Perturbing gauge/gravity duals by Romans mass

Alessandro Tomasiello

[Rutgers, May 5th, 2009]

Introduction

Our main character: Romans mass F_0

originally introduced as a 'cosmological constant' in IIA supergravity

[Romans '86]

Later understood as RR flux; equal dignity as any F_k [Polchinski '95] [for example, mixed with the others by T-duality]

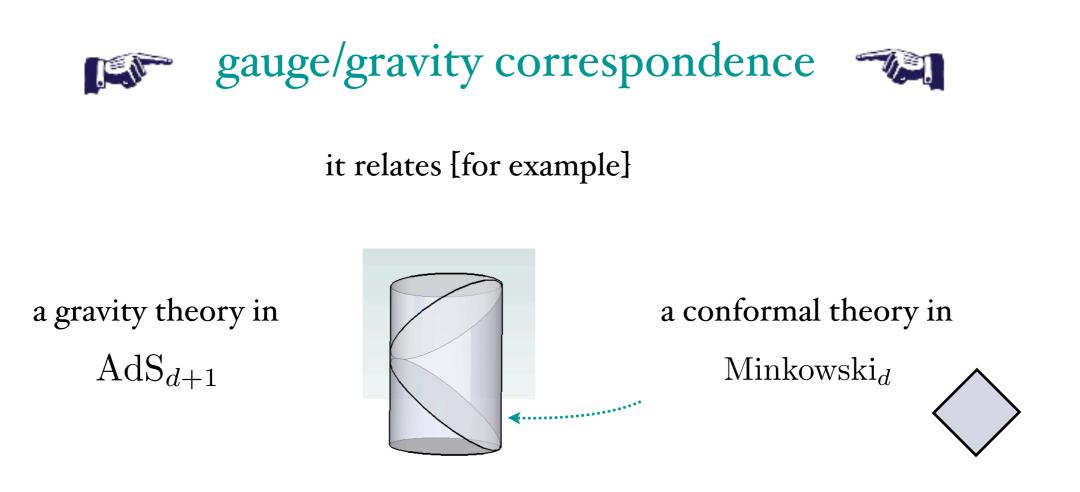
It also helps produce many more vacua with stabilized moduli [deWolfe, Giryavets, Kachru, Taylor '05]

internal flux
$$F_k$$
 contributes to the 4d potential $\sim rac{e^{4\phi_4}}{r^{6-2k}}$

Nevertheless, still mysterious:

- its M-theory interpretation is not known
- couples to D8-branes [whose gravity grows with distance]
- field strength with no potential...

On some backgrounds, a nonperturbative understanding of string theory:



 F_0 has a coupling to D2-branes

 $\int F_0 CS(\mathcal{A})$

but the near-horizon limit of D2 branes is not $AdS_4 \times$ anything

the n.h. limit of M2 branes is $AdS_4 \times S^7$

... but again, we don't know what F_0 is in M-theory.

Fortunately:

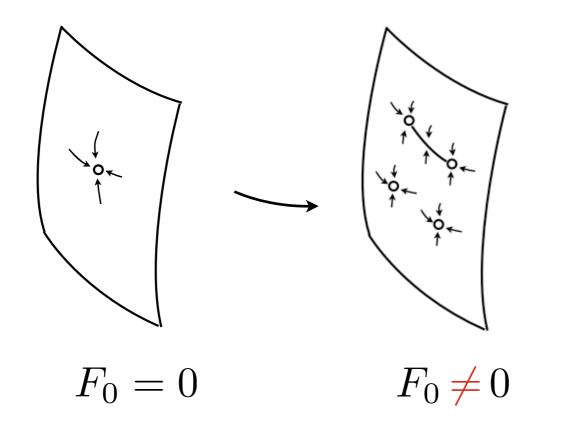
a Chern-Simons-matter theory (with explicit Lagrangian) is dual to

old $\operatorname{AdS}_4 \times \mathbb{CP}^3$ solution \checkmark (with $F_0 = 0$)

> [Aharony, Bergman, Jafferis, Maldacena '08]

• We will achieve gauge/gravity duals with lower supersymmetry:

one CFT several CFTs $\mathcal{N} = 6$ $0 \le \mathcal{N} \le 3$



[Gaiotto's talk here]

• The new theories will help us find new string vacua!

We will find the gravity duals perturbatively in F_0

At first order:

- superpotential drives the solution
- already some constraints on allowed superpotentials
- automatic procedure; also possible for more general topologies

• Review: Chern-Simons-matter theories ABJM theory, and its lower susy deformations

• Review: some of the geometry behind supersymmetry

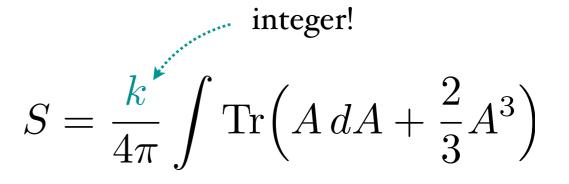
• The perturbative procedure

Chern-Simons-matter CFTs

- ullet in 2d the conformal group is ∞ -dimensional
- in 4d, gauge couplings are dimensionless
- in <u>3d</u>?

Chern-Simons action:

another gauge action with dimensionless coupling:

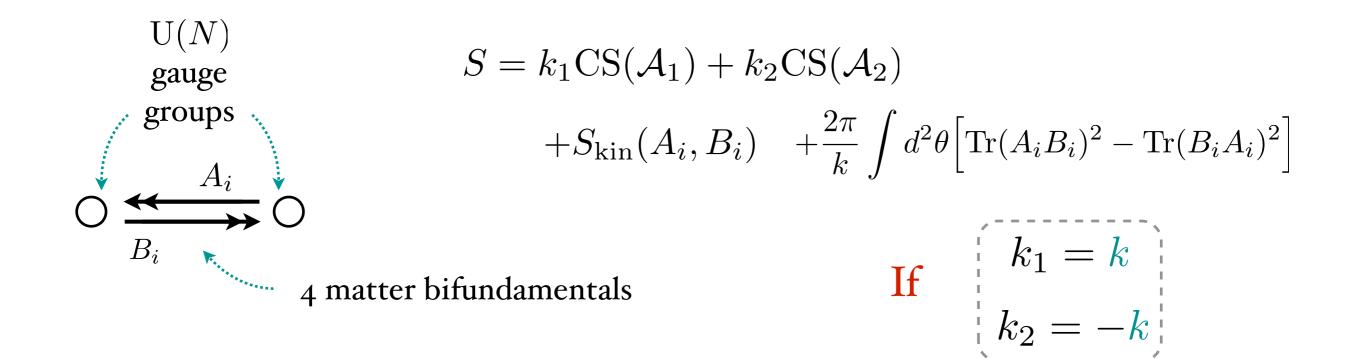


unfortunately: thisEoM:theory is topologicalF = 0

<u>But</u>: susy adds matter \rightarrow nontrivial CFT₃ [Avdeev

[Avdeev, Kazakhov,Kondrashuk '93; Kao, Lee '92; Gaiotto, Yin '07] • The $\mathcal{N} = 6$ theory ["preaching to the pope"]

[Aharony, Bergman, Jafferis, Maldacena'08]



this theory has $\mathcal{N} = 6$

• It is also possible to write the theory with $\mathcal{N} = 1$ superfields:

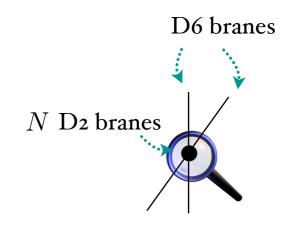
introduce
$$X^{I} = \begin{pmatrix} A_{1} \\ A_{2} \\ B_{1}^{\dagger} \\ B_{2}^{\dagger} \end{pmatrix}$$
 then $\mathcal{N} = 1$ superpotential is

$$\frac{2\pi}{k} \int d^2 \theta (X_I^{\dagger} X^I X_J^{\dagger} X_J - X_I^{\dagger} X^J X_J^{\dagger} X^I - 2\omega^{IK} \omega_{JL} X_I^{\dagger} X^J X_K^{\dagger} X_L)$$

in this form, $\operatorname{Sp}(2) \cong \operatorname{SO}(5)$ is manifest.

duality with $AdS_4 \times \mathbb{CP}^3$

 by zooming in on brane systems whose effective action is known.

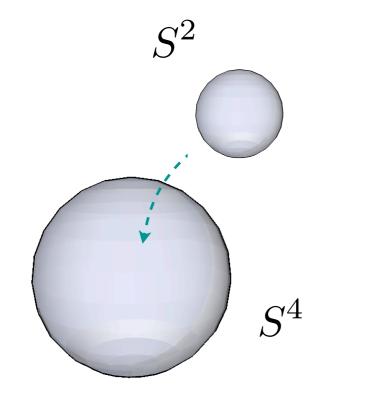


• There are actually more vacua on $AdS_4 \times \mathbb{CP}^3$ [AT, '07] if one allows for non-zero Romans mass

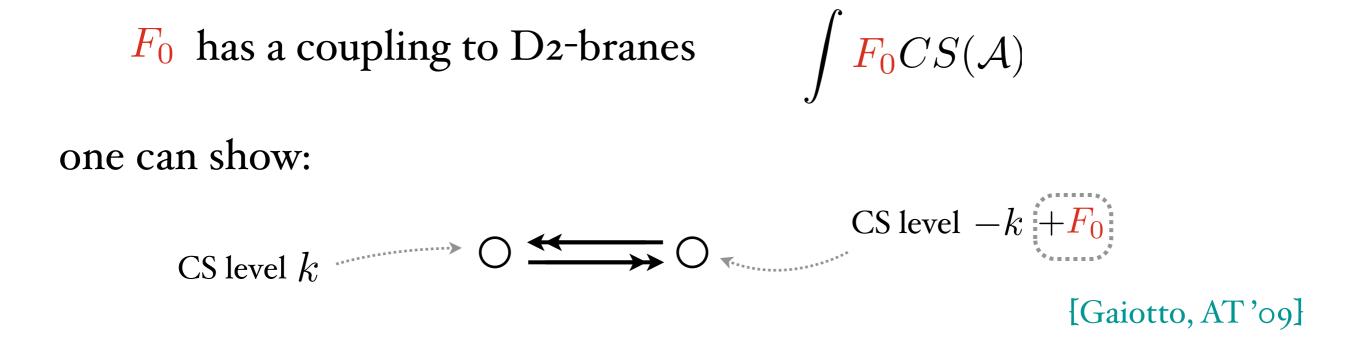
 $\frac{F_0}{F_6}$

8 KKreduction.nb

\mathbb{CP}^3 is a sphere fibration:



 $\frac{\#[[2]]}{(\#[[1]])^{1/3}} \frac{1}{(\#[9]+)^2} \frac{1}{3} 0 \text{WII UO}^{-5,090,0,4,5,3,16,9,8,9,4,5,3}$ $\texttt{expst[n_] := Transpose[{\sigma, tan} /. \sigma \rightarrow \texttt{Flatten[Apply[sigma, #] \& /@ expReCubo[n]]];}}$ expst10 = expst[10]; Select::norma : Nonabomic expression (expected at $p \in i$ i) (12) Select[$\sigma = 1$] Reals &]. \gg Select::argt : Select called with 0 guments; 2 or 3 acouments are expected. Select::normal : Nonatomic expression expected at position 1 in Select[σ , $\pm 1 \in$ Reals &]. \gg Select::argt : Select are expected. \gg Select::normal : Nonatomic expression expected at position 1 in Select[σ , $\pm 1 \in$ Reals &]. \gg General::stop : Further output of Select::normal will be suppressed during this calculation. \gg Select::argt : Select called with 0 arguments; 2 or 3 arguments are expected. >> General::stop : Further output of Select::argt will be suppressed during this calculation. >> The 'nonatomic' error message is because NSolve (wrongly) returns no solutions at all when the rhs $\frac{n^4}{n^{0/3} n^{6/3}} < -100$ must be a numerical fluke. Then Select complains that it has no input at all. ListPlot[proj[expst10], PlotRange \rightarrow All, AxesOrigin \rightarrow {0, 0}, Axes \rightarrow False, PlotStyle \rightarrow RGBColor[.8, .1, .1]] 9 σ 2/5'shape' parameter



the enhancement to $\mathcal{N} = 6$ doesn't work now;

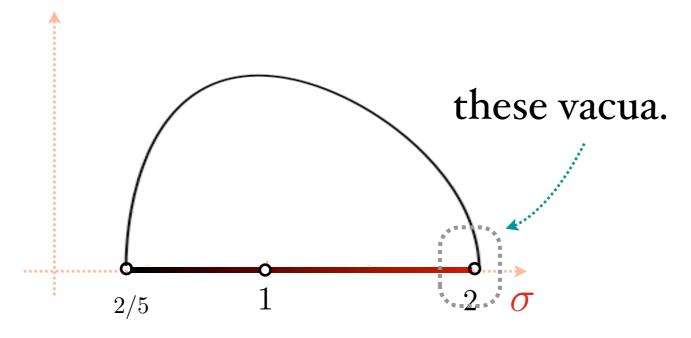
accidental SO(5) and R-symmetry SO(1) now commute.

one can still argue for a fixed point with these symmetries.

 $\mathcal{N} = 1$ superpotential:

$$\int d^2\theta (c_1 X_I^{\dagger} X^I X_J^{\dagger} X_J + c_2 X_I^{\dagger} X^J X_J^{\dagger} X^I + c_3 \omega^{IK} \omega_{JL} X_I^{\dagger} X^J X_K^{\dagger} X_L)$$

So the proposal is that these theories should be dual to



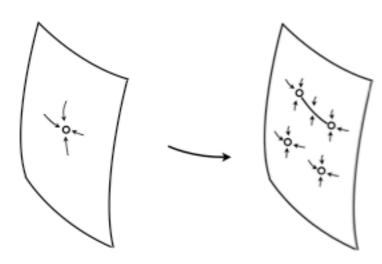
 $F_0 \ll$ other fluxes;

small perturbation around $\mathcal{N} = 6$ solution.

O(4)
-

 $SO(3)_R \times SO(3)$

This logic also leads to other theories.



the last two are connected by a line:

 $\mathcal{N}=3$

 $F_0 = 0 \qquad \qquad F_0 \neq 0$

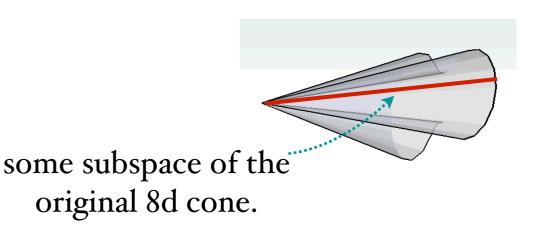
 $W_{\mathcal{N}=2} = c_1 \operatorname{Tr}(A_i B_i)^2 + c_2 \operatorname{Tr}(B_i A_i)^2$

Supersymmetry

The superpotential $W_{\mathcal{N}=2} = c_1 \operatorname{Tr}(A_i B_i)^2 + c_2 \operatorname{Tr}(B_i A_i)^2$

doesn't vanish even in the abelian case.

Moduli space has dimension 4!



This is the hallmark of generalized complex geometry (GCG)

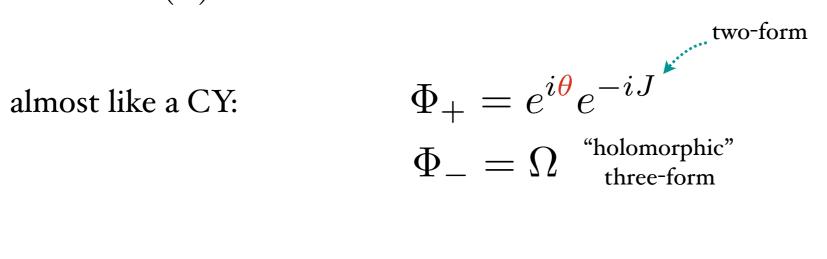
[Hitchin '02; Gualtieri '04; Graña, Minasian, Petrini, AT '05]

It is a way of writing the supersymmetry conditions

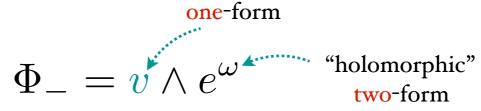
in terms of Φ_+ and Φ_-

differential forms with some constraints ["pure spinors"]

• For example: "SU(3) structure" case



 More generally:
"SU(3)×SU(3) structure"



This general case is the one of interest to us.

One susy equation is a first-order equation purely on the geometry:

$$d\Phi_{+} = -2\sqrt{-\Lambda} e^{-A} \mathrm{Re}\Phi_{-}$$

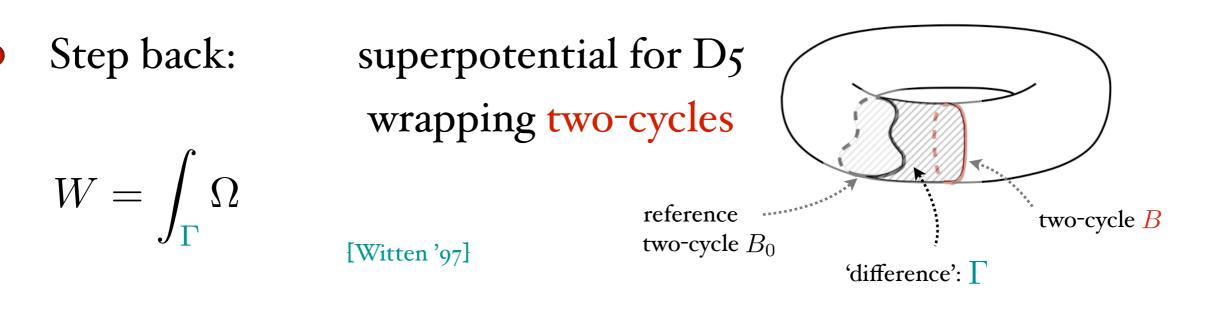
[There is one more susy equation; and Bianchi]

$$\Phi_{+} = \rho e^{i\theta} e^{-iJ}$$
$$\Phi_{-} = v \wedge e^{\omega}$$

In particular:

$$\frac{d\theta}{\sin^2(\theta)} = -2\sqrt{-\Lambda} e^{-A} \operatorname{Re} v$$

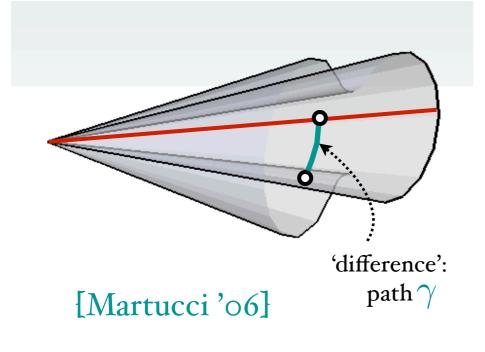
These forms are related to the brane superpotentials...



 $\partial \Gamma = B - B_0$

same for D2
wrapping points

 $\partial \gamma = p - p_0$



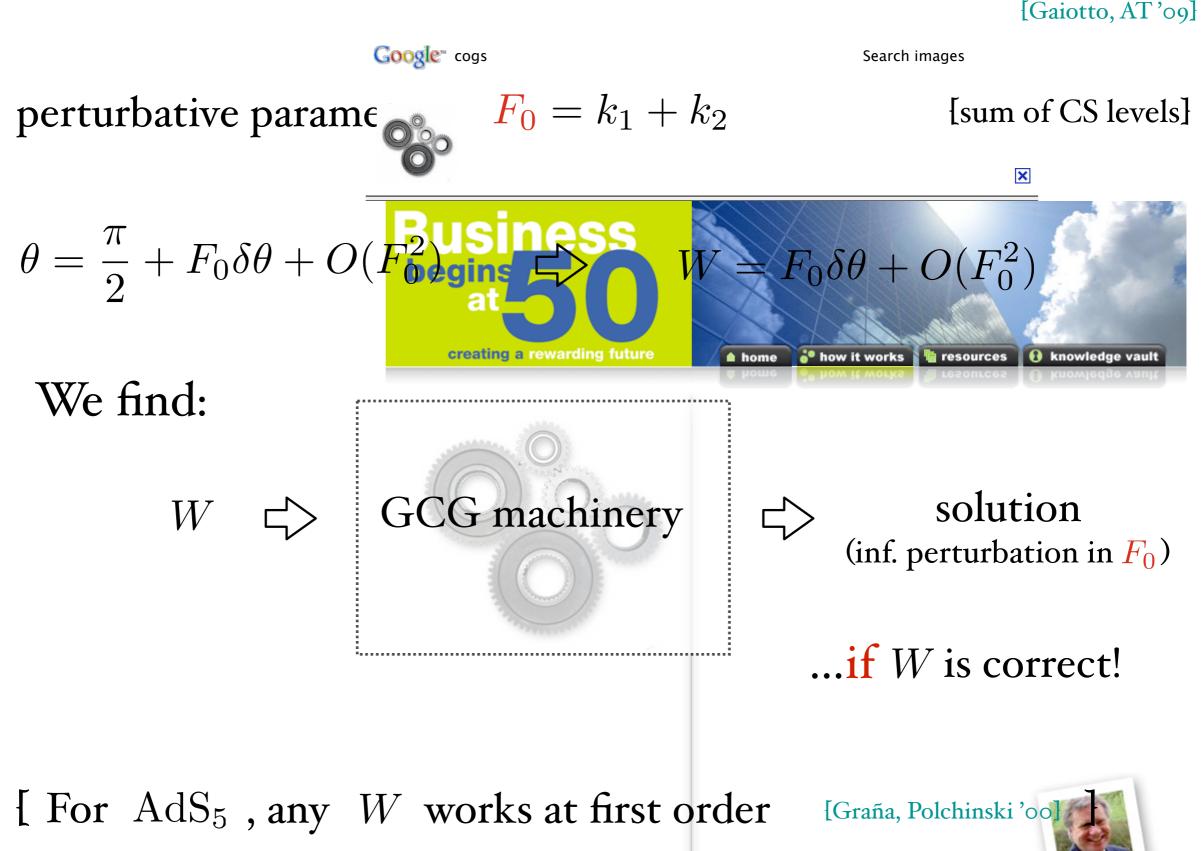
$$\begin{split} W &= \int_{\gamma} \mathrm{Re} \Phi_{-} \\ &= \int_{\gamma} \mathrm{Re} v \quad \propto \int_{\gamma} d(\cot(\theta)) \end{split}$$

 $= \cot(\theta)$

- Susy conditions in terms of 'pure spinors'
- A small piece of these 'pure spinors' is the superpotential of the CFT

This is not enough to find explicit solutions. But:

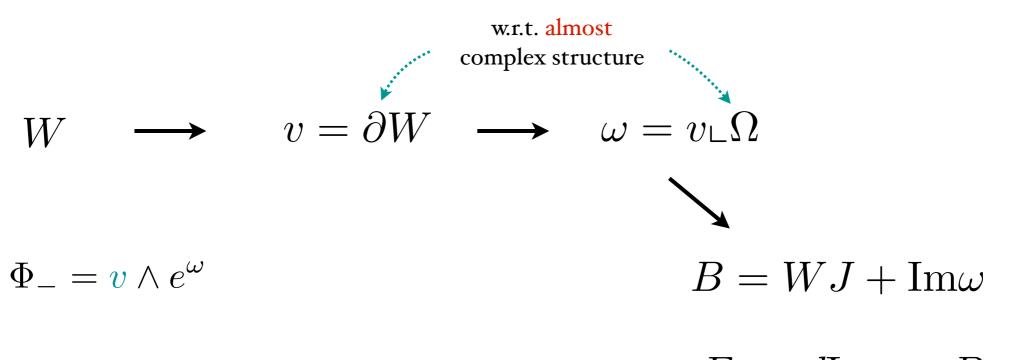
Perturbative solutions



At first order:

- F_2, F_6 don't change
- metric doesn't change B-field changes (becomes $\neq 0$)

•
$$F_0, F_4$$
 change (become $\neq 0$)



 $*F_4 = d \operatorname{Im} v + B$

... it remains to check Bianchi.

So, on \mathbb{CP}^3 , to summarize:

supersymmetry	global symmetry	
$\mathcal{N} = 0$	SO(6)	
$\mathcal{N} = 1$	SO(5)	
$\mathcal{N}=2$	$SO(2)_R \times SO(4)$	
$\mathcal{N}=3$	$SO(3)_R \times SO(3)$	

gravity dual

 $\begin{cases} SU(3) \text{ structure:} \quad \Phi_{-} = \Omega \\ \\ SU(3) \times SU(3) \text{ structure:} \quad \Phi_{-} = v \wedge e^{\omega} \end{cases}$

What about other spaces?

• Most other IIA solutions with $F_0 = 0$ have nonconstant dilaton

no $F_0 \neq 0$ deformation with SU(3) structure

However, no obstruction to $SU(3) \times SU(3)$ structure

An example has already appeared

[Petrini, Zaffaroni '09]

Hopefully, most Freund-Rubin vacua $(F_0 = 0)$

will spawn many more vacua upon switching on F_0

Conclusions

• AdS/CFT: Romans mass = "overall" Chern-Simons coupling

• New CFT3's with low supersymmetry

• many new string theory vacua