal: using this concrete solution, set up the holographic
dictionary.

When does a given a gravity solution admit a holographic dual?
How do we construct it?

Basic requirement: ∃ warped region that redshifts energies.[Maldacena]

E.g.: redshift near core of D3 branes

−g00 = e2A =

(
1 +

R4

r4

)−1/2

⇒ E =
√
−g00 Ep � MP
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Warped solution

Exhibit warped region in our cosmological solution.

Change variables: t = T
(

1− w2

T 2/c

)c/2

, χ =
1
2

log
1 + w/T 1/c

1− w/T 1/c

ds2
d = −dt2 + c2t2

(
dχ2 + cosh2 χdH2

d−2

)
= c2

(
T 2/c − w2

)c−1
dw2 +

(
1− w2

T 2/c

)c−1 (
−dT 2 + c2T 2 dH2

d−2
)

• radial direction w , with warping for c > 1
• (d − 1) dual lives on ds2

d−1 = −dT 2 + c2T 2 dH2
d−2

• UV slice w = 0, corresponding to χ = 0 [here t = T ]
• two IR regions w → ±T 1/c , corresponding to |χ| � 1

GR redshift: E(w ,T ) =

(
1− w2

T 2/c

) c−1
2

Epr � MP as w → ±T 1/c
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Basic properties

•Warp factor and redshifting are both time and radially dependent.
Dual to time-dep couplings and nontrivial RG flow.

• Masses of KK modes of the base and fiber, strings, and 7-7
junctions, in string and Einstein frame: t = T (1− w2/T 2/c)c/2

mKK ∼
1
ts
→ 1

t
, mf ∼ mstr ∼ const → 1

t1−1/c2 , m77 ∼ ts →
1

t1−2/c2

• IR region arises in the absence of flux, suggesting that magnetic
flavor branes support degrees of freedom in the IR.

• Planck mass in (d − 1)-dimensional theory:

(Md−1)d−3 ∼ (Md )d−2
∫ T 1/c

0
dw
√

g g00 ∼ (Md )d−2T

At finite times, dual has propagating gravity, but as T →∞ gravity
decouples. Precise QFT dual?



How much does the IR region (EFT) contribute to MPl?

• First do this for RS, with UV brane at r = rUV and

ds2 =
r2

R2
AdS

(−dt2 + d~x2) +
R2

AdS

r2 dr2

⇒ M2
4 ∼ M3

5

∫ rUV

0

√
gg00 ∼ M3

5
r2
UV

RAdS
∼ Ñdof Λ

2
c

where Ñdof = N2 and the QFT cutoff Λc = rUV/R2
AdS.

∴ Planck mass induced by QFT.

EFT contribution when rUV →∞: define IR region rIR = εrUV

MPl,UV

MPl,IR
=

∫ rUV

rIR

√
gg00∫ rIR

0
√

gg00
∼ 1− ε2

ε2 = const

so the IR region contributes a leading piece to M4.



• Analyze this question in our FRW sol: define an IR region

EIR = εEUV  wIR = T 1/c
√

1− ε2/(c−1)

(Md−1)d−3 ∼
∫ wIR

0

(
1− w2

T 2/c

)3(c−1)/2

+

∫ T 1/c

wIR

(
1− w2

T 2/c

)3(c−1)/2

⇒ MPl,UV

MPl,IR
= const as T →∞

So, as in RS, MPl dominated by EFT region.

 Possibility of a precise QFT description of FRW physics at late
times.



3. Holographic degrees of freedom

In a QFT with a cutoff Λc , denote Ñdof ≡ number of field theory
degrees of freedom per lattice point.

• Compute Ñdof for the holographic dual of the FRW sol., both from
the gravity and QFT sides.
√

Basic estimates

(d − 1) Planck mass induced dominantly by the EFT:

(Md−1)d−3 ∼ (Md )d−2T ∼ Ñdof Λ
d−3
c .

The holographic dual lives on an FRW metric with Hd−1 = 1/T .

FRW eq: H2
d−1 ∼ GN ρ ⇒

1
T 2 ∼

1
(Md )d−2T

Ñdof Λ
d−1
c

Combining these eqs ⇒ Ñdof ∼ (Md )d−2T d−2 , Λc ∼
1
T



So the system accumulates degrees of freedom per lattice point, but
has a finite cutoff. Another way of measuring the number of degrees
of freedom:
√

Covariant entropy bound [Bousso; Banks, Fischler; ...]

Compute entropy passing through an observer’s past light sheet.

Change to spherical coords:

ds2 = −dt2 + c2t2
(

dr2

1 + r2 + r2dΩ2
d−2

)
with observer at the origin r = 0 at time t .

Past light cone at t1 < t : delimits a sphere of size

ρ(t1) = r(t1)ct with
∫ r

0

dr√
1 + r2

= −
∫ t1

t

dt
ct

For c > 1, the sphere grows to max size ρmax ∼ t and then begins to
shrink as we go back in time.



Entropy bound: area of maximal sphere in Planck units,

S ∼ (Md )d−2td−2

Identifying S ∼ Ñdof Λ
d−2
c Vold−2 where Vold−2 ∼ td−2 , gives

Ñdof ∼ td−2, consistent with the previous estimate (at late times T ∼ t).

Lessons from these calculations:

• They suggest a complete non-gravitational dual at late times, given
by a cutoff field theory.

• Growth of Ñdof associated to a QFT with time-dependent masses
and couplings.

Microscopic origin of Ñdof →∞?
Estimate using the brane construction ...
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Microscopic count of degrees of freedom

On the brane side we have ∆n = n − nflat > 0 (p,q) 7-branes.

We argue that the time dependent growth of Ñdof is given in terms of
7-7 string junctions.

Some preliminary remarks:

I Such a count may not work in a simple way, when interpolating
between weak and strong coupling.

I 7-branes source warping in themselves and dominate at late
times. We expect that fields of the dual theory that live at their
intersection may account for Ñdof .

I Bringing together ∆n > 0 7-branes in a static way leads to
infinite dimensional algebras. [DeWolfe, Hauer, Iqbal, Zwiebach; ...]

Let’s count string junctions up to a cutoff from backreaction and
topology.



Parametrize a state by:
I the number nstr of strings stretching among the 7-branes
I the winding number nf on the fiber circle
I the momentum number kf on the fiber circle

• 1) Bound nstr requiring that the core size of the strings does not
exceed R, to avoid strong backreaction.

Size of the core determined by gravitational potential 1/rd⊥−2.

Since fiber� R at late times, strings are effectively codim 7.

nstr

r5
core
∼ 1 . Then rcore < R ⇒ nstr < t15/7
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• 2) Bound nf because the fiber circle is contractible

If strings wind R/Rf ∼ ts ∼ t3/7 times around the fiber circle, they can
detect that it is contractible. So cut off

nf < t3/7

• 3) Tower of momentum modes kf/Rf does not continue forever, but
has a UV cut-off (e.g. giant graviton effect of [McGreevy, Susskind, Toumbas])

View states as bound states of KK gravitons and string junctions:

a) when kf/Rf � R, energy of state ∼ R, and the gravitons are well
bound to the strings

b) when kf > RRf , gravitons no longer strongly bound to strings.
Don’t count as fundamental.

⇒ kf < t3/7
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• 4) There could be additional group theory factors from the algebra
generated by the junctions.

Infinite dimensional algebras realized by static 7-branes with ∆n > 0
studied by [DeWolfe, Hauer, Iqbal, Zwiebach; ...]

Approach: start from a set of branes that generates a finite
dimensional algebra G0 and then add an extra set Z of 7-branes.

Junctions satisfy λ·λ = −J2+nZ (f (p,q)− 1)

I λ: weight vector under G0.
I J2 ≥ −2: self-intersection.
I f (p,q): function of asymptotic charges. Generic f (p,q) > 1

RHS becomes large and positive by increasing nZ ; longer and longer
vectors λ allowed.

 Infinite dimensional algebra!
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Our assumption: there are no multiplicities which grow with nstr in the
tower of available states.

Ultimately, the main point to understand is: What matter reps are
physically realized?

This is an important and difficult question, and more work is needed.

Combining these results, number of available states:

Ñdof ∼ (nstr nf kf )max ∼ t3 = td−2 for d = 5

√
Microscopic count of Ñdof agrees with the gravity side.

√
Dominant contribution given by string junctions from magnetic
flavor branes.



4. Dynamics of particles and branes

Finally, we study the dynamics of particles and branes in the infrared
region w → ±T 1/c of

ds2 =

(
1− w2

T 2/c

)c−1 (
−dT 2 + c2T 2 dH2

d−2

)
+ c2

(
T 2/c − w2

)c−1
dw2

Goals:
1) check whether the IR degrees of freedom in the warped throat

are stable;
2) understand the role of the color sector (D3 branes);
3) compute massive propagators.

More generally, it is important to understand what additional criteria
need to be satisfied in order to obtain a holographic dual.

Physical criterion: behavior of the warp factor be such that light
particles remain in the IR region.
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Dynamics of particles

Calculations are easier in the string frame metric

ds2
s = −dt2

s +
t2
s

c2 (dχ2 + cosh2 χdH2
3 ) +

t2
s

c2 dB2
4 + dx2

f

Consider a massive particle moving along χ:

Smassive = −
∫

dts m(ts)
√

1− t2
s χ̇

2/c2

with mKK ∼
1
ts

, mf ∼ mstr ∼ 1 , m77 ∼ ts

Using the conserved momentum,

p =
m(ts)χ̇t2

s /c2√
1− χ̇2t2

s /c2
⇒ χ̇ =

cp
ts
√

p2 + m(ts)2t2
s /c2

∴ Massive particles remain in the IR region (χ̇→ 0 at late times.)



Color D3 branes

For a D3 brane extended along H3, the DBI action is

SD3 = −T3

∫
dts

t3
s

c3 cosh3 χ
√

1− χ̇2t2
s /c2

So there is an extra force cosh3 χ that pushes the brane up to χ→ 0.

 D3 branes are not stable in the IR and move up the throat.

“Motion sickness”.

• Unitarity problems? Familiar examples with color branes
responsible for warping, where unitarity is not lost when color branes
are pushed towards the UV.
• Here magnetic branes support warping, and the color sector is
subdominant. So holographic dual built from d.o.f. living on 7-branes.
• Since |χ̇| < c/ts, the ejection of branes takes longer and longer.

So motion sickness does not appear to be fatal in our system.
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Massive propagators

� In AdS/CFT, massive propagators in the bulk turn into power-law
correlators in the dual.

How does this happen? A massive propagator would usually be exp
suppressed (e.g. in flat space) ...
This effect is due to the strong radial dependence of the warp factor:
geodesics become shorter along the radial direction, leading to power
law behavior rather than exp.

� Compute 2-pt function for field with mass m(t) in our geometry

ds2
d = −dt2 + c2t2

(
dχ2 + cosh2 χ

[
d χ̃2 + sinh2 χ̃,dΩ2

d−3

])
We want propagator between (t , χ, χ̃) and (t , χ, χ̃+ ∆χ̃).

G(t , χ; ∆χ̃) ∼ exp [iSWKB]

S = −
∫

dλm(t)
√

ṫ2 − c2t2(χ̇2 + cosh2 χ ˙̃χ2 + . . .)
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For a KK mode m(t) = nKK/t , the propagator in the UV χ = 0 is

G(∆χ̃) ∼ exp[−nKK c ∆χ̃]

Geodesic distance along (d − 1) space: ∆x ∼ ec∆χ̃/2

G(∆x) ∼ 1
(∆x)2nKK

⇒ power law correlator for KK modes!

In the IR |χ| � 1 there is an additional suppression factor

G(χ; ∆x) ∼ e−2cnKKχ
1

(∆x)2nKK
∼ (1− w/T 1/c)cnKK

(∆x)2nKK

This is characteristic of a strongly coupled theory with power-law
wavefunction renormalization.

Modes with m ∼ 1/tα, α < 1, have exp suppressed correlators.



5. Conclusions and future directions

I Starting from AdS/CFT dual pairs, we constructed simple FRW
solutions sourced by magnetic flavor branes.

I Time-dependent warped metric w/ redshifted region ⇒
holographic description in terms of a cutoff field theory. At finite
times: propagating gravity and finite Ñdof .

I At late times gravity decouples, and Ñdof →∞. Holographic
degrees of freedom dominated by string junctions. Precise QFT
dual of FRW cosmology at late times.

• Develop further the holographic description, with time-dependent
and running couplings.

• Distinction between ∆n < 0 and ∆ ≥ 0? Relations between
unitarity and time-dependence?

• More general relevance of magnetic flavors and infinite algebras
to cosmological solutions with holographic duals.

• Conditions for the existence of a holographic duality.
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