Dynamics of 3D gauge theories with antisymmetric matter

Yuri Shirman

with C. Csaki, M. Martone, F. Tanedo, and J. Terning arXiv:1406.6684

September 21, 2014

- \triangleright Strongly interacting QFTs in 4d:
	- \blacktriangleright Important
	- \triangleright Interesting
	- \triangleright Hard!

- \triangleright Strongly interacting QFTs in 4d:
	- \triangleright Important
	- \triangleright Interesting
	- \triangleright Hard!
- \triangleright 4d SUSY theories offer a perfect laboratory for studying non-perturbative dynamics
	- \triangleright Gaugino condensation, instantons, confinement with and without chiral symmetry breaking, duality...

- \triangleright Strongly interacting QFTs in 4d:
	- \triangleright Important
	- \triangleright Interesting
	- \triangleright Hard!
- \triangleright 4d SUSY theories offer a perfect laboratory for studying non-perturbative dynamics
	- \triangleright Gaugino condensation, instantons, confinement with and without chiral symmetry breaking, duality...
	- \triangleright Still hard!
- \triangleright 3d SUSY theories: a simpler lab for strong QFT dynamics
	- \triangleright Many 4d phenomena in 3d setting
	- Instanton-monopoles, Chern-Simons terms. real masses...
	- Lab for study of condensed matter systems?
	- Many results over the years, significant progress in the last year

[SUSY in 3d](#page-5-0) [Instanton-monopoles](#page-7-0) [Fermion zero modes](#page-10-0) [Global coordinates on the Coulomb branch](#page-10-0)

[s-confinment in 3d](#page-21-0)

 $SU(4)$ [with two antisymmetrics](#page-21-0) [Matching 4d to 3d](#page-22-0) [Consistency checks](#page-24-0) $SU(4)$ [with a single antisymmetric](#page-25-0)

[Summary and outlook](#page-31-0)

SUSY in 3 dimensions

 \triangleright $\mathcal{N}=2$ 3d theory from $\mathcal{N}=1$ 4d theory:

- \blacktriangleright Real scalar from dimensional reduction $A_\mu \to A_i^{(3)}, \sigma_i$
- \triangleright 3d photon dual is dual to a scalar $\partial^i \gamma = \epsilon^{ijk} F_{jk}$
- **IDED** Holomorphic modulus $\Phi = \sigma + i\gamma$
- \triangleright r_G dimensional Coulomb branch parameterized by

 $\sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_N)$, $\text{Tr}(\sigma) = 0$

 \triangleright Work in Weyl chamber to remove gauge redundancy:

 $\sigma_1 > \sigma_2 > \ldots > \sigma_N$

 \triangleright Convenient parameterization

 $Y_i \sim \exp(\vec\Phi \cdot \vec{\alpha_i}/g_3^2)\,,\,\,\,i=1,\dots,r_G$

 \triangleright Classical moduli space is a cylinder

3d duality from 4d duality

- \triangleright Straightforward reduction to 3d is problematic:
	- \triangleright 4d scales in terms of 3d coupling:

$$
g_4^2 = 2\pi r g_3^2, \quad \Lambda_e^b \sim \exp\left(-4\pi/r g_3^2\right)
$$

- $r \to 0$ limit with fixed g_3^2 implies $\Lambda_e \to 0, \;\;\; \Lambda_m \to \infty$ and does not commute with $E \ll \Lambda_e, \Lambda_m$
- In Low energy limit keeping r, Λ_e, Λ_m fixed still works
- > Duality on \mathbb{R}^4 versus $\mathbb{R}^3 \times S^1$: $SU(N)$, F flavors $\vert SU(F - N) \vert F$ flavors $4d \mid W = 0 \qquad W = Mq\bar{q}$ 3d $W = \eta Y$ $W = Mq\bar{q} + \tilde{n}\tilde{Y}$
- In Must decouple ηY to obtain true 3d duality:

 $F + 1$ flavors in 4d $\longrightarrow F$ flavors in 3d

Instanton-monopoles

- In 3d instantons can only exist on Coulomb branches of non-abelian theories.
- Instanton in $SU(2) \rightarrow U(1)$:
	- I Symmetry breaking pattern diag(σ , $-\sigma$)
	- \triangleright Start with 4d theory on $\mathbb{R}^3 \times S^1$ and wrap monopole around compact direction: 3 dimensional instanton-monopole
	- \triangleright Gauginos have 2 zero mode in the instanton-monopole background and aquire a mass

$$
W=\frac{1}{Y}\,,\ \ \, Y\sim \exp(2\sigma)
$$

- Dynamics of $SU(N)$
	- $I \vdash N 1$ dimensional Coulomb branch: $Y_i \sim \exp(\sigma_i \sigma_{i+1})$
	- $N 1$ linearly independent $SU(2)$ factors lead to $N 1$ fundamental instanton-monopoles
	- \triangleright Each fundamental monopole has 2 gaugino zero modes:

$$
W = \sum_{i=1}^{N-1} \frac{1}{Y_i}
$$

Instanton-monopoles

- In 3d instantons can only exist on Coulomb branches of non-abelian theories.
- Instanton in $SU(2) \rightarrow U(1)$:
	- Symmetry breaking pattern $diag(\sigma, -\sigma)$
	- \triangleright Start with 4d theory on $\mathbb{R}^3 \times S^1$ and wrap monopole around compact direction: 3 dimensional instanton-monopole
	- \triangleright Gauginos have 2 zero mode in the instanton-monopole background and aquire a mass

$$
W=\frac{1}{Y}\,,\ \ \, Y\sim \exp(2\sigma)
$$

- Dynamics of $SU(N)$
	- $N 1$ dimensional Coulomb branch: $Y_i \sim \exp(\sigma_i \sigma_{i+1})$
	- \triangleright $N-1$ linearly independent $SU(2)$ factors lead to $N-1$ fundamental instanton-monopoles
	- \triangleright Each fundamental monopole has 2 gaugino zero modes:

$$
W = \sum_{i=1}^{N-1} \frac{1}{Y_i}
$$

No ground state

KK monopoles

 \blacktriangleright Coulomb branch of $\mathbb{R}^3 \times S^1$ theory is periodic:

$$
\sigma_i \to \sigma_i + \frac{1}{r}
$$

- An unbroken $SU(2)$ when $\sigma_1 = \sigma_N + 1/r$
- \triangleright KK monopole winding around compact dimension

$$
W_{KK} = \frac{1}{\exp(\frac{\sigma_N + 1/r - \sigma_1}{g_3^2})} = \eta Y, \quad \eta = e^{-1/rg_3^2} = e^{-1/g_4^2} = \Lambda^b
$$

In pure SYM KK monopole generated superpotential corresponds to gaugino condensate:

$$
\eta Y = S = \Lambda^3 = \eta^{1/N_c}
$$

 \blacktriangleright Full $\mathbb{R}^3 \times S^1$ SYM superpotential

$$
W = \sum_i^{N-1} \frac{1}{Y_i} + \eta Y
$$

Matter fields in 3d

 \triangleright SUSY in 3d allows real mass terms. E.g. gauge baryon number and give vev to $A_3 = \sigma_b = m_R$.

 $K = Q^{\dagger}e^{V}Q + \bar{Q}^{\dagger}e^{-V}\bar{Q} \supset Q^{\dagger}e^{\sigma_{b}\theta\bar{\theta}}Q + \bar{Q}^{\dagger}e^{-\sigma_{b}\theta\bar{\theta}}\bar{Q}$

- \triangleright Q and \overline{Q} have real masses $m_{\mathbb{R}}$ and $-m_R$ respecively
- \triangleright Additional contributions on the Coulomb branch

$$
\Big|\langle \sigma^aT^a\rangle^{\alpha}_{\ \ \, \beta}Q^{\beta}_{\ \ \, f}\Big|^2\quad \text{no sum over β}
$$

 \triangleright The fermion has zero modes in i^{th} monopole background if effective real mass is

$$
\sigma_i > m_R > \sigma_{i+1}
$$

► Doublet of $SU(2)$ has one zero mode if $σ > m_R > -σ$

- \triangleright Doublet of $SU(2)$ has one zero mode if $\sigma > m_R > -\sigma$
- In Massless fundamental on the Coulomb branch of $SU(4)$

$$
\left(\begin{array}{ccc} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \sigma_3 & \\ & & & \sigma_4 \end{array}\right)\,,\quad \sigma_4=-\sum_i\sigma_i
$$

- \blacktriangleright Zero mode in the 3^{rd} instanton-monopole
- \triangleright No AHW suportotential for Y_3 : $W = 1/Y_1 + 1/Y_2$

- \triangleright Doublet of $SU(2)$ has one zero mode if $\sigma > m_R > -\sigma$
- In Massless fundamental on the Coulomb branch of $SU(4)$

$$
\left(\begin{array}{ccc} \sigma_1 & & & \\ & \sigma_2 & & \\ & & 0 & \\ & & & \sigma_4 \end{array}\right)\,,\quad \sigma_4=-\sum_i\sigma_i
$$

- \blacktriangleright Zero mode in the 2^{nd} and 3^{rd} instanton-monopoles
- \triangleright No AHW superpotential for Y_2 and Y_3 : $W = 1/Y_1$

- Doublet of $SU(2)$ has one zero mode if $\sigma > m_B > -\sigma$
- \triangleright Massless fundamental on the Coulomb branch of $SU(4)$

$$
\begin{pmatrix} \sigma_1 & & & \\ & 0 & & \\ & & 0 & \\ & & & -\sigma_1 \end{pmatrix}
$$

- \triangleright Zero mode in all instanton-monopoles
- \triangleright No superpotential
- \triangleright One dimensional Coulomb branch: $Y = \prod Y_i$

- Doublet of $SU(2)$ has one zero mode if $\sigma > m_B > -\sigma$
- \triangleright Massless fundamental on the Coulomb branch of $SU(4)$

$$
\begin{pmatrix} \sigma_1 & & & \\ & 0 & & \\ & & 0 & \\ & & & -\sigma_1 \end{pmatrix}
$$

- \triangleright Zero mode in all instanton-monopoles
- No superpotential
- \triangleright One dimensional Coulomb branch: $Y = \prod Y_i$
- ^I Fundamental has no zero modes in KK monopole
- In The superpotential on a circle is $W = \eta Y$

Matter fields in 3d: moduli charges

$$
\begin{pmatrix}\n\sigma_1 & & & \\
& \sigma_2 & & \\
& & \sigma_3 & \\
& & & \sigma_4\n\end{pmatrix}
$$

 \triangleright Region $\mid \sigma_1 > 0 > \sigma_2 > \sigma_3 > \sigma_4$

 $W=\frac{1}{\sqrt{2}}$ $\frac{1}{Y_2} + \frac{1}{Y_3}$ $\frac{1}{Y_3}$, $R(Y_2) = R(Y_3) = -2$, $R(Y_1) = F - 2$

- \triangleright Region II: $\sigma_1 > \sigma_2 > 0 > \sigma_3 > \sigma_4$ $W=\frac{1}{\sqrt{2}}$ Y'_1 $+\frac{1}{\sqrt{2}}$ $\frac{1}{Y_3}$, $R(Y'_1) = R(Y_3) = -2$, $R(Y'_2) = F - 2$
- \triangleright Region III: $\sigma_1 > \sigma_2 > \sigma_3 > 0 > \sigma_4$

 $W=\frac{1}{\sqrt{2}}$ $\overline{Y'_1}$ $+\frac{1}{1}$ $\overline{Y''_2}$ $R(Y'_1) = R(Y''_2) = -2, R(Y'_3) = F - 2$

 \blacktriangleright $Y = \prod Y_i$ is globally defined

Dom the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

- Instanton in the first $SU(2)$: Zero modes if $\sigma_1 + \sigma_{3,4} \geq 0$, $\sigma_2 + \sigma_{3,4} \leq 0$
- Instanton in the third $SU(2)$: Zero modes if $\sigma_3 + \sigma_{1,2} \geq 0$, $\sigma_4 + \sigma_{1,2} \leq 0$
- Instanton in the second $SU(2)$: Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \triangleright One dimensional Coulomb branch $\hat{Y} = \sqrt{Y_1 Y_2^2 Y_3}$

Dom the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

$$
\left(\begin{array}{ccc}\n\sigma_1 & x & x \\
& \sigma_2 & & x \\
& & \sigma_3 & x \\
& & & \sigma_4\n\end{array}\right)
$$

- Instanton in the first $SU(2)$: Zero modes if $\sigma_1 + \sigma_{3,4} \geq 0$, $\sigma_2 + \sigma_{3,4} \leq 0$
- Instanton in the third $SU(2)$: Zero modes if $\sigma_3 + \sigma_{1,2} \geq 0$, $\sigma_4 + \sigma_{1,2} \leq 0$
- Instanton in the second $SU(2)$: Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \triangleright One dimensional Coulomb branch $\hat{Y} = \sqrt{Y_1 Y_2^2 Y_3}$

In the Coulomb branch A_{ij} **has a real mass** $\sigma_i + \sigma_j$

- Instanton in the first $SU(2)$: Zero modes if $\sigma_1 + \sigma_{3,4} \geq 0$, $\sigma_2 + \sigma_{3,4} \leq 0$
- Instanton in the third $SU(2)$: Zero modes if $\sigma_3 + \sigma_{1,2} \geq 0$, $\sigma_4 + \sigma_{1,2} \leq 0$
- Instanton in the second $SU(2)$: Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \triangleright One dimensional Coulomb branch $\hat{Y} = \sqrt{Y_1 Y_2^2 Y_3}$

 \triangleright On the Coulomb branch A_{ij} has a real mass $\sigma_i + \sigma_j$

$$
\left(\begin{array}{ccc} \sigma & & & \\ & \sigma & & \\ & & -\sigma & \\ & & & -\sigma \end{array}\right)
$$

- Instanton in the first $SU(2)$: Zero modes if $\sigma_1 + \sigma_{3,4} \geq 0$, $\sigma_2 + \sigma_{3,4} \leq 0$
- Instanton in the third $SU(2)$: Zero modes if $\sigma_3 + \sigma_{1,2} \geq 0$, $\sigma_4 + \sigma_{1,2} \leq 0$
- Instanton in the second $SU(2)$: Doublets have zero modes if $\sigma_2 \rightarrow \sigma_1$ and $\sigma_3 \rightarrow \sigma_4$
- \triangleright One dimensional Coulomb branch $\hat{Y} = \sqrt{Y_1 Y_2^2 Y_3}$

s-confinement in $SU(4)$

 \triangleright Two antisymmetrics and two fundamental flavors

- \triangleright Expect s-confinement
- \triangleright Potentially 2-dimensional Coulomb branch, Y and \widetilde{Y}
- \triangleright Symmetries and quantum numbers

$$
\begin{array}{c|ccccc}\n & U(1)_1 & U(1)_2 & U(1)' & U(1)_R \\
\hline\nY = \prod_i Y_i & \text{-2} & \text{-2} & \text{-4} & \frac{2}{3} \\
\tilde{Y} = \sqrt{Y\tilde{Y}_2} & \text{-2} & \text{-2} & \frac{2}{3}\n\end{array}
$$

From 4d to 3d: s-confinement in \mathbb{R}^4

 \triangleright The 4d model s-confining model

\triangleright Charges of the composites

 \triangleright Exact non-perturbative superpotential

$$
W_{\rm dyn} = \frac{1}{\Lambda^7} (T^2 M_0^3 - 12 T H \bar{H} M_0 - 24 M_0 M_2^2 - 24 H \bar{H} M_2)
$$

From 4d to 3d: s-confinement on $\mathbb{R}^3 \times S^1$

 \triangleright KK instanton generates the superpotential

 $W = W_{\text{dyn}} + \eta Y$

- \triangleright Need to decouple KK instanton contribution:
	- Gauge a diagonal $U(1)$ in $SU(3)_L \times SU(3)_R \times U(1)$
	- **Decouple the third (massive) flavor and** ηY
	- Indellachtrianglobal symmetries the same as in 3d model
	- \triangleright Composites without third flavor quark remain masslees
	- \triangleright Composites with only one third flavor quark are heavy
	- \blacktriangleright M_0^{33} and M_2^{33} are neutral under $U(1)$: massless
	- $\sim M_0^{33}$ and M_2^{33} have the same charges as Y and $\tilde Y$
- \triangleright Claim: 3d dual desription:

 $W_{\mathsf{dyn}} = Y \Big(3 T^2 \det M_0 - 12 T h \overline{h} - 24 \det M_2 \Big) + \widetilde{Y} \Big(2 M_0 M_2 + h \overline{h} \Big)$

Tests

- Back to $\mathbb{R}^3 \times S^1$:
	- \triangleright 4d quantum modified moduli space:

 $W = \lambda \left(3T^2 \det M_0 - 12Th\bar{h} - 24 \det M_2 - \Lambda^8\right)$ $+\ \mu\left(2M_0M_2+h\bar{h}\right)+\eta Y$

- \triangleright Identify λ and μ with Y and \widetilde{Y} ($\eta \sim \Lambda^8)$
- \triangleright Coulomb branch: large \tilde{Y} :
	- \triangleright Semiclassical symmetry breaking pattern:

 $SU(4) \rightarrow SO(4) \times U(1)$

- \triangleright All fundamentals obtain large real mass
- In Two light $SO(4)$ vectors survive from antisymmetric
- I Low energy 3d physics is known to s-confine with one Coulomb modulus $Y_{SO} \sim Y^2/\tilde{Y}^2$

 \triangleright $SU(4)$ with and antisymmetric and three flavors

- \triangleright How many Coulomb branch moduli?
- \triangleright Y and Y are not lifted by instanton-monopoles
- \blacktriangleright No candidate for \tilde{Y} in $\mathbb{R}^3 \times S^1$ model
	- **I** There is no $M_2 \sim QA^2\overline{Q}$ composite
- Expect new dynamical effects to lift \tilde{Y}
- \triangleright The low energy dynamics

- \triangleright $SU(4)$ with and antisymmetric and three flavors
- \triangleright How many Coulomb branch moduli?
- \triangleright Y and Y are not lifted by instanton-monopoles
- \blacktriangleright No candidate for \tilde{Y} in $\mathbb{R}^3 \times S^1$ model
	- **I** There is no $M_2 \sim QA^2\overline{Q}$ composite
- Expect new dynamical effects to lift Y
- \triangleright The low energy dynamics

- \triangleright $SU(4)$ with and antisymmetric and three flavors
- \triangleright How many Coulomb branch moduli?
- \triangleright Y and Y are not lifted by instanton-monopoles
- \blacktriangleright No candidate for \tilde{Y} in $\mathbb{R}^3\times S^1$ model
	- ► There is no $M_2 \sim QA^2\overline{Q}$ composite
- Expect new dynamical effects to lift Y
- \triangleright The low energy dynamics

- \triangleright $SU(4)$ with and antisymmetric and three flavors
- \triangleright How many Coulomb branch moduli?
- \triangleright Y and Y are not lifted by instanton-monopoles
- \blacktriangleright No candidate for \tilde{Y} in $\mathbb{R}^3\times S^1$ model
	- ► There is no $M_2 \sim QA^2\overline{Q}$ composite
- Expect new dynamical effects to lift \tilde{Y}
- \triangleright The low energy dynamics

- \triangleright Compare models with one and two antisymmetrics:
	- \triangleright Holomorphic mass for the fundamental flavor in theory II
	- \triangleright Holomorphic mass for antisymmetric in theory I
	- \triangleright Y decouples when integrating out antisymmetric
	- Low energy descriptions agree
- \triangleright Coulomb branch again: large \tilde{Y}
	- $\rightarrow SU(4) \rightarrow SO(4) \times U(1)$
	- A single $SO(4)$ vector
	- **I ADS-like superpotential Aharony, Shamir**

$$
W = \frac{1}{Y_{SO}^4 T}
$$

Carefully matching moduli: \widetilde{Y} lifted (preliminary).

To be continued: generalizations

$SU(N)$ group with A, \overline{A} and two flavors

$$
SU(4): \widetilde{Y} \rightarrow \sqrt{YY_2} \rightarrow \text{diag}(\sigma, \sigma, -\sigma, -\sigma)
$$

\n
$$
SU(5): \widetilde{Y}_5 \rightarrow \sqrt{YY_2Y_3} \rightarrow \text{diag}(\sigma, \sigma, 0, -\sigma, -\sigma)
$$

\n
$$
SU(6): \widetilde{Y}_6 \rightarrow \sqrt{YY_2Y_3Y_4} \rightarrow \text{diag}(\sigma, \sigma, 0, 0, -\sigma, -\sigma)
$$

\n
$$
\widehat{Y}_6 \rightarrow (\widetilde{Y}_1^2 Y_3)^{\frac{1}{3}} \rightarrow \text{diag}(\sigma, \sigma, \sigma, -\sigma, -\sigma, -\sigma)
$$

- Antisymmetric of $SU(5)$ has zero modes under KK monopole in some regions of moduli space
- \triangleright Total number of matter zero modes (including KK monopole contributions) adds up to number of 4d instanton zero modes predicted by Atiah-Singer index
- \triangleright Expectations for the number of unlifted Coulomb branch moduli are based on 4d s -confining theories

Summary and Outlook

