(Not quite) Recent Developments in d = 4, $\mathcal{N} = 2$ SCFTs

Yuji Tachikawa (IAS)

in collaboration with

O. Aharony arXiv:0711.4352

and

A. Shapere arXiv:0804.1957

Mar. 2009

Contents

- 1. New S-duality [Argyres-Seiberg]
- 2. AdS/CFT realization (w/ Ofer Aharony)
- 3. Twisting and a and c (w/ Al Shapere)
- 4. Summary

Contents

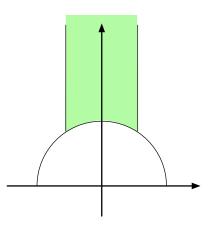
1. New S-duality [Argyres-Seiberg]

- 2. AdS/CFT realization (w/ Ofer Aharony)
- 3. Twisting and a and c (w/ Al Shapere)
- 4. Summary

Montonen-Olive S-duality

$$\mathcal{N}= extstyle 4 \, extstyle SU(N)$$
 $au=rac{ heta}{2\pi}+rac{4\pi i}{g^2}$ $au o au+1, \qquad au o -rac{1}{ au}$

- Exchanges monopoles W-bosons
- Comes from S-duality of Type IIB



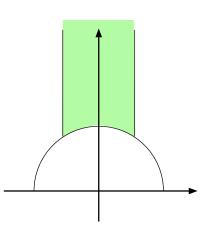
S-duality in $\mathcal{N}=2$

SU(2) with
$$N_f = 4$$

$$au=rac{ heta}{\pi}+rac{8\pi i}{g^2}$$

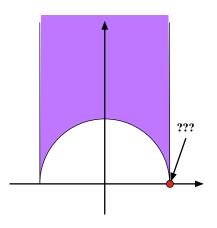
$$au o au+1, \qquad au o -rac{1}{a}$$

- Exchanges monopoles and quarks
- Comes from S-duality of Type IIB



S-duality in $\mathcal{N}=2$

- Exchanges monopoles and quarks
- Infinitely Strongly coupled at $\tau = 1$



New S-duality [Argyres-Seiberg]

SU(3) + 6 flavors

at coupling **7**

$$SU(2) + 1$$
 flavor + $SCFT[E_6]$

at coupling $\tau' = \frac{1}{1-\tau}$, $SU(2) \subset E_6$ is gauged

Strongly coupled $\mathcal{N} = 2$ SCFT

Consider SW curve given by

$$y^2 = x^3 + u^4$$

- Electron & Monopole both massless at u = 0
 → conformal theory
 [Argyres-Douglas, Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang]
- Four-dimensional total space $=\mathbb{C}^2$ /tetrahedral
- Known to possess E_6 as the flavor symmetry! [Minahan-Nemechansky]

•
$$\lambda_{SW} = u \frac{dx}{y}$$
 has $\dim = 1$

$$\rightarrow$$
 dim $(u) = 3$, dim $(x) = 4$, dim $(y) = 6$

Argyres-Seiberg: Dimensions

SU(3) + 6 flavors

$$\dim(\operatorname{tr}\phi^2)=2,$$

$$\dim(\operatorname{tr}\phi^3)=3$$

$$SU(2) + 1$$
 flavor + $SCFT[E_6]$

 $\operatorname{tr} \varphi^2 \text{ of SU(2)} : \dim = 2,$

 $u ext{ of } E_6 : \dim = 3$

9 / 45

Yuji Tachikawa (IAS) Mar. 2009

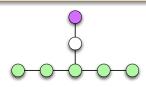
Argyres-Seiberg: Flavor symmetry

SU(3) + 6 flavors

• Flavor symmetry: $U(6) = U(1) \times SU(6)$

SU(2) + 1 flavor + $SCFT[E_6]$

- **SO(2)** acts on 1 flavor = 2 half-hyper of **SU(2)** doublet
- $SU(2) \subset E_6$ is gauged
- $SU(2) imes SU(6) \subset E_6$ is a maximal regular subalgebra



Yuji Tachikawa (IAS) Mar. 2009

10 / 45

Current Algebra Central Charge

Normalize s.t. a free hyper in the fund. of $\operatorname{SU}(N)$ contributes 2 to k_G

$$J^{a}_{\mu}(x)J^{b}_{\nu}(0) = \frac{3}{4\pi^{2}} \frac{k_{G}}{k_{G}} \delta^{ab} \frac{x^{2}g_{\mu\nu} - 2x_{\mu}x_{\nu}}{x^{8}} + \cdots$$

A bifundamental hyper under $SU(N) \times SU(M)$

$$\rightarrow k_{SU(N)} = 2M, \qquad k_{SU(M)} = 2N$$

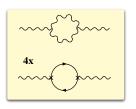
SU(3) + 6 flavors

$$k_{SU(6)} = 6$$

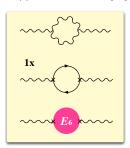
k for $\mathsf{SCFT}[E_6]$

$SU(2) \subset E_6$ central charge:

SU(2) + 4 flavors

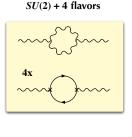


SU(2) + 1 flavor + SCFT[E6]

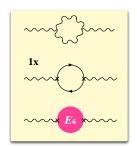


k for $\mathsf{SCFT}[E_6]$

$SU(2) \subset E_6$ central charge:



$$SU(2) + 1$$
 flavor + SCFT[E6]

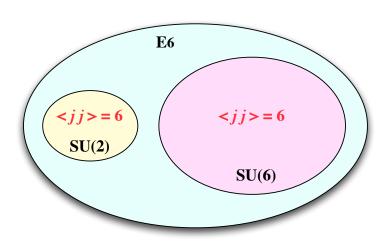


$$= \langle j\mu j\nu \rangle_{\text{free hyper}}$$

$$\langle j\mu j\nu \rangle_{\text{SCFT}[E6]} = 3 \langle j\mu j\nu \rangle_{\text{free hyper}}$$

$$= 6$$

k for $SCFT[E_6]$



Central charges a and c of conformal algebra

$$\langle T^{\mu}_{\mu} \rangle = a \times \text{Euler} + c \times \text{Weyl}^2$$

- 1 free hyper : a = 1/24, c = 1/12
- 1 free vector : a = 5/24, c = 1/6
- SU(3) + 6 flavors: a = 29/12, c = 17/6
- SU(2) + 1 flavor: a = 17/24, c = 2/3

$SCFT[E_6]$

$$a = \frac{29}{12} - \frac{17}{24} = \frac{41}{24}, \qquad c = \frac{17}{6} - \frac{2}{3} = \frac{13}{6}$$

Summary

$$egin{array}{c|cccc} G & D_4 & E_6 & E_7 & E_8 \\ \hline k_G & 4 & 6 & 8 & ???? \\ 24a & 23 & 41 & 59 & ??? \\ 6c & 7 & 13 & 19 & ??? \\ \hline \end{array}$$

- D_4 : SU(2) + 4 flavors
- E_6 : SU(3) + 6 flavors \leftrightarrow SU(2) + 1 flavor + SCFT[E_6]
- E_7 : USp(4) + 6 flavors \leftrightarrow SU(2) + SCFT[E_7]
- What would be k_{E_8} , a_{E_8} and c_{E_8} ?

Mar. 2009 15 / 45

Contents

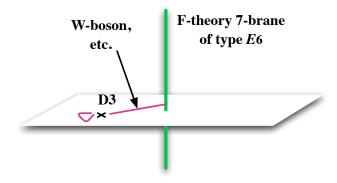
1. New S-duality [Argyres-Seiberg]

2. AdS/CFT realization (w/ Ofer Aharony)

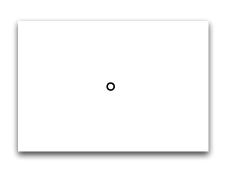
3. Twisting and a and c (w/ Al Shapere)

4. Summary

$\mathcal{N} = 2$ SCFT from F-theory

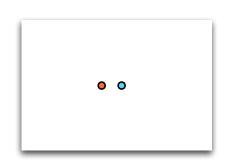


$\mathcal{N} = 2 \text{ SU}(2)$ from orientifolds



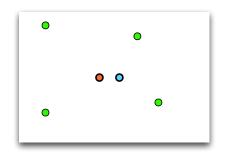
• Enhanced **SU(2)** symmetry at the origin u = 0

$\mathcal{N}=2$ SU(2) from orientifolds



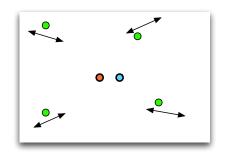
- Enhanced **SU(2)** symmetry at the origin u = 0
- Monopole point $u = \Lambda^2$
- Dyon point $u = -\Lambda^2$
- O7 splits into 7-branes A + B

$\mathcal{N}=2$ SU(2) from orientifolds



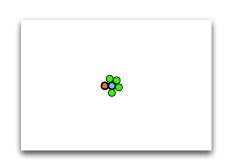
- Enhanced **SU(2)** symmetry at the origin u = 0
- Monopole point $u = \Lambda^2$
- Dyon point $u = -\Lambda^2$
- O7 splits into 7-branes A + B
- 4 additional D7-branes $u \sim m_i^2$

$\mathcal{N}=2$ SU(2) from orientifolds



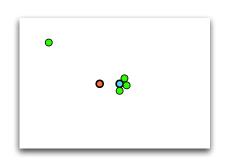
- Enhanced **SU(2)** symmetry at the origin u = 0
- Monopole point $u = \Lambda^2$
- Dyon point $u = -\Lambda^2$
- O7 splits into 7-branes A + B
- 4 additional D7-branes $u \sim m_i^2$

D_4 singularity



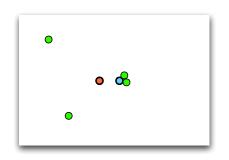
- Can put all 7-branes together
- O7+4 D7, dilaton tadpole=0
- $D_4 = SO(8)$ symmetry on the 7-branes
- flavor symmetry from the D3 pov

Argyres-Douglas points



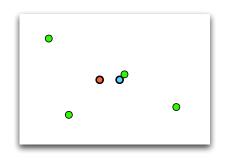
- Can move one D7 away
- Orientifold split again
- $A_2 = SU(3)$ symmetry

Argyres-Douglas points



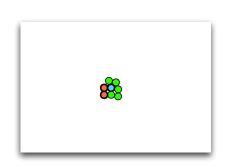
- Can move one D7 away
- Orientifold split again
- $A_2 = SU(3)$ symmetry
- $A_1 = SU(2)$ symmetry

Argyres-Douglas points



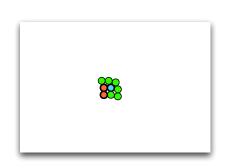
- Can move one D7 away
- Orientifold split again
- $A_2 = SU(3)$ symmetry
- $A_1 = SU(2)$ symmetry
- A_0 no symmetry

E_n singularities



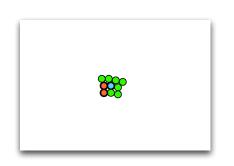
- Can add one A brane, and then another C brane
- E_6 symmetry

E_n singularities



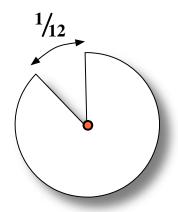
- Can add one A brane, and then another C brane
- E_6 symmetry
- E_7 symmetry

\boldsymbol{E}_n singularities



- Can add one A brane, and then another C brane
- E_6 symmetry
- E_7 symmetry
- E_8 symmetry

Deficit angle



- Codimension two object
- Deficit angle $2\pi/12$ per one 7-brane
- angular periodicity

$$2\pi \longrightarrow \frac{2\pi}{\Lambda}$$

where

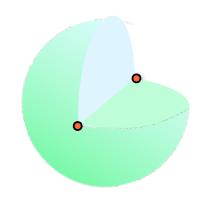
$$\Delta = \frac{12}{12 - n_7}$$

Summary

\boldsymbol{G}	H_0	H_1	H_2	D_{4}	E_6	E_7	E_8
$\overline{n_7}$	2	3	4	6	8	9	10
Δ	6/5	3 4/3 <i>i</i>	3/2	2	3	4	6
au	ω	$m{i}$	ω	arb.	ω	$m{i}$	ω

- Probe by one D3 \longrightarrow isolated SCFT with flavor symmetry G
- Probe by N D3s \longrightarrow rank N version, with flavor symmetry G
- ullet Can take near-horizon limit when $N\gg 1$

Near horizon limit



- $AdS_5 \times S^5/\Delta$
- $|x|^2 + |y|^2 + |z|^2 = 1$, $z \sim z \exp(2\pi i/\Delta)$
- G-type 7-brane at z = 0, wrapping S^3
- $\bullet \ F_5 = N \varDelta (\mathsf{vol}_{S^5} + \mathsf{vol}_{AdS_5})$

[Fayyazuddin-Spałinski, Aharony-Fayyazuddin-Maldacena]

Central charges from AdS/CFT

• SUSY relates k_G , a and c to the triangle anomalies

$$egin{aligned} k_G \delta^{ab} &= -3 \, \mathrm{tr}(R_{\mathcal{N}=1} T^a T^b) \ a &= rac{3}{32} \left[3 \, \mathrm{tr} \, R_{\mathcal{N}=1}^3 - \mathrm{tr} \, R_{\mathcal{N}=1}
ight] \ c &= rac{1}{32} \left[9 \, \mathrm{tr} \, R_{\mathcal{N}=1}^3 - 5 \, \mathrm{tr} \, R_{\mathcal{N}=1}
ight] \end{aligned}$$

AdS/CFT relates triangle anomalies to the Chern-Simons term

$$\operatorname{tr}(R_{\mathcal{N}=1}T^aT^b) \longrightarrow A_R \wedge \operatorname{tr} F_G \wedge F_G$$
 $\operatorname{tr}(R_{\mathcal{N}=1}^3) \longrightarrow A_R \wedge F_R \wedge F_R$
 $\operatorname{tr}(R_{\mathcal{N}=1}) \longrightarrow A_R \wedge \operatorname{tr} R \wedge R$

Chern-Simons terms : $O(N^2)$

• A_B enters in 10d bulk fields:

$$F_5 = N \Delta (\mathsf{vol}_{S^5} + \mathsf{vol}_{AdS_5}) + N \Delta \, dA_R \wedge \omega$$
 $ds_{10}^2 = ds_{AdS_5}^2 + ds_{S^5}^2 + (k^R A_R)^2$

ullet $O(N^2)$ contribution $\sim \int_{S^5/ec \Delta} F_5^2 \sim N^2 arDelta$

Chern-Simons terms : O(N)

• Coupling on the 7-brane stack

$$n_7 \int C_4 \wedge \left[\operatorname{tr} R_T \wedge R_T - \operatorname{tr} R_N \wedge R_N
ight] + \int C_4 \wedge \operatorname{tr} F_G \wedge F_G$$

- ullet O(N) contribution to $a,c \sim \int_{S^3} n_7 C_4 \sim n_7 N \Delta$
- ullet O(N) contribution to $k_G \sim \int_{S^3} C_4 \sim N arDelta$

Chern-Simons terms : O(1)

For
$$\mathcal{N} = 4 \text{ SU}(N)$$
,

- central charge $\sim N^2 1$
- Supergravity analysis gives N^2
- -1 comes from the decoupling of the center-of-mass motion of N D3's

In our case,

- motion transverse to 7-brane : coupled
- motion parallel to 7-brane : decoupled
- subtract the contribution from a free hyper:

$$\delta a = -1/24, \qquad \delta c = -1/12$$

We get

$$k_G = 2N\Delta$$
 $a = \frac{1}{4}N^2\Delta + \frac{1}{2}N(\Delta - 1) - \frac{1}{24}$
 $c = \frac{1}{4}N^2\Delta + \frac{3}{4}N(\Delta - 1) - \frac{1}{12}$

Mar. 2009 29 / 45

We get

$$k_G = 2N\Delta$$
 $a = \frac{1}{4}N^2\Delta + \frac{1}{2}N(\Delta - 1) - \frac{1}{24}$
 $c = \frac{1}{4}N^2\Delta + \frac{3}{4}N(\Delta - 1) - \frac{1}{12}$

Let's put $N = 1 \dots$

Mar. 2009 29/45

\boldsymbol{G}	H_0	H_1	H_2	D_4	E_6	E_7	E_8
$\overline{k_G}$	12/5	8/3	3	4	6	8	12
24a	43/5	11	14	23	41	59	95
6 c	12/5 43/5 11/5	3	4	7	13	19	31

- Results for D_4 , E_6 , E_7 perfectly match with field theoretical calculation!
- Results for E_8 were predictions.

Yuji Tachikawa (IAS) Mar. 2009 30 / 45

\boldsymbol{G}	H_0 12/5 43/5 11/5	H_1	H_2	D_4	E_6	E_7	E_8
k_G	12/5	8/3	3	4	6	8	12
24a	43/5	11	14	23	41	59	95
6 c	11/5	3	4	7	13	19	31

- Results for D₄, E₆, E₇ perfectly match with field theoretical calculation!
- Results for E_8 were predictions.
- Later confirmed by a field-theoretical construction [Argyres-Wittig]

USp(6) with one 14-dim rep. \oplus 11 fundamentals

 \leftrightarrow SO(5) with SCFT[E_8]

Yuji Tachikawa (IAS) Mar. 2009 30 / 45

Contents

- 1. New S-duality [Argyres-Seiberg]
- 2. AdS/CFT realization (w/ Ofer Aharony)
- 3. Twisting and a and c (w/ Al Shapere)

4. Summary

Yuji Tachikawa (IAS) Mar. 2009 31 / 45

Argyres-Douglas points

How about them?

\boldsymbol{G}	H_0	H_1	H_2	D_4	E_6	E_{7}	E_8
k_G	12/5	8/3	3	4	6	8	12
24 <i>a</i>	43/5	11	14	23	41	59	95
6 <i>c</i>	12/5 43/5 11/5	3	4	7	13	19	31

- Simpler field theory realization : just take SU(2) with $N_f=1,2,3$, set the mass appropriately.
- ullet a,c linear combination of 't Hooft anomalies of $oldsymbol{R}$ symmetry
- R symmetry known, but it's accidental in the IR
- couldn't calculate **a** and **c** field theoreticaly...

Yuji Tachikawa (IAS) Mar. 2009 32 / 45

Twisting and a and c

• a and c measures the response of the CFT to the external gravity

$$\langle T^{\mu}_{\mu} \rangle = a \times \text{Euler} + c \times \text{Weyl}^2$$

- the best way to couple $\mathcal{N}=2$ supersymmetric theory to gravity = topological twisting.
- Are *a* and *c* encoded in the topological theory ? Yes! in the so-called $A^{\chi}B^{\sigma}$ term which is known for 10 yrs by [Witten, Moore, Mariño, Losev, Nekrasov, Shatashvili]

Yuii Tachikawa (IAS) Mar 2009 33 / 45

Topological twisting

$$\delta\phi = \epsilon^{\alpha}\psi_{\alpha}$$

• On a curved bkg, constant ϵ_{α} not possible \longrightarrow no global susy

Yuji Tachikawa (IAS) Mar. 2009 34 / 45

Topological twisting

$$\delta\phi = \epsilon_{\mathbf{i}}^{\alpha}\psi_{\alpha}^{\mathbf{i}}$$

- On a curved bkg, constant ϵ_{α}^{i} not possible \longrightarrow no global susy
- They are $SU(2)_R$ doublet

Yuji Tachikawa (IAS) Mar. 2009 34 / 45

Topological twisting

$$\delta \phi = \epsilon_{\mathbf{i}}^{\alpha} \psi_{\alpha}^{\mathbf{i}}$$

- On a curved bkg, constant ϵ^i_{α} not possible \longrightarrow no global susy
- They are **SU(2)**_R doublet
- Introduce external $SU(2)_R$ gauge field (a = 1, 2, 3)

$$F^a_{\mu\nu,R} = R_{\mu\nu\rho\sigma} \Omega^{\rho\sigma,a}$$

i.e. self-dual part of metric connection.

- ϵ_i^{α} : $2 \times 2 = 1 + 3$
- One global susy preserved!

Yuji Tachikawa (IAS) Mar. 2009 34 / 45

$A^{\chi}B^{\sigma}$ term

Just as nontrivial $\tau(u)F\tilde{F}$ is generated, on a curved manifold

$$S_{\text{curved}} = [\log A(u)]R\tilde{\tilde{R}} + [\log B(u)]R\tilde{R} + \cdots$$

are generated. Then we have

$$\langle O_1 O_2 \cdots \rangle = \int [du] e^{-S} A(u)^{\chi} B(u)^{\sigma} O_1 O_2 \cdots$$

with
$$\chi=rac{1}{32\pi^2}\int d^4x\sqrt{g}R_{abcd}\tilde{\tilde{R}}_{abcd},$$

$$\sigma=rac{1}{48\pi^2}\int d^4x\sqrt{g}R_{abcd}\tilde{R}_{abcd}.$$

Mar 2009 35/45

$A^\chi B^\sigma$ and R anomaly

$$\langle O_1 O_2 \cdots \rangle = \int [du] A(u)^{\chi} B(u)^{\sigma} O_1 O_2 \cdots$$

means, on a curved manifold, $\langle O_1 O_2 \cdots \rangle$ nonzero only if

$$R(O_1) + R(O_2) + \cdots = -\chi R(A) - \sigma R(B) - R([du])$$

i.e. the vacuum has the R-anomaly

$$\Delta R = \chi R(A) + \sigma R(B) + \frac{\chi + \sigma}{2}r + \frac{\sigma}{4}h$$

where r, h the number of free vectors / hypers

Yuji Tachikawa (IAS) Mar. 2009 36 / 45

R-anomaly in physical/twisted theories

$$a = rac{3}{32} \left[3 \operatorname{tr} R_{\mathcal{N}=1}^3 - \operatorname{tr} R_{\mathcal{N}=1}
ight], \;\; c = rac{1}{32} \left[9 \operatorname{tr} R_{\mathcal{N}=1}^3 - 5 \operatorname{tr} R_{\mathcal{N}=1}
ight]$$

can also be represented as

$$\partial_{\mu}R^{\mu}_{\mathcal{N}=1} = \frac{c-a}{24\pi^{2}}R_{\mu\nu\rho\sigma}\tilde{R}^{\mu\nu\rho\sigma} + \frac{5a-3c}{9\pi^{2}}F^{\mathcal{N}=1}_{\mu\nu}\tilde{F}^{\mu\nu}_{\mathcal{N}=1}$$

Using $R_{\mathcal{N}=1}=R_{\mathcal{N}=2}/3+4I_3/3$ etc., we have

$$\partial_{\mu}R^{\mu}_{\mathcal{N}=2} = \frac{c-a}{8\pi^2}R_{\mu\nu\rho\sigma}\tilde{R}^{\mu\nu\rho\sigma} + \frac{2a-c}{8\pi^2}F^{a}_{\mu\nu}\tilde{F}^{\mu\nu}_{a}$$

Yuji Tachikawa (IAS) Mar. 2009 37 / 45

R-anomaly in physical/twisted theories

Twisting sets

$$F^a_{\mu
u}$$
 = anti-self-dual part of $R_{\mu
u
ho \sigma}$

SO

$$\partial_{\mu}R^{\mu} = \frac{c-a}{8\pi^2}R_{\mu\nu\rho\sigma}\tilde{R}^{\mu\nu\rho\sigma} + \frac{2a-c}{8\pi^2}F^{a}_{\mu\nu}\tilde{F}^{\mu\nu}_{a}$$

becomes

$$\partial_{\mu}R^{\mu} = \frac{2a-c}{16\pi^2}R_{\mu\nu\rho\sigma}\tilde{\tilde{R}}_{\mu\nu\rho\sigma} + \frac{c}{16\pi^2}R_{\mu\nu\rho\sigma}\tilde{R}_{\mu\nu\rho\sigma}.$$

Therefore

$$\Delta R = 2(2a - c)\chi + 3c\,\sigma$$

Yuji Tachikawa (IAS) Mar. 2009 38 / 45

$A^{\chi}B^{\sigma}$ and a, c

Comparing

$$\Delta R = 2(2a - c)\chi + 3c\,\sigma$$

and

$$\Delta R = \chi R(A) + \sigma R(B) + \frac{\chi + \sigma}{2}r + \frac{\sigma}{4}h$$

we have

$$a = \frac{1}{4}R(A) + \frac{1}{6}R(B) + \frac{5}{24}r + \frac{1}{24}h,$$

$$c = \frac{1}{3}R(B) + \frac{1}{6}r + \frac{1}{12}h.$$

Mar. 2009 39 / 45

A and **B** have been calculated [Witten, Moore, Mariño, Nekrasov, Losev, Shatashivili]

$$A(u)^2 = \det \frac{\partial u_i}{\partial a_I}, \qquad B(u)^8 = D$$

- $u_i = \operatorname{tr} \phi^i$: gauge-invariant coordinates
- a^{I} : special coordinates
- D: the discriminant of the SW curve
- \longrightarrow taking their **R**-charges, we get **a** and **c**.

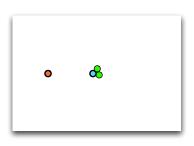
Mar 2009 40 / 45

How about them?

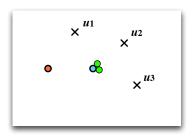
H_0	H_1	H_2	D_4	E_6	E_7	E_8
12/5	8/3	3	4	6	8	12
43/5	11	14	23	41	59	95
11/5	3	4	7	13	19	31
	H_0 12/5 43/5 11/5	$egin{array}{cccc} H_0 & H_1 \ 12/5 & 8/3 \ 43/5 & 11 \ 11/5 & 3 \ \end{array}$	$egin{array}{ccccc} H_0 & H_1 & H_2 \\ 12/5 & 8/3 & 3 \\ 43/5 & 11 & 14 \\ 11/5 & 3 & 4 \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$

- It was calculated using AdS/CFT, with N = 1.
- Nicely reproduced from $A^{\chi}B^{\sigma}$ terms.

Mar. 2009 41 / 45

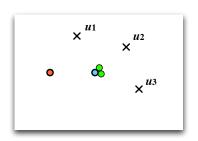


Yuji Tachikawa (IAS) Mar. 2009 42 / 45



• $\mathsf{USp}(2N) + N_f$ flavors + 1 antisymmetric

Yuji Tachikawa (IAS) Mar. 2009 42 / 45



• $\mathsf{USp}(2N) + N_f$ flavors + 1 antisymmetric

$$A^2 = \det \frac{\partial s_k}{\partial a_I}, \qquad B^8 = D = \prod_{i>j} (u_i - u_j)^6 \prod_i u_i^{1+Nf}$$

• $s_k = \langle \operatorname{tr} \phi^{2k} \rangle = k$ -th sym. product of u_i

Yuji Tachikawa (IAS) Mar. 2009 42 / 45

We get

$$k_G = 2N\Delta$$
 $a = \frac{1}{4}N^2\Delta + \frac{1}{2}N(\Delta - 1) - \frac{1}{24}$ $c = \frac{1}{4}N^2\Delta + \frac{3}{4}N(\Delta - 1) - \frac{1}{12}$

which completely agrees with the holographic calculation!

Yuji Tachikawa (IAS) Mar. 2009 43 / 45

Contents

- 1. New S-duality [Argyres-Seiberg]
- 2. AdS/CFT realization (w/ Ofer Aharony)
- 3. Twisting and a and c (w/ Al Shapere)

4. Summary

Yuji Tachikawa (IAS) Mar. 2009 44 / 45

- Field theoretical realization of strange $\mathcal{N}=2$ SCFTs
- central charges:pure field theory and AdS/CFT gave the same answer!
- new technique to calculate central charges, applicable to generic $\mathcal{N} = 2$ SCFT.

Yuji Tachikawa (IAS) Mar. 2009 45 / 45