Cosmic Axion Detection with an Amplifying B-field Ring Apparatus

Ben Safdi Massachusetts Institute of Technology

Two important facts to keep in mind in any dark matter talk (at least, today)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Fact 1: we know a lot about dark matter

Fact 2: we know almost nothing about dark matter

(ロ) (型) (E) (E) (E) (の)(C)

Fact 2: we know almost nothing about dark matter

No evidence for non-gravitational interactions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

No evidence for particular dark-matter mass

Over 20 orders of magnitude in DM mass!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Dark-matter: BSM physics exists

- Clear evidence that dark-matter (BSM physics) exists
- Well motivated dark-matter models (WIMPs, axions, ...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dark matter models

Name	What is it?	Motivation
Axion	$\left(\bar{\theta} + \frac{a}{f_a}\right) G_{\mu\nu} \tilde{G}^{\mu\nu}$	Strong CP
Neutralino (WIMP)	$ ilde{B}, ilde{W}_3, ilde{H}_u, ilde{H}_d$	Hierarchy Problem (why Higgs mass so light)

How can we probe axion dark matter?

- Astrophysics/cosmology: stellar cooling, CMB, BBN (Phys. Lett.
- B. 2014: K. Blum, R. D'Agnolo, M. Lisanti, B.S.), superradiance
- Laboratory experiments: ADMX (resonant cavity), CAST (axion helioscope)
- New proposal: *PRL* 117, Sept. 2016 (Y. Kahn, **B.S.**, J. Thaler): A broadband approach to axion dark matter detection

Outline

- Axion particle physics (review)
- Axion cosmology (review and work in progress)
- ABRACADABRA: Cosmic axion detection (theory)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ABRACADABRA-10 cm at MIT (experiment)

Why axions and what are they?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Problem: CP-violating $\delta_{\text{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$

(ロ) (同) (三) (三) (三) (○) (○)

- Problem: CP-violating $\delta_{\mathsf{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$
- Solutions:
 - $m_u = 0$: but strongly disfavored by lattice data

- Problem: CP-violating $\delta_{\mathsf{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$
- Solutions:
 - $m_u = 0$: but strongly disfavored by lattice data
 - Spontaneous CP violation (Nelson-Barr)
 - $\bar{\theta} = 0$ in UV because theory CP conserving

(日) (日) (日) (日) (日) (日) (日)

- Problem: CP-violating $\delta_{\text{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$
- Solutions:
 - $m_u = 0$: but strongly disfavored by lattice data
 - Spontaneous CP violation (Nelson-Barr)
 - $\bar{\theta} = 0$ in UV because theory CP conserving
 - ► After spontaneous CP breaking, δ_{CKM} generated but $\bar{\theta}$ protected (extra structure)

(日) (日) (日) (日) (日) (日) (日)

- Problem: CP-violating $\delta_{\text{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$
- Solutions:
 - $m_u = 0$: but strongly disfavored by lattice data
 - Spontaneous CP violation (Nelson-Barr)
 - $\bar{\theta} = 0$ in UV because theory CP conserving
 - ► After spontaneous CP breaking, δ_{CKM} generated but $\bar{\theta}$ protected (extra structure)
 - May introduce additional fine tuning, coincidence of scales, significant model-building gymnastics

(日) (日) (日) (日) (日) (日) (日)

- Problem: CP-violating $\delta_{\text{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$
- Solutions:
 - $m_u = 0$: but strongly disfavored by lattice data
 - Spontaneous CP violation (Nelson-Barr)
 - $\bar{\theta} = 0$ in UV because theory CP conserving
 - ► After spontaneous CP breaking, δ_{CKM} generated but $\bar{\theta}$ protected (extra structure)
 - May introduce additional fine tuning, coincidence of scales, significant model-building gymnastics

・ロト・日本・日本・日本・日本

- Axion: Spontaneously broken global PQ symmetry in UV
 - Light pseudo-goldstone boson "the axion" removes $|\bar{\theta}|$

- Problem: CP-violating $\delta_{\text{CKM}} \sim O(1)$, but $|\bar{\theta}| < 10^{-10}$
- Solutions:
 - $m_u = 0$: but strongly disfavored by lattice data
 - Spontaneous CP violation (Nelson-Barr)
 - $\bar{\theta} = 0$ in UV because theory CP conserving
 - ► After spontaneous CP breaking, δ_{CKM} generated but $\bar{\theta}$ protected (extra structure)
 - May introduce additional fine tuning, coincidence of scales, significant model-building gymnastics
 - Axion: Spontaneously broken global PQ symmetry in UV
 - Light pseudo-goldstone boson "the axion" removes $|\bar{\theta}|$
 - Axion can be dark matter

$$\mathcal{L}_{\text{QCD}}^{\mathcal{CP}} = -\frac{\theta g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu} - \sum_q \bar{q} \, m_q e^{-i\phi_q \gamma_5} q$$

►
$$U(1)_A$$
 anomaly: $q \to e^{-i\alpha_q \gamma_5} q$
 $\theta \to \theta + 2 \sum_q \alpha_q$

•
$$U(1)_{\mathsf{A}}$$
 invariant: $\overline{\theta} \equiv \theta - \sum_{q} \phi_{q}$

$$\mathcal{L}_{\text{QCD}}^{\mathcal{CP}} = -\frac{\theta g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu} - \sum_q \bar{q} \, m_q e^{-i\phi_q \gamma_5} q$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

►
$$U(1)_A$$
 anomaly: $q \to e^{-i\alpha_q \gamma_5} q$
 $\theta \to \theta + 2 \sum_q \alpha_q$

- $U(1)_{\mathsf{A}}$ invariant: $\bar{\theta} \equiv \theta \sum_{q} \phi_{q}$
- Calculation: $d_n \approx 2.4 \times 10^{-16} \,\overline{\theta} \, \mathrm{e} \cdot \mathrm{cm}$

$$\mathcal{L}_{\mathsf{QCD}}^{\mathcal{CP}} = -\frac{\theta g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu} - \sum_q \bar{q} \, m_q e^{-i\phi_q \gamma_5} q$$

►
$$U(1)_A$$
 anomaly: $q \to e^{-i\alpha_q \gamma_5} q$
 $\theta \to \theta + 2 \sum_q \alpha_q$

•
$$U(1)_{\mathsf{A}}$$
 invariant: $\overline{\theta} \equiv \theta - \sum_{q} \phi_{q}$

- Calculation: $d_n \approx 2.4 \times 10^{-16} \bar{\theta} \, \mathrm{e} \cdot \mathrm{cm}$
- Measurement: $|\bar{\theta}| < 10^{-10}$
- No anthropic argument for why $\bar{\theta}$ is so small!

(日) (日) (日) (日) (日) (日) (日)

$$\mathcal{L}_{\mathsf{axion}} = -\left(ar{ heta} + rac{a}{f_a}
ight) rac{g^2}{32\pi^2} G_{\mu
u} ilde{G}^{\mu
u}$$

QCD generates axion mass:

$$\begin{split} V(a) &\approx \frac{1}{2} f_a^2 m_a^2 \left(\bar{\theta} + \frac{a}{f_a}\right)^2 \\ m_a &\approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \ \mathrm{eV}\left(\frac{10^{16} \ \mathrm{GeV}}{f_a}\right) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\mathcal{L}_{\mathsf{axion}} = -\left(ar{ heta} + rac{a}{f_a}
ight) rac{g^2}{32\pi^2} G_{\mu
u} ilde{G}^{\mu
u}$$

QCD generates axion mass:

$$\begin{split} V(a) &\approx \frac{1}{2} f_a^2 m_a{}^2 \left(\bar{\theta} + \frac{a}{f_a}\right)^2 \\ m_a &\approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} ~\mathrm{eV}\left(\frac{10^{16} ~\mathrm{GeV}}{f_a}\right) \end{split}$$

Axions also couple to QED:

$$\mathcal{L} = -rac{1}{4} g_{a \gamma \gamma} a F_{\mu
u} ilde{F}^{\mu
u} \quad g_{a \gamma \gamma} \propto rac{lpha_{\mathsf{EM}}}{f_a}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Axion particle physics (review)
- Axion cosmology (review and work in progress)
- ABRACADABRA: Cosmic axion detection (theory)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ABRACADABRA-10 cm at MIT (experiment)

Axion dark matter is a classical field

- ► de Broglie wavelength: $\lambda_{dB} = \frac{2\pi}{p} \approx \frac{2\pi}{mv}$
 - Axion ($m = 10^{-9}$ eV): $\lambda_{dB} \approx 8 \times 10^3$ km
 - WIMP (m = 100 GeV): $\lambda_{dB} \approx 8 \times 10^{-17} \text{ km}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Axion dark matter is a classical field

- de Broglie wavelength: $\lambda_{dB} = \frac{2\pi}{p} \approx \frac{2\pi}{mv}$
 - Axion ($m = 10^{-9}$ eV): $\lambda_{dB} \approx 8 \times 10^3$ km
 - WIMP (m = 100 GeV): $\lambda_{dB} \approx 8 \times 10^{-17} \text{ km}$
- ► Local DM energy density: $\rho_{DM} \approx 0.4 \text{ GeV/cm}^3$
- Local occupancy number: $\mathcal{N} \approx (\rho_{DM}/m) \times \lambda_{db}^3$
 - $\mathcal{N}_{\text{axion}} \approx 10^{44}$
 - $\mathcal{N}_{\text{WIMP}} \approx 10^{-36}$

The axion as dark matter $(f_a > H_1/2\pi)$ $\ddot{a} + 3H\dot{a} + m_a^2 a = 0$ $(H = T^2/m_{pl})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

• After $3H = m_a$, coherent oscillations ~ NR matter

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• After $3H = m_a$, coherent oscillations ~ NR matter

• Today:
$$\Omega_a h^2 \sim 0.1 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6} \theta_i^2$$

• After $3H = m_a$, coherent oscillations $\sim NR$ matter

• Today:
$$\Omega_a h^2 \sim 0.1 \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6} \theta_i^2$$

• $f_a = 10^{16} \text{ GeV} \rightarrow |\theta_i| \lesssim 10^{-3} - 10^{-2}$ (e.g., Tegmark, Aguirre, Rees, Wilczek '05)

Preliminary! In progress with Andrey Katz

 $\ddot{a} + (3H + \gamma_{\text{QCD}})\dot{a} + m_a^2 a = 0$

Preliminary! In progress with Andrey Katz

$$\ddot{a} + (3H + \gamma_{\text{QCD}})\dot{a} + m_a^2 a = 0$$

QCD Damping rate (McLerran et. al. 1990) :

$$\begin{split} \gamma_{\text{QCD}} &= \frac{1}{f_a^2 T} \int d^4 x \langle \frac{\alpha_s}{4\pi} \text{tr}[G_{\mu\nu} \tilde{G}^{\mu\nu}(x)] \frac{\alpha_s}{4\pi} \text{tr}[G_{\mu\nu} \tilde{G}^{\mu\nu}(0)] \rangle_T \\ &= \frac{\Gamma_{\text{sphaleron}}}{f_a^2 T} \\ &\propto (\text{large coefficient}) \times \frac{T^3}{f_a^2} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Preliminary! In progress with Andrey Katz

$$\ddot{a} + (3H + \gamma_{\text{QCD}})\dot{a} + m_a^2 a = 0$$

► QCD Damping rate (McLerran et. al. 1990) :

$$\begin{split} \gamma_{\text{QCD}} &= \frac{1}{f_a^2 T} \int d^4 x \langle \frac{\alpha_s}{4\pi} \text{tr}[G_{\mu\nu} \tilde{G}^{\mu\nu}(x)] \frac{\alpha_s}{4\pi} \text{tr}[G_{\mu\nu} \tilde{G}^{\mu\nu}(0)] \rangle_T \\ &= \frac{\Gamma_{\text{sphaleron}}}{f_a^2 T} \\ &\propto (\text{large coefficient}) \times \frac{T^3}{f_a^2} \end{split}$$

• Important if $\gamma_{\text{QCD}} \sim H$ at $T \sim 1$ GeV:

$$\frac{(1 \text{ GeV})^3}{f_a^2} \sim \frac{(1 \text{ GeV})^2}{10^{18} \text{ GeV}}$$

• Important for $f_a \lesssim 10^{10}$ GeV (with the $\mathcal{O}(1)$ numbers)

Probably not if $f_a \gtrsim 10^{11} \text{ GeV}$

t

Likely yes if $f_a \lesssim 10^{10} \text{ GeV}$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @
Outline

- Axion particle physics (review)
- Axion cosmology (review and work in progress)
- ABRACADABRA: Cosmic axion detection (theory)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ABRACADABRA-10 cm at MIT (experiment)

How can we probe axion dark matter?

How can we probe axion dark matter?

How can we probe axion dark matter?

Axion dark matter modifies Maxwell's equations

Recall axions also couple to QED:

$$\mathcal{L} = -rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} \tilde{F}^{\mu
u} \quad g_{a\gamma\gamma} \propto rac{lpha_{\mathsf{EM}}}{f_a}$$

Scott Thomas and Blas Cabrera (2010), Sikivie et. al. (2013)

Axion dark matter modifies Maxwell's equations

Recall axions also couple to QED:

$$\mathcal{L} = -rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u} \quad g_{a\gamma\gamma} \propto rac{lpha_{\mathsf{EM}}}{f_a}$$

 Magnetoquasistatic approximation: new electric current that follows B-field lines

$$abla imes \mathbf{B} = \mathbf{g}_{a \gamma \gamma} \mathbf{B} rac{\partial a}{\partial t}$$

Scott Thomas and Blas Cabrera (2010), Sikivie et. al. (2013)

Axion dark matter modifies Maxwell's equations

Recall axions also couple to QED:

$$\mathcal{L} = -rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u} \quad g_{a\gamma\gamma} \propto rac{lpha_{\mathsf{EM}}}{f_a}$$

 Magnetoquasistatic approximation: new electric current that follows B-field lines

$$\nabla \times \mathbf{B} = \frac{g_{a\gamma\gamma}}{\partial t} \mathbf{B} \frac{\partial a}{\partial t}$$

・ロト・日本 キョン・ヨン ヨー シック

• Locally:
$$a(t) \approx a_0 \sin(m_a t)$$
 and $\frac{1}{2}m_a^2 a_0^2 = \rho_{\text{DM}}$

$$\mathbf{F} \mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2 \rho_{\text{DM}}} \mathbf{B} \sin(m_a t)$$

Scott Thomas and Blas Cabrera (2010), Sikivie et. al. (2013)

Axion dark matter generates magnetic flux

Axion dark matter generates magnetic flux

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 Estimate *B*-field induced through pickup loop (r = a = h = R)

Axion dark matter generates magnetic flux

- ► Estimate B-field induced through pickup loop (r = a = h = R)
- Axion effective current: $I_{\text{eff}} \sim R^2 J_{\text{eff}}$
- $\blacktriangleright \ B \sim \frac{I_{\rm eff}}{R} \sim R g_{a\gamma\gamma} \sqrt{2 \, \rho_{\rm DM}} \mathbf{B_0} \sin(m_a t)$
- ► $f_a = 10^{16} \text{ GeV}, \mathbf{B_0} \sim 5 \text{ T}, R \sim 4 \text{ m}: B \sim 10^{-22} \text{ T} \text{ (KSVZ)}$

Two readout strategies

Better at low frequency

Better at high frequency

・ロット (雪) (日) (日)

э

Two readout strategies

(日)

Two readout strategies

Better at high frequency

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Example from MRI application: (Myers et. al. 2007)
 - B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17} \text{ T}/\sqrt{\text{Hz}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

▶ R ≈ 3.3 cm

- Example from MRI application: (Myers et. al. 2007)
 - B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17} \text{ T}/\sqrt{\text{Hz}}$

・ コット (雪) (小田) (コット 日)

- ▶ R ≈ 3.3 cm
- Scale to $R \approx 4 \text{ m}$
 - $\blacktriangleright ~S_B^{1/2} \approx 5 \times 10^{-20} ~{\rm T}/\sqrt{\rm Hz}$

- Example from MRI application: (Myers et. al. 2007)
 - B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17} \text{ T}/\sqrt{\text{Hz}}$
 - ▶ R ≈ 3.3 cm
- ► Scale to R ≈ 4 m
 - $\blacktriangleright \ S_B^{1/2} \approx 5 \times 10^{-20} \ \mathrm{T}/\sqrt{\mathrm{Hz}}$
- t = 1 year interrogation time for GUT scale axion
 - Coherence time: $\tau \sim 2\pi/(m_a v^2) \sim 10$ s ($v \sim 10^{-3}$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Example from MRI application: (Myers et. al. 2007)
 - B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17} \text{ T}/\sqrt{\text{Hz}}$
 - ▶ R ≈ 3.3 cm
- Scale to R ≈ 4 m
 - $\blacktriangleright ~S_B^{1/2} \approx 5 \times 10^{-20} ~{\rm T}/\sqrt{\rm Hz}$
- t = 1 year interrogation time for GUT scale axion
 - Coherence time: $\tau \sim 2\pi/(m_a v^2) \sim 10$ s ($v \sim 10^{-3}$)
 - S/N = 1 for $B = S_B^{1/2} (t\tau)^{-1/4} \sim 10^{-22} \text{ T}$

Axion dark matter projected reach

Axion dark matter projected reach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

Axion dark matter projected reach

Outline

- Axion particle physics (review)
- Axion cosmology (review)
- ABRACADABRA: Cosmic axion detection (theory)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ABRACADABRA-10 cm at MIT (experiment)

The MIT prototype: ABRACADABRA-10 cm

- ABRACADABRA: A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus
- ▶ Dimensions: 12×12 cm² (R = 3 cm, h = 12 cm), B = 1 T
- People (LNS+CTP, PSFC, +1 Princeton): Janet Conrad, Joe Formaggio, Sarah Heine, Yoni Kahn, Joe Minervini, Jonathan Ouellet, Kerstin Perez, Alexey Radovinsky, B.S., Jesse Thaler, Daniel Winklehner, Lindley Winslow

- Lindley's dilution refrigerator (< 100 mK)</p>
 - Workable space: $R \sim 25 \text{ cm}, h \sim 25 \text{ cm}$

The MIT prototype: ABRACADABRA-10 cm

- ABRACADABRA: A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus
- ▶ Dimensions: $12 \times 12 \text{ cm}^2$ (R = 3 cm, h = 12 cm), B = 1 T
- People (LNS+CTP, PSFC, +1 Princeton): Janet Conrad, Joe Formaggio, Sarah Heine, Yoni Kahn, Joe Minervini, Jonathan Ouellet, Kerstin Perez, Alexey Radovinsky, B.S., Jesse Thaler, Daniel Winklehner, Lindley Winslow

- Lindley's dilution refrigerator (< 100 mK)</p>
 - Workable space: $R \sim 25 \text{ cm}, h \sim 25 \text{ cm}$
- Funded by the NSF (as of this week)

ABRACADABRA-10 cm

ABRACADABRA-10 cm

Thanks Daniel Winklehner for CAD model and slides.

ABRA-10 cm: vertical cut

ABRA-10 cm: pickup cylinder

ABRA-10 cm: reach after 1 month

E 996

ÅBRACADÅBRA

Complementary proposals for axion dark matter experiments

(日) (日) (日) (日) (日) (日) (日)

CASPEr: oscillating neutron EDM

Light bosonic dark matter future

- MIT: ABRA-10 cm followed by ABRA-1 m ($B \sim 10$ T)
- ABRA-1 m: multiple experiments at different locations
 - Preliminary discussions with Korean Center for Axion and Precision Physics (Yannis Semertzidis)
- Axions and light bosonic dark matter well motivated by high-scale physics (e.g., compactified string theory)
- Detection may provide window to high-scale physics (GUT scale, inflation, ...)
- New ideas to search for ultra-light scalars, dark-photons, etc. (laboratory experiments + astrophysics)
 - e.g., CASPEr experiment
 - Black Hole superradiance

Questions?

Axion Backup Slides

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Magnetic field sensitivity calculation

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Magnetic field sensitivity calculation

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

$$P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @
- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

$$P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

► Spectral density: $\lim_{T \to \infty} |P_n(\omega)|^2 \to S_B^{1/2}(\omega) [T / \sqrt{Hz}]$

- $\bullet \quad B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

$$P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)$$

(日) (日) (日) (日) (日) (日) (日)

- Spectral density: $\lim_{T \to \infty} |P_n(\omega)|^2 \to S_B^{1/2}(\omega) [\mathsf{T} / \sqrt{\mathsf{Hz}}]$
- $T < \tau$:
 - $|P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T$

- $\bullet \quad B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

$$P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Spectral density: $\lim_{T \to \infty} |P_n(\omega)|^2 \to S_B^{1/2}(\omega) [\mathsf{T} / \sqrt{\mathsf{Hz}}]$

•
$$T < \tau$$
:

•
$$|P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T$$

 $\blacktriangleright T > \tau$

$$\blacktriangleright |P_0(\omega_0)|^2 \propto \frac{B^2}{T} \times T\tau = B^2 \tau$$

- $\bullet \quad B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

$$P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)$$

- ► Spectral density: $\lim_{T \to \infty} |P_n(\omega)|^2 \to S_B^{1/2}(\omega) [T / \sqrt{Hz}]$
- $T < \tau$:

•
$$|P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T$$

 $\blacktriangleright \ T > \tau$

$$\blacktriangleright |P_0(\omega_0)|^2 \propto \frac{B^2}{T} \times T\tau = B^2 \tau$$

▶ But, line-width is broad and can resolve $N = T/\tau$ different frequencies

(ロ) (同) (三) (三) (三) (○) (○)

- $\bullet \quad B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\phi(t)$: evolves over coherence time τ

$$P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)$$

- ► Spectral density: $\lim_{T \to \infty} |P_n(\omega)|^2 \to S_B^{1/2}(\omega) [T / \sqrt{Hz}]$
- $T < \tau$:

•
$$|P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T$$

 $\blacktriangleright \ T > \tau$

$$\blacktriangleright |P_0(\omega_0)|^2 \propto \frac{B^2}{T} \times T\tau = B^2 \tau$$

▶ But, line-width is broad and can resolve $N = T/\tau$ different frequencies

• $B^2 = S_B^{1/2}(\omega_0)/\tau/\sqrt{N} = S_B^{1/2}(\omega_0)/\sqrt{T\tau}$

Broadband: detailed calculation

Cryogenic Current Comparator

Sese et. al., 1999

Axion DM: Broadband Readout

CASPEr: BBN and tuning bounds

$$\mathcal{L}_{\text{axion}} = -\left(\bar{\theta} + \frac{a}{f_a}\right) \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- QCD generates minimum m_a
- Effective operator changes neutron-proton mass difference in early universe (Phys. Lett. B. 2014; K. Blum, R. D'Agnolo, M. Lisanti, B.S.)

