Dynamics of 3D gauge theories with antisymmetric matter

Yuri Shirman

with C. Csaki, M. Martone, F. Tanedo, and J. Terning arXiv:1406.6684

September 21, 2014

- Strongly interacting QFTs in 4d:
 - Important
 - Interesting
 - ► Hard!

- Strongly interacting QFTs in 4d:
 - Important
 - Interesting
 - Hard!
- Ad SUSY theories offer a perfect laboratory for studying non-perturbative dynamics
 - Gaugino condensation, instantons, confinement with and without chiral symmetry breaking, duality...

- Strongly interacting QFTs in 4d:
 - Important
 - Interesting
 - Hard!
- 4d SUSY theories offer a perfect laboratory for studying non-perturbative dynamics
 - Gaugino condensation, instantons, confinement with and without chiral symmetry breaking, duality...
 - Still hard!
- > 3d SUSY theories: a simpler lab for strong QFT dynamics
 - Many 4d phenomena in 3d setting
 - Instanton-monopoles, Chern-Simons terms. real masses...
 - Lab for study of condensed matter systems?
 - Many results over the years, significant progress in the last year

Affleck, Harvey, Witten (82); Seiberg, Witten (96); Intriligator, Seiberg (96)

de Boer, Hori, Oz (97); Aharony, Hanany, Intriligator, Seiberg, Strassler (97)

Aharony, Razamat, Seiberg, Willet (13); Aharony, Seiberg, Tachikawa (13)

SUSY in 3d Instanton-monopoles Fermion zero modes Global coordinates on the Coulomb branch

s-confinment in 3d

SU(4) with two antisymmetrics Matching 4d to 3d Consistency checks SU(4) with a single antisymmetric

Summary and outlook

SUSY in 3 dimensions

> $\mathcal{N} = 2$ 3d theory from $\mathcal{N} = 1$ 4d theory:

- ▶ Real scalar from dimensional reduction $A_{\mu} \rightarrow A_{i}^{(3)}, \sigma$
- ► 3d photon dual is dual to a scalar $\partial^i \gamma = \epsilon^{ijk} F_{jk}$
- Holomorphic modulus $\Phi = \sigma + i\gamma$
- r_G dimensional Coulomb branch parameterized by

 $\sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_N), \quad \operatorname{Tr}(\sigma) = 0$

Work in Weyl chamber to remove gauge redundancy:

 $\sigma_1 > \sigma_2 > \ldots > \sigma_N$

Convenient parameterization

 $Y_i \sim \exp(\vec{\Phi} \cdot \vec{\alpha_i}/g_3^2), \ i = 1, \dots, r_G$

Classical moduli space is a cylinder

3d duality from 4d duality

- Straightforward reduction to 3d is problematic:
 - > 4d scales in terms of 3d coupling:

 $g_4^2 = 2\pi r g_3^2, \quad \Lambda_e^b \sim \exp\left(-4\pi/r g_3^2\right)$

- ► $r \to 0$ limit with fixed g_3^2 implies $\Lambda_e \to 0$, $\Lambda_m \to \infty$ and does not commute with $E \ll \Lambda_e, \Lambda_m$
- ► Low energy limit keeping r, Λ_e , Λ_m fixed still works
- $\begin{array}{c|c|c|c|c|c|c|} & \mathsf{Duality} \text{ on } \mathbb{R}^4 \text{ versus } \mathbb{R}^3 \times S^1 \\ \hline & & SU(N), F \text{ flavors} & SU(F-N), F \text{ flavors} \\ \hline & & 4d & W=0 & W=Mq\bar{q} \\ \hline & & 3d & W=\eta Y & W=Mq\bar{q}+\tilde{\eta}\tilde{Y} \\ \hline \end{array}$
- Must decouple ηY to obtain true 3d duality:
 - F + 1 flavors in 4d $\longrightarrow F$ flavors in 3d

Instanton-monopoles

- In 3d instantons can only exist on Coulomb branches of non-abelian theories.
- ► Instanton in $SU(2) \rightarrow U(1)$:
 - Symmetry breaking pattern $diag(\sigma, -\sigma)$
 - Start with 4d theory on $\mathbb{R}^3 \times S^1$ and wrap monopole around compact direction: 3 dimensional instanton-monopole
 - Gauginos have 2 zero mode in the instanton-monopole background and aquire a mass

$$W = \frac{1}{Y}\,, \quad Y \sim \exp(2\sigma)$$

- \triangleright Dynamics of SU(N)
 - ► N-1 dimensional Coulomb branch: $Y_i \sim \exp(\sigma_i \sigma_{i+1})$
 - $\succ N-1$ linearly independent SU(2) factors lead to N-1 fundamental instanton-monopoles
 - Each fundamental monopole has 2 gaugino zero modes:

$$W = \sum_{i=1}^{N-1} \frac{1}{Y_i}$$

No ground state

Instanton-monopoles

- In 3d instantons can only exist on Coulomb branches of non-abelian theories.
- ► Instanton in $SU(2) \rightarrow U(1)$:
 - Symmetry breaking pattern $diag(\sigma, -\sigma)$
 - Start with 4d theory on $\mathbb{R}^3 \times S^1$ and wrap monopole around compact direction: 3 dimensional instanton-monopole
 - Gauginos have 2 zero mode in the instanton-monopole background and aquire a mass

$$W = \frac{1}{Y}, \quad Y \sim \exp(2\sigma)$$

- > Dynamics of SU(N)
 - ► N-1 dimensional Coulomb branch: $Y_i \sim \exp(\sigma_i \sigma_{i+1})$
 - ► N-1 linearly independent SU(2) factors lead to N-1 fundamental instanton-monopoles
 - Each fundamental monopole has 2 gaugino zero modes:

$$W = \sum_{i=1}^{N-1} \frac{1}{Y_i}$$

No ground state

KK monopoles

▷ Coulomb branch of $\mathbb{R}^3 \times S^1$ theory is periodic:

$$\sigma_i \to \sigma_i + \frac{1}{r}$$

- > An unbroken SU(2) when $\sigma_1 = \sigma_N + 1/r$
- KK monopole winding around compact dimension

$$W_{KK} = \frac{1}{\exp(\frac{\sigma_N + 1/r - \sigma_1}{g_3^2})} = \eta Y, \quad \eta = e^{-1/rg_3^2} = e^{-1/g_4^2} = \Lambda^b$$

In pure SYM KK monopole generated superpotential corresponds to gaugino condensate:

$$\eta Y = S = \Lambda^3 = \eta^{1/N_c}$$

▶ Full $\mathbb{R}^3 \times S^1$ SYM superpotential

$$W = \sum_{i}^{N-1} \frac{1}{Y_i} + \eta Y$$

Matter fields in 3d

SUSY in 3d allows real mass terms. E.g. gauge baryon number and give vev to $A_3 = \sigma_b = m_R$:

 $K = Q^{\dagger} e^{V} Q + \bar{Q}^{\dagger} e^{-V} \bar{Q} \supset Q^{\dagger} e^{\sigma_{b} \theta \bar{\theta}} Q + \bar{Q}^{\dagger} e^{-\sigma_{b} \theta \bar{\theta}} \bar{Q}$

- $\succ Q$ and $ar{Q}$ have real masses $m_{\mathbb{R}}$ and $-m_R$ respecively
- Additional contributions on the Coulomb branch

$$\left|\langle \sigma^a T^a \rangle^{lpha}_{\ \ eta} Q^{eta}_{\ \ f} \right|^2$$
 no sum over eta

The fermion has zero modes in ith monopole background if effective real mass is

 $\sigma_i > m_R > \sigma_{i+1}$

▷ Doublet of SU(2) has one zero mode if $\sigma > m_R > -\sigma$

- ▷ Doublet of SU(2) has one zero mode if $\sigma > m_R > -\sigma$
- > Massless fundamental on the Coulomb branch of SU(4)

$$\left(egin{array}{ccc} \sigma_1 & & & \ & \sigma_2 & & \ & & \sigma_3 & & \ & & & \sigma_4 \end{array}
ight) \,, \quad \sigma_4 = -\sum_i \sigma_i$$

- > Zero mode in the 3rd instanton-monopole
- ► No AHW suportotential for Y_3 : $W = 1/Y_1 + 1/Y_2$

- ▷ Doublet of SU(2) has one zero mode if $\sigma > m_R > -\sigma$
- > Massless fundamental on the Coulomb branch of SU(4)

$$\left(egin{array}{ccc} \sigma_1 & & & \ & \sigma_2 & & \ & & 0 & \ & & & \sigma_4 \end{array}
ight) \,, \quad \sigma_4 = -\sum_i \sigma_i$$

- > Zero mode in the 2^{nd} and 3^{rd} instanton-monopoles
- ► No AHW superpotential for Y_2 and Y_3 : $W = 1/Y_1$

- ▷ Doublet of SU(2) has one zero mode if $\sigma > m_R > -\sigma$
- > Massless fundamental on the Coulomb branch of SU(4)

$$\left(egin{array}{ccc} \sigma_1 & & & \ & 0 & & \ & & 0 & & \ & & & -\sigma_1 \end{array}
ight)$$

- Zero mode in all instanton-monopoles
- No superpotential
- > One dimensional Coulomb branch: $Y = \prod Y_i$

- ▷ Doublet of SU(2) has one zero mode if $\sigma > m_R > -\sigma$
- > Massless fundamental on the Coulomb branch of SU(4)

$$\left(egin{array}{ccc} \sigma_1 & & & \ & 0 & & \ & & 0 & & \ & & & -\sigma_1 \end{array}
ight)$$

- Zero mode in all instanton-monopoles
- No superpotential
- > One dimensional Coulomb branch: $Y = \prod Y_i$
- Fundamental has no zero modes in KK monopole
- The superpotential on a circle is $W = \eta Y$

Matter fields in 3d: moduli charges

$$\left(\begin{array}{ccc}\sigma_1&&&\\&\sigma_2&&\\&&\sigma_3&\\&&&\sigma_4\end{array}\right)$$

- ► Region I: $\sigma_1 > 0 > \sigma_2 > \sigma_3 > \sigma_4$ $W = \frac{1}{Y_2} + \frac{1}{Y_3}, \quad R(Y_2) = R(Y_3) = -2, \ R(Y_1) = F - 2$
- $\blacktriangleright \text{ Region II: } \sigma_1 > \sigma_2 > 0 > \sigma_3 > \sigma_4$

 $W = \frac{1}{Y_1'} + \frac{1}{Y_3}, \quad R(Y_1') = R(Y_3) = -2, \ R(Y_2') = F - 2$

 $\blacktriangleright \text{ Region III: } \sigma_1 > \sigma_2 > \sigma_3 > 0 > \sigma_4$

 $W = \frac{1}{Y_1'} + \frac{1}{Y_2''}, \quad R(Y_1') = R(Y_2'') = -2, \ R(Y_3') = F - 2$

► $Y = \prod Y_i$ is globally defined

▷ On the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

- ► Instanton in the first *SU*(2): Zero modes if $\sigma_1 + \sigma_{3,4} \ge 0$, $\sigma_2 + \sigma_{3,4} \le 0$
- Instanton in the third SU(2): Zero modes if $\sigma_3 + \sigma_{1,2} \ge 0$, $\sigma_4 + \sigma_{1,2} \le 0$
- ▶ Instanton in the second SU(2): Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \succ One dimensional Coulomb branch $\widetilde{Y}=\sqrt{Y_1Y_2^2Y_3}$

▷ On the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

$$\left(\begin{array}{cccc}\sigma_1 & \mathbf{x} & \mathbf{x} \\ & \sigma_2 & \mathbf{x} \\ & & \sigma_3 & \mathbf{x} \\ & & & & \sigma_4\end{array}\right)$$

- ► Instanton in the first *SU*(2): Zero modes if $\sigma_1 + \sigma_{3,4} \ge 0$, $\sigma_2 + \sigma_{3,4} \le 0$
- ► Instanton in the third *SU*(2): Zero modes if $\sigma_3 + \sigma_{1,2} \ge 0$, $\sigma_4 + \sigma_{1,2} \le 0$
- ▶ Instanton in the second SU(2): Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \succ One dimensional Coulomb branch $\widetilde{Y}=\sqrt{Y_1Y_2^2Y_3}$

▷ On the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

- ► Instanton in the first *SU*(2): Zero modes if $\sigma_1 + \sigma_{3,4} \ge 0$, $\sigma_2 + \sigma_{3,4} \le 0$
- ► Instanton in the third *SU*(2): Zero modes if $\sigma_3 + \sigma_{1,2} \ge 0$, $\sigma_4 + \sigma_{1,2} \le 0$
- ► Instanton in the second SU(2): Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \succ One dimensional Coulomb branch $\widetilde{Y}=\sqrt{Y_1Y_2^2Y_3}$

> On the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

$$\left(\begin{array}{ccc}
\sigma & & \\
& \sigma & \\
& & -\sigma & \\
& & & -\sigma
\end{array}\right)$$

- ► Instanton in the first *SU*(2): Zero modes if $\sigma_1 + \sigma_{3,4} \ge 0$, $\sigma_2 + \sigma_{3,4} \le 0$
- ► Instanton in the third *SU*(2): Zero modes if $\sigma_3 + \sigma_{1,2} \ge 0$, $\sigma_4 + \sigma_{1,2} \le 0$
- ► Instanton in the second SU(2): Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- One dimensional Coulomb branch $\widetilde{Y} = \sqrt{Y_1 Y_2^2 Y_3}$

s-confinement in SU(4)

Two antisymmetrics and two fundamental flavors

	SU(4)	SU(2)	$SU(2)_L$	$SU(2)_R$	$U(1)_1$	$U(1)_{2}$	U(1)'	$U(1)_R$
Α			1	1	0	0	-3	0
Q		1		1	1	0	2	$\frac{1}{3}$
\overline{Q}		1	1		0	-1	2	$\frac{1}{3}$

- Expect s-confinement
- \succ Potentially 2-dimensional Coulomb branch, Y and \widetilde{Y}
- Symmetries and quantum numbers

From 4d to 3d: s-confinement in \mathbb{R}^4

The 4d model s-confining model

	SU(4)	SU(2)	$SU(3)_L$	$SU(3)_R$	U(1)	U(1)'	$U(1)_R$
A			1	1	0	-3	0
Q		1		1	1	2	$\frac{1}{3}$
\overline{Q}		1	1		-1	2	$\frac{1}{3}$

Charges of the composites

	SU(4)	SU(2)	$SU(3)_L$	$SU(3)_R$	U(1)	U(1)'	$U(1)_R$
$M_0 = Q\bar{Q}$	1	1			0	4	$\frac{2}{3}$
$M_2 = Q A^2 \bar{Q}$	1	1			0	-2	$\frac{2}{3}$
$H = AQ^2$	1			1	2	1	$\frac{2}{3}$
$\bar{H} = A\bar{Q}^2$	1		1		-2	1	$\frac{2}{3}$
$T = A^2$	1		1	1	0	-6	0

Exact non-perturbative superpotential

$$W_{\rm dyn} = \frac{1}{\Lambda^7} \left(T^2 M_0^3 - 12T H \bar{H} M_0 - 24 M_0 M_2^2 - 24 H \bar{H} M_2 \right)$$

From 4d to 3d: s-confinement on $\mathbb{R}^3 \times S^1$

KK instanton generates the superpotential

 $W = W_{\rm dyn} + \eta Y$

- Need to decouple KK instanton contribution:
 - ▷ Gauge a diagonal U(1) in $SU(3)_L \times SU(3)_R \times U(1)$
 - > Decouple the third (massive) flavor and ηY
 - Unbroken global symmetries the same as in 3d model
 - Composites without third flavor quark remain masslees
 - Composites with only one third flavor quark are heavy
 - $\sim M_0^{33}$ and M_2^{33} are neutral under U(1): massless
 - $\succ \, M_0^{33}$ and M_2^{33} have the same charges as Y and \widetilde{Y}
- Claim: 3d dual desription:

 $W_{\mathsf{dyn}} = Y \Big(3T^2 \det M_0 - 12Th\overline{h} - 24 \det M_2 \Big) + \widetilde{Y} \Big(2M_0 M_2 + h\overline{h} \Big)$

Tests

- ▶ Back to $\mathbb{R}^3 \times S^1$:
 - > 4d quantum modified moduli space:

 $W = \lambda \left(3T^2 \det M_0 - 12Th\bar{h} - 24 \det M_2 - \Lambda^8 \right)$ $+ \mu \left(2M_0 M_2 + h\bar{h} \right) + \eta Y$

- ► Identify λ and μ with Y and \widetilde{Y} ($\eta \sim \Lambda^8$)
- > Coulomb branch: large \tilde{Y} :
 - Semiclassical symmetry breaking pattern:

 $SU(4) \rightarrow SO(4) \times U(1)$

- All fundamentals obtain large real mass
- Two light SO(4) vectors survive from antisymmetric
- $\succ\,$ Low energy 3d physics is known to s-confine with one Coulomb modulus $Y_{SO} \sim Y^2/\tilde{Y}^2$

SU(4) with and antisymmetric and three flavors

- How many Coulomb branch moduli?
- $\succ Y$ and \widetilde{Y} are not lifted by instanton-monopoles
- $\,\triangleright\,$ No candidate for \tilde{Y} in $\mathbb{R}^3\times S^1$ model
 - There is no $M_2 \sim Q A^2 ar Q$ composite
- Expect new dynamical effects to lift $ilde{Y}$
- ► The low energy dynamics

 $W = Y \left(T \det M + HM\bar{H} \right)$

- > SU(4) with and antisymmetric and three flavors
- How many Coulomb branch moduli?
- $\succ Y$ and \widetilde{Y} are not lifted by instanton-monopoles
- $\,\triangleright\,$ No candidate for \tilde{Y} in $\mathbb{R}^3\times S^1$ model
 - There is no $M_2 \sim Q A^2 ar Q$ composite
- Expect new dynamical effects to lift $ilde{Y}$
- ► The low energy dynamics

 $W = Y \left(T \det M + HM\bar{H} \right)$

- SU(4) with and antisymmetric and three flavors
- How many Coulomb branch moduli?
- > Y and \widetilde{Y} are not lifted by instanton-monopoles
- \succ No candidate for \tilde{Y} in $\mathbb{R}^3 \times S^1$ model
 - \succ There is no $M_2 \sim Q A^2 ar Q$ composite
- Expect new dynamical effects to lift $ilde{Y}$
- The low energy dynamics

 $W = Y \left(T \det M + HM\bar{H} \right)$

- \succ SU(4) with and antisymmetric and three flavors
- How many Coulomb branch moduli?
- > Y and \widetilde{Y} are not lifted by instanton-monopoles
- \succ No candidate for \tilde{Y} in $\mathbb{R}^3 \times S^1$ model
 - > There is no $M_2 \sim Q A^2 ar Q$ composite
- Expect new dynamical effects to lift $ilde{Y}$
- > The low energy dynamics

 $W = Y \left(T \det M + H M \bar{H} \right)$

- Compare models with one and two antisymmetrics:
 - Holomorphic mass for the fundamental flavor in theory II
 - Holomorphic mass for antisymmetric in theory I
 - Y decouples when integrating out antisymmetric
 - Low energy descriptions agree
- \succ Coulomb branch again: large $ilde{Y}$
 - $\succ SU(4) \rightarrow SO(4) \times U(1)$
 - A single SO(4) vector
 - ADS-like superpotential

Aharony, Shamir

$$W = \frac{1}{Y_{SO}^4 T}$$

• Carefully matching moduli: \widetilde{Y} lifted (preliminary).

To be continued: generalizations

SU(N) group with A, \overline{A} and two flavors

$$\begin{array}{rclcrcl} SU(4): & \tilde{Y} & \rightarrow & \sqrt{YY_2} & \rightarrow & \mathrm{diag}(\sigma,\sigma,-\sigma,-\sigma) \\ SU(5): & \tilde{Y}_5 & \rightarrow & \sqrt{YY_2Y_3} & \rightarrow & \mathrm{diag}(\sigma,\sigma,0,-\sigma,-\sigma) \\ SU(6): & \tilde{Y}_6 & \rightarrow & \sqrt{YY_2Y_3Y_4} & \rightarrow & \mathrm{diag}(\sigma,\sigma,0,0,-\sigma,-\sigma) \\ & & \tilde{Y}_6 & \rightarrow & (\tilde{Y}_1^2Y_3)^{\frac{1}{3}} & \rightarrow & \mathrm{diag}(\sigma,\sigma,\sigma,-\sigma,-\sigma,-\sigma) \end{array}$$

- Antisymmetric of SU(5) has zero modes under KK monopole in some regions of moduli space
- Total number of matter zero modes (including KK monopole contributions) adds up to number of 4d instanton zero modes predicted by Atiah-Singer index
- Expectations for the number of unlifted Coulomb branch moduli are based on 4d s-confining theories

Summary and Outlook

