More S-dualities from Outer-automorphism Twists

Yuji Tachikawa (IAS)

based on [arXiv:1009.0339] and on numerous previous works by various people

October 2010

Introduction

 $\mathcal{N}=4$ super Yang-Mills with group G,

or, in general, $\mathcal{N}=2$ gauge theory with zero one-loop beta function:

$$au = rac{4\pi i}{g^2} + rac{ heta}{2\pi}$$
 doesn't run, and tunable.

$\mathcal{N}=4$: Montonen-Olive duality

$$G$$
 at au is equivalent to LG at $au'=-rac{1}{n_G au}$

- $n_G = 1$: $A_{N-1} = SU(N)$, $D_N = SO(2N)$, E_N
- $n_G = 2$: $B_N = SO(2N+1)$, $C_N = USp(2N)$, F_4
- $n_G = 3$: G_2

$$B_N \leftrightarrow C_N$$
, otherwise $G = {}^L G$

(as far as the Lie algebra is concerned, that is.)

What's LG ?

- Called the Goddard-Nuyts-Olive dual, or the Langlands dual of *G*.
- $\mathcal{N}=4$ SYM has six adjoint scalars.
- Give one a vev Φ in the Cartan of g and break G to $U(1)^r$.
- Each root α gives a W-boson with mass $\alpha \cdot \Phi$.
- Each root corresponds to an $SU(2) \subset G$.
- The standard 't Hooft-Polyakov monopole in the BPS limit can then be embedded to *G*.
- A monopole with mass $\tau \alpha^* \cdot \Phi$ where $\alpha^* = 2\alpha/|\alpha|^2$ is called the co-root.

Co-roots of G form roots of LG .

$$G\leftrightarrow {}^LG$$
 $\alpha\leftrightarrow\alpha^*=2lpha/|lpha|^2$ $au\leftrightarrow-1/(n_G au)$ W-boson \leftrightarrow monopoles $ag{SO}(7)$ $ag{USp}(6)$ $ag{\pm}m_i\pm m_j,\pm 2m_i$

 $n_G = 1$: simply-laced; $n_G = 2, 3$: non-simply-laced

$\mathcal{N}=2$: Argyres-Seiberg-Gaiotto dualities

 $\mathcal{N}=2$ $\mathrm{SU}(N)$ with 2N hypermultiplets in the fundamental: $\beta=0$.

$$\tau = \frac{8\pi i}{g^2} + \frac{\theta}{\pi}$$

doesn't run, and can be tuned.

- Invariant under au o au + 2
- Invariant under au o au + 1 for SU(2): doublet = anti-doublet.
- ullet Analysis using the Seiberg-Witten curve: invariant under au o -1/ au

Problem at $\tau=1$

For SU(2) with 4 flavors, au o au + 1.

Things are OK: it's self-dual. [Seiberg-Witten, 1994]

Problem at $\tau=1$

$$\tau \rightarrow -1/\tau \ ; \tau \rightarrow \tau + 2$$

Argyres-Seiberg, 2007

SU(3) with 6 flavors at $\tau \leftrightarrow SU(2)$ at $\tau' = 1/(1-\tau)$ with one doublet hypermultiplet, and also coupled to Minahan-Nemeschansky's SCFT with E_6 flavor symmetry.

Problem at $\tau=1$

$$\tau \rightarrow -1/\tau \ ; \tau \rightarrow \tau + 2$$

Gaiotto 2009, Chacaltana-Distler 2010

SU(N) with 2N flavors at $\tau \leftrightarrow SU(2)$ at $\tau' = 1/(1-\tau)$ with one doublet hypermultiplet, and also coupled to a strange SCFT with $SU(2) \times SU(2N)$ flavor symmetry.

Explanation via 6d theory

- All these dualities can be understood by compactifying 6d
 \$\mathcal{N} = (2, 0)\$ theory on a Riemann surface, possibly with punctures.
 [Gaiotto, 2009]
- The 6d theory is either A_{N-1} , D_N or E_N , i.e. simply-laced.
- To get 4d non-simply-laced theory, one needs a twist. [Vafa,1997]
- Today's objective: explore this system, confirm old dualities, and find new ones.
- also, review of the simply-laced cases at the same time.

Contents

1.
$$\mathcal{N}=4$$

$$2. \mathcal{N} = 2$$

3. Summary

Contents

1.
$$\mathcal{N}=4$$

$$2. \mathcal{N} = 2$$

3. Summary

$6d\mathcal{N} = (2,0)$ theory

- Decoupled from gravity. Has 16 supercharges. (as many as 4d N = 4.) Chiral. Conformal.
- Comes with types $G = A_{N-1}$, D_N and $E_{6,7,8}$, but **not** gauge theory.
- Can be given a vev \vec{a} : r dimensional vector.
 - \longrightarrow a theory of r abelian two-forms ω_i with $d\omega_i = \star d\omega_i$.
- Strings couple to ω_i . Tension is given by $\alpha \cdot a$, α is a root of G.

$6d A_{N-1}$ theory

- Take N almost-coincident M5-branes, take the IR limit. Remove the center-of-mass mode.
- Vevs a given by the position of M5-branes $a=(a_1,a_2,\ldots,a_N)$.
- M2-branes can have an end on i-th and j-th M5-branes
 → String with tension a_i a_j. Root: α_{ij} = e_i e_j.
- Compactify on an S^1 of radius R_6
 - \longrightarrow 5d gauge **SU**(N) theory on N D4-branes:

$$S=\int d^5xrac{1}{g^2}F_{\mu
u}F_{\mu
u}$$

$$1/g^2 \sim 1/R_6$$
.

- String wrapped on $S^1 \longrightarrow W$ -bosons
- String not wrapped on $S^1 \longrightarrow \text{Monopole strings}$.

Compactification on the torus

Take 6d theory of type G, give a vev a, put it on a torus.

$$\int d^5x \frac{1}{g_{5d}^2} F_{\mu\nu} F_{\mu\nu} = \int d^4x \frac{R_5}{g_{5d}^2} F_{\mu\nu} F_{\mu\nu} = \int d^4x \frac{R_5}{R_6} F_{\mu\nu} F_{\mu\nu}$$

- \longrightarrow 4d coupling is $\tau = iR_5/R_6$.
- ullet Strings wrapped around $oldsymbol{E}$
 - \longrightarrow particles of mass $R_6 \alpha \cdot a$: W-bosons.
- Strings wrapped around *M*:
 - \longrightarrow particles of mass $R_5 \alpha \cdot a$: Monopoles.
- Invariance under $\tau \to -1/\tau$ manifest: $R_5 \leftrightarrow R_6$.

How can I get 4d SO(odd)?

- 6d D_N on $S^1 \longrightarrow 5d$ **SO**(2N) theory.
- Impose

$$\Phi(x_5 = R_5) = P\Phi(x_5 = 0)P^{-1}$$

where $P = \mathbf{diag}(1, 1, \dots, 1, -1)$: parity $\rightarrow 4d \mathbf{SO}(2N - 1)$ theory.

• In terms of the Dynkin diagram

i.e. set $a_5 = 0$, identify under the diagram automorphism.

• Parity exchanges left- and right-handed spinors.

What's the 6d interpretation?

- Across the red line, the string of type α_4 \longrightarrow the string of type α_5 .
- To have constant vev, we need to set $a_5 = 0$.

What's the 6d interpretation?

Particles are:

- $\alpha_{1,2,3}$ wrapped on E
- α_4 wrapped on E is α_5 wrapped on M: slide along M!
- $\alpha_{1,2,3}$ wrapped on M
- " $lpha_4$ wrapped on M" doesn't make sense. $(lpha_4+lpha_5)$ on M

Masses are then

W-bosons:
$$R_6 \times (a_1 - a_2),..., (a_3 - a_4), a_4$$
 SO(9). Monopoles: $R_5 \times (a_1 - a_2),..., (a_3 - a_4), {\color{red} 2a_4}$ **USp**(8).

S-duality of SO(odd)

- 6d D_{2N} theory on S^1 gave 5d $\mathbf{SO}(2N)$ theory.
- Further compactification on S^1 with the twist gave 4d $\mathbf{SO}(2N-1)$.

- The role of cycles interchanged.
 - \longrightarrow 6d D_{2N} theory on S^1 with this twist = 5d $\mathbf{USp}(2N-2)$.

Periodicity of τ

For **SO**(2N - 1):

$$au_{ ext{torus}} = au_{ ext{gauge}}[\mathbf{SO}(ext{odd})]$$
 .

Periodicity of au

For $\mathbf{USp}(2N-2)$:

$$au_{
m torus}' = 2 au_{
m gauge}' [{
m USp}].$$

Recall $au_{
m torus} = au_{
m gauge}[{f SO}({
m odd})]$. Note $au'_{
m torus} = -1/ au_{
m torus}$.

$$au_{ ext{gauge}}[extbf{USp}] = -rac{1}{2 au_{ ext{gauge}}[extbf{SO}(ext{odd})]}$$

October 2010 21 / 44

D_4 i.e. SO(8) has another outer automorphism:

permuting vector 8_V , spinor 8_S and conjugate spinor 8_C .

Twisting by this outer autmorphism gives G_2 :

I'll come back to this...

Contents

1.
$$\mathcal{N}=4$$

$$2. \mathcal{N} = 2$$

3. Summary

$\mathcal{N}=2$ from 6d theory

- 6d theory has 16 supercharges. T^2 doesn't break any.
- We can preserve half of the supercharges on a generic Riemann surface C. → N = 2 in 4d
- To preserve SUSY, *a* is a one-form on *C*.
- The vev of the 6d theory, a, can vary holomorphically on C.
- We can also put half-BPS codimension-two defects.
- The vev of the 6d theory, a, can vary meromorphically on C.

$\mathcal{N}=2$ from 6d theory

- The vev a can vary meromorphically on C.
- Tensions of the string: $\alpha \cdot a$.
- When going around the loop, a doesn't have to come back to itself; the set $\alpha \cdot a$ needs to.
- e.g. For A_{N-1} theory, $a=(a_1,\ldots,a_N)$ and $\alpha_{ij}\cdot a=a_i-a_j$. There can be permutation of $i=1,\ldots,N$.
- Let $\Phi(z) = \mathbf{diag}(a_1, \ldots, a_N)$ and let

$$\det(x - \Phi(z)) = x^N + \phi_2(z)x^{N-2} + \phi_3(z)x^{N-3} + \dots + \phi_N(z).$$

- $\phi_k(z)$ is easier to deal with.
- a is a one-form. $\phi_k(z)$ is a degree-k multi-differential.
- a has dimension 1 in 4d. $\phi_k(z)$ has dimension k in 4d.

$\mathcal{N}=4$ theory again

A_{N-1} theory:

• $\Phi(z) = (a_1, \dots, a_N)$ and

$$0 = x^{N} + \frac{\phi_{2}(z)}{2}x^{N-2} + \frac{\phi_{3}(z)}{2}x^{N-3} + \dots + \frac{\phi_{N}(z)}{2}.$$

- ullet $\phi_k(z)$ is holomorphic on the torus and without singularity. Constant.
- The dimensions $2, 3, \ldots, N$ are those of the invariants of SU(N).

D_N theory:

 $\Phi(z) = (a_1, -a_1, \dots, a_N, -a_N)$ and

$$0 = x^{N} + \frac{\phi_{2}(z)}{2}x^{N-2} + \frac{\phi_{4}(z)}{2}x^{N-4} + \dots + \frac{\phi_{2N-2}(z)}{2}x^{2} + \frac{\tilde{\phi}_{N}(z)^{2}}{2}.$$

- $\tilde{\phi}_N$ corresponds to the Pfaffian $a_1 a_2 \cdots a_N$.
- The dimensions $2, 3, \ldots, 2N 2$ and N are those of the invariants of SO(2N).

$\mathcal{N}=4$ theory again

D_N theory with twist:

- Operators $\phi_2(z), \phi_4(z), ..., \phi_{2N-2}(z)$, and $\tilde{\phi}_N(z)$.
- $ilde{\phi}_N$ corresponds to the Pfaffian $a_1a_2\cdots a_N$.
- $ilde{\phi}_N o - ilde{\phi}_N$ across the twist line. No constant mode.
- The dimensions $2, 3, \ldots, 2N-2$ are the dimension of invariants of SO(2N-1) and USp(2N-2).
- To distinguish them requires more analysis, which we just did.

$\mathcal{N}=2$ theory

Consider A_{N-1} theory on

Components are

Composed of

Each SU(N) has 2N hypers in the fundamental representation!

Punctures

• at z = 0: carry a U(1) flavor symmetry.

$$\phi_2(z) \sim rac{(dz)^2}{z}, \; \phi_3(z) \sim rac{(dz)^3}{z}, \; \ldots, \; \phi_N(z) \sim rac{(dz)^N}{z}$$

 \odot at z=0: carry an $\mathbf{SU}(N)$ flavor symmetry.

$$\phi_2(z) \sim \frac{(dz)^2}{z}, \; \phi_3(z) \sim \frac{(dz)^3}{z^2}, \; \dots, \; \phi_N(z) \sim \frac{(dz)^N}{z^{N-1}}$$

Put two \odot at z=0 and z=1; • at w=1/z=0.

$$\phi_k \sim rac{P(z)}{z^{k-1}(1-z)^{k-1}} (dz)^k \sim rac{P(w^{-1})}{w^2} (dw)^k$$

i.e. P(z)=0. You can't turn on any Coulomb branch vev if you just have $N\times N$ hypermultiplets.

Punctures

Consider

$$\phi_k \sim rac{P_k(z)}{z^{k-1}(z-1)(z-q)} (dz)^k \sim rac{P(w^{-1})}{w^{k-1}} (dw)^k$$

i.e.
$$P(z) = c_k$$
.

We can turn on Coulomb branch operators c_k , k = 2, 3, ..., N. Agrees with what we expect for SU(N) with 2N fundamental hypermultiplets.

$$\log q \sim au$$

Limits

q can be close to either 0, 1 or ∞ .

Corresponds to the three cusps of $au=i\infty,0$ and 1.

Makes it clear why one of the three limits is different when N > 2. For N = 2, • and \odot are the same, and thus it's always dual to itself.

Dual of SU(3) with six fundamentals

Decompose

into

The allowed divergences at z = 1 and z = q are very mild

- \longrightarrow Only $\phi_2(z)$ can be sizable at the neck
- \rightarrow SU(2) vector.

The right hand side gives a doublet hypermultiplet of this SU(2). What's the left hand side?

The theory T_3

Recall $\phi_k(z) \sim (dz)^k/z^{k-1}$.

$$\phi_2(z) = rac{P_2(z)}{z(1-z)} (dz)^2 \sim rac{P_2(w^{-1})}{w^2} (dw)^2$$

i.e. $P_2 = 0$.

$$\phi_3(z) = rac{P_3(z)}{z^2(1-z)^2} (dz)^3 \sim rac{P_3(w^{-1})}{w^2} (dw)^3$$

i.e. $P_3 = c_3$.

- Has only one Coulomb branch operator, of dimension 3.
- Not a gauge theory, which always has a dimension-two $\mathbf{tr} \phi^2$!
- Minahan-Nemeschansky's E_6 theory does the job.
- $SU(3)^3 \subset E_6$ can be manifestly seen.

D_N theory

The basic building blocks are

 ${f SO}(2N)$ vector

: $\mathbf{USp}(2N-2)$ vector

and

: 2N imes (N-1) hypermultiplets

×: no flavor symmetry

 \odot : an SO(2N) flavor symmetry

 \star : an **USp**(2N - 2) flavor symmetry

$oldsymbol{D}_N$ theory

This combination

is the SO(2N) with 2N-2 fundamental hypermultiplet.

This combination

is the $\mathbf{USp}(2N-2)$ with 2N fundamental hypermultiplet.

The beta function is zero for both!

S-duality of SO(2N) with 2N-2 fundamentals

S-duality of SO(2N) with 2N-2 fundamentals

The limit $q \to \infty$ is dual to $q \to 0$.

The limit $q \rightarrow 1$ gives something different.

Recall the Dynkin diagram of SO(8):

Operators: ϕ_2 , ϕ_4 , $\tilde{\phi}_4$ and ϕ_6 .

$$8_V \rightarrow 8_S \rightarrow 8_C \rightarrow 8_V$$

 $8_S \leftrightarrow 8_C$

 \mathbb{Z}_3 rotates ϕ_4 and $\tilde{\phi}_4$ by 120° . Invariant part: ϕ_2 and ϕ_6 : G_2 .

Let's consider

composed of

3 hypers in 8-dim rep. + SO(8) vector + 3 hypers in 8-dim rep.

Which 8-dim representations? \longrightarrow The \mathbb{Z}_3 twist line makes it $8_V + 8_S$.

Still
$$\beta = 0$$
.

For SO(8) with six hypers in 8_V ,

For SO(8) with three hypers in 8_V and three in 8_S ,

Originally we had

Coulomb branch operators: u_2 , u_4 , \tilde{u}_4 and u_6 .

composed of

The gauge group is G_2 , with invariants u_2 and u_6 . Each three-punctured sphere should have one operator u_4 .

- has one dimension-4 operator. Not a gauge theory!
- has $\mathbf{USp}(6) \times G_2$ flavor symmetry.
- Minahan-Nemeschansky's E_7 theory does the job.
- $\mathbf{USp}(6) \times G_2$ is one of the special maximal subgroups of E_7 .

 $\mathbf{SO}(8)$ with three hypers in 8_S and three hypers in 8_V

is dual to G_2 with two copies of Minahan-Nemeschansky's E_7 theory

Predicted by [Argyres-Wittig,0712.2028]

Contents

1.
$$\mathcal{N}=4$$

$$2. \mathcal{N} = 2$$

3. Summary

Summary

- $\mathcal{N}=2$ theory with vanishing β function has tunable coupling au.
- 6d theory helps us understand the behavior at strong coupling.
- To get non-simply-laced theory, need to use the outer-automorphism twist.