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goal: explore possible cosmologies for 
thermal relics in hidden sectors

Hidden Sector Dark Matter



Gapped Hidden Sector

LDP - Lightest Dark Particle

Forbidden DM

Cannibal DM

• LDP = DM

• LDP nonrelativistic at DM freezeout 
• dark sector thermally decoupled from SM

mLDP > 0
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1. WIMP Warmup 

2. Forbidden Dark Matter 

3. Cannibal Dark Matter
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Models of Light (Thermal) DM
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Models of Light (Thermal) DM
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3.  SIMPs 
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Planck Collaboration: Cosmological parameters

0 2 4 6 8

pann [10�27cm3 s�1 GeV�1]

0.950

0.975

1.000

1.025

n s

Planck TT,TE,EE+lowP

Planck TE+lowP

Planck EE+lowP

Planck TT+lowP

WMAP9

Fig. 40. 2-dimensional marginal distributions in the pann–ns
plane for Planck TT+lowP (red), EE+lowP (yellow), TE+lowP
(green), and Planck TT,TE,EE+lowP (blue) data combinations.
We also show the constraints obtained using WMAP9 data (light
blue).

We then add pann as an additional parameter to those of the base
⇤CDM cosmology. Table 6 shows the constraints for various
data combinations.

Table 6. Constraints on pann in units of cm3 s�1 GeV�1.

Data combinations pann (95 % upper limits)

TT+lowP . . . . . . . . . . . . . . . . . < 5.7 ⇥ 10�27

EE+lowP . . . . . . . . . . . . . . . . . < 1.4 ⇥ 10�27

TE+lowP . . . . . . . . . . . . . . . . . < 5.9 ⇥ 10�28

TT+lowP+lensing . . . . . . . . . . . < 4.4 ⇥ 10�27

TT,TE,EE+lowP . . . . . . . . . . . . < 4.1 ⇥ 10�28

TT,TE,EE+lowP+lensing . . . . . . < 3.4 ⇥ 10�28

TT,TE,EE+lowP+ext . . . . . . . . . < 3.5 ⇥ 10�28

The constraints on pann from the Planck TT+lowP spec-
tra are about 3 times weaker than the 95 % limit of pann <
2.1 ⇥ 10�27 cm3 s�1 GeV�1 derived from WMAP9, which in-
cludes WMAP polarization data at low multipoles. However, the
Planck T E or EE spectra improve the constraints on pann by
about an order of magnitude compared to those from Planck TT
alone. This is because the main e↵ect of dark matter annihila-
tion is to increase the width of last scattering, leading to a sup-
pression of the amplitude of the peaks both in temperature and
polarization. As a result, the e↵ects of DM annihilation on the
power spectra at high multipole are degenerate with other param-
eters of base ⇤CDM, such as ns and As (Chen & Kamionkowski
2004; Padmanabhan & Finkbeiner 2005). At large angular scales
(` . 200), however, dark matter annihilation can produce an
enhancement in polarization caused by the increased ionization
fraction in the freeze-out tail following recombination. As a re-
sult, large-angle polarization information is crucial in breaking
the degeneracies between parameters, as illustrated in Fig. 40.
The strongest constraints on pann therefore come from the full
Planck temperature and polarization likelihood and there is little

1 10 100 1000 10000
m�[GeV]

10�27

10�26

10�25

10�24

10�23

f e
�

��
v
�[

cm
3
s�

1
]

Thermal relic

Planck TT,TE,EE+lowP
WMAP9
CVL
Possible interpretations for:
AMS-02/Fermi/Pamela
Fermi GC

Fig. 41. Constraints on the self-annihilation cross-section at re-
combination, h�3iz⇤ , times the e�ciency parameter, fe↵ (Eq. 81).
The blue area shows the parameter space excluded by the Planck
TT,TE,EE+lowP data at 95 % CL. The yellow line indicates the
constraint using WMAP9 data. The dashed green line delineates
the region ultimately accessible by a cosmic variance limited ex-
periment with angular resolution comparable to that of Planck.
The horizontal red band includes the values of the thermal-relic
cross-section multiplied by the appropriate fe↵ for di↵erent DM
annihilation channels. The dark grey circles show the best-fit
DM models for the PAMELA/AMS-02/Fermi cosmic-ray ex-
cesses, as calculated in Cholis & Hooper (2013) (caption of their
figure 6). The light grey stars show the best-fit DM models for
the Fermi Galactic centre gamma-ray excess, as calculated by
Calore et al. (2014) (their tables I, II, and III), with the light
grey area indicating the astrophysical uncertainties on the best-
fit cross-sections.

improvement if other astrophysical data, or Planck lensing, are
added.30

We verified the robustness of the Planck TT,TE,EE+lowP
constraint by also allowing other extensions of ⇤CDM (Ne↵ ,
dns/d ln k, or YP) to vary together with pann. We found that the
constraint is weakened by up to 20 %. Furthermore, we have ver-
ified that we obtain consistent results when relaxing the priors
on the amplitudes of the Galactic dust templates or if we use the
CamSpec likelihood instead of the baseline Plik likelihood.

Figure 41 shows the constraints from WMAP9, Planck
TT,TE,EE+lowP, and a forecast for a cosmic variance limited
experiment with similar angular resolution to Planck31. The hor-
izontal red band includes the values of the thermal-relic cross-
section multiplied by the appropriate fe↵ for di↵erent DM anni-
hilation channels. For example, the upper red line corresponds to
fe↵ = 0.67, which is appropriate for a DM particle of mass m� =
10 GeV annihilating into e+e�, while the lower red line corre-
sponds to fe↵ = 0.13, for a DM particle annihilating into 2⇡+⇡�
through an intermediate mediator (see e.g., Arkani-Hamed et al.
2009). The Planck data exclude at 95 % confidence level a ther-

30It is interesting to note that the constraint derived from Planck
TT,TE,EE+lowP is consistent with the forecast given in Galli et al.
(2009), pann < 3 ⇥ 10�28 cm3 s�1 GeV�1.

31We assumed that the cosmic variance limited experiment would
measure the angular power spectra up to a maximum multipole of
`max = 2500, observing a sky fraction fsky = 0.65.
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•  evades CMB when:

•   Griest and Seckel, 1991: “Forbidden Channel” 

2mDM < mX +mY

Trec ⌧ mX +mY � 2mDM
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Three exceptions in the calculation of relic abundances
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The calculation of relic abundances of elementary particles by following their annihilation and
freeze-out in the early Universe has become an important and standard tool in discussing particle
dark-rnatter candidates. We find three situations, all occurring in the literature, in which the stan-
dard methods of calculating relic abundances fail. The first situation occurs when another particle
lies near in mass to the relic particle and shares a quantum number with it. An example is a light
squark with neutralino dark matter. The additional particle must be included in the reaction net-
work, since its annihilation can control the relic abundance. The second situation occurs when the
relic particle lies near a mass threshold. Previously, annihilation into particles heavier than the rel-
ic particle was considered kinematically forbidden, but we show that if the mass diA'erence is
—5—15%%uo, these "forbidden" channels can dominate the cross section and determine the relic abun-
dance. The third situation occurs when the annihilation takes place near a pole in the cross section.
Proper treatment of the thermal averaging and the annihilation after freeze-out shows that the dip
in relic abundance caused by a pole is not nearly as sharp or deep as previously thought.

I. INTRODUCTION

The calculation of the present-day density of elementa-
ry particles which were in thermal equilibrium in the ear-
ly Universe has become quite commonplace. ' Of particu-
lar interest is the so-called Lee-Weinberg ' calculation in
which annihilation after a particle species has become
nonrelativistic determines the present-day abundance of
that species. Standard approximate solutions to the
Boltzmann equation exist for this calculation and have
been tested numerically. In this paper we wish to point
out three cases where naive application of the standard
methods fails to give correct results and a modified treat-
ment is required. All three cases exist in the literature,
and in all three cases erroneous conclusions have been
drawn. For each case we present appropriate approxi-
mate solutions to the Boltzmann equation(s) and describe
the values of the parameters for which they apply.
The first case occurs when the relic particle is the light-

est of a set of similar particles whose masses are nearly
degenerate. In this case the relic abundance of the light-
est particle is determined not only by its annihilation
cross section, but also by the annihilation of the heavier
particles, which will later decay into the lightest. We call
this the case of "coannihilation. " As an example, consid-
er a supersymmetric theory in which the scalar quarks or
scalar electrons are only slightly more massive than the
lightest supersymmetric particle (LSP), usually taken to
be a neutralino. Previous calculations of the relic abun-
dance which consider only the LSP annihilation can be in
error by more than two orders of magnitude.
The second case concerns annihilation into particles

which are more massive than the relic particle. Previous

treatments regarded this as kinematically forbidden, but
we show that if the heavier particles are on1y 5—1S%
more massive, these channels can dominate the annihila-
tion cross section and determine the relic abundance. We
call this the "forbidden" channel annihilation case. Ex-
amples include annihilation into bb, tt, W+ W, or Higgs
bosons, when the annihilating particle is lighter than the
final-state particle.
The third case occurs when the annihilation takes

place near a pole in the cross section. This happens, for
example, in Z -exchange annihilation when the mass of
the relic particle is near mz/2. Previous treatments have
incorrectly handled the thermal averages and the integra-
tion of the Boltzmann equation in these situations. The
dip in relic abundance caused by a pole is broader and
not nearly as deep as previous treatments imply.
For all three cases we present simple formulas which

allow for a more correct treatment. We also present ex-
amples for each case and describe the precise conditions
under which the modified treatment is necessary. In Sec.
II we review the standard method for performing the
Lee-Weinberg calculation and describe the approxima-
tions within which we will work. In Sec. III we discuss
the coannihilation case, in Sec. IV we discuss the forbid-
den channel case, and in Sec. V we discuss annihilation
near a pole.

II. STANDARD CALCULATION
OF RELIC ABUNDANCE

Here we summarize the standard technique for calcu-
lating the relic abundance of a particle species y in the
Lee-Weinberg scenario. First, a note about the philoso-
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FIG. 1. The left panel contains Feynman diagrams relevant for (1) the relic density, (2) self-interactions, (3) indirect detection,
and (4) direct detection. The right panel shows the relic density, ⌦ h

2, as a function of the mass splitting � ⌘ (m�d �m )/m .
The red (blue) curves correspond to m = 1 GeV (MeV) and the solid (dashed) curves correspond to ↵d = 0.1 (10�3).

Relic Density: The relic density of Forbidden DM is
determined by the solution of its Boltzmann equation,

ṅ
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d

re-
mains in equilibrium during freeze-out. The solution is
approximately given by Eq. (1), with the annihilation
rate given by
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. For simplicity, Eq. (1) neglects

the dependence on the number of relativistic degrees of
freedom and the freeze-out temperature. These e↵ects
are included in our numerical results (for a more precise
analytic treatment see Refs. [1, 23]).

We now introduce a new and simple prescription for
computing the thermal average of the forbidden annihi-
lation rate. Detailed balance states that the right-hand
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Note that the approximation of the forbidden cross sec-
tion in Ref. [8] has an incorrect exponential dependence
on �x.

We obtain the forbidden relic density by plugging
Eq. (3) into Eq. (1) and integrating the cross section

from freeze-out to the present in order to account for
annihilations after freeze-out (see for example Ref. [23]),

⌦
 

h2 ⇡ 0.1 g�(x
f

)
m2
 

/↵2
d

(20 TeV)2
e2�xf , (4)

where x
f

⌘ m
 

/T
f

⇠ 10 � 25 and g�(x
f

) ⌘
(4⇡f�)�1(1 � 2�x

f

e2�xf
R 1
2�xf

t�1e�tdt)�1 is an O(1)

function. Note that we indicate with ⌦
 

h2 the total relic
density of  and  ̄. Eq. (4) shows that the forbidden relic
density is exponentially enhanced as � increases. Equiv-
alently, fixing the relic density to the observed value, the
DM mass is exponentially lighter than the weak scale.

We show the relic density, as a function of �, in the
right panel of Fig. 1. Our numerical results here, and
throughout this letter, utilize MicrOMEGASv4 [24] to solve
the Boltzmann equations and we have verified that they
agree with Eq. (4). The left of the figure, � < 0, corre-
sponds to the conventional case where the relic density is
too small for light DM masses. As we enter the forbidden
region, � > 0, the relic density exponentially increases
until it achieves the correct value. The standard lore is
that forbidden channels are only relevant in highly de-
generate scenarios, � ⌧ 1 (this was stated by Ref. [8]
which implicitly assumes weak scale DM). However, we
see from Fig. 1 that light DM calls for an O(1) splitting.

On the left side of Fig. 2, we show the value of � that
corresponds to the observed DM abundance, as a func-
tion of the DM mass. For m

 

> 1 MeV, we assume
that the dark sector is in thermal contact with the SM,
Tdark = T

SM

. Lighter masses require DM to be ther-
mally decoupled and cooler, Tdark < T

SM

, due to con-
straints on the number of relativistic degrees of freedom
from Big Bang Nucleosynthesis (BBN) [25, 26] and the
CMB [11]. For m

 

< 1 MeV, we adopt a decoupled dark
sector scenario, consistent with these constraints, that
we describe below. We find that DM masses down to
the keV scale are accommodated (DM with a sub-keV

forbidden relic density
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self-interactions

• Randall et al., 0704.0261

bullet cluster:
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Figure 2: Observed configurations of the three components in the 30 systems studied. The
background shows the HST image, with contours showing the distribution of galaxies (green),
gas (red) and total mass, which is dominated by dark matter (blue).
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position of the galaxies. The separation between galaxies and gas, �SG, is shown in red. The
separation of the dark matter with respect to the galaxies, projected onto the SG vector, �SI, is
shown in blue. The error bars show the locally estimated 1� errors.
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3.  Cannibal Dark Matter
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Non-Gapped Hidden Sector

•  Feng, Tu, Yu 0808.2318
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1.  hidden sector is kinetically decoupled from SM: 

2.  hidden sector has a mass gap: 

3.  number changing interactions are in equilibrium 
when the hidden sector is non-relativistic: 

4.  no chemical potential:

Cannibalism Conditions
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Cannibal Sector Temperature
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Cannibal Dark Matter
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Cannibal Dark Matter
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FIG. 2. Cannibal DM has three stages. (1) DM annihilations,

�� ! ��, are in equilibrium and the LDP, �, is relativistic.

(2) Cannibalism begins when � becomes non-relatavistic, and

then DM annihilations freeze-out, at temperature Tf , during

cannibalism. (3) Cannibalism ends when � decays away or

��� ! �� annihilations decouple.

decays (we leave the study of di↵erent orderings of these
events for future work [21]). The cosmological stages of
our scenario are depicted in Fig. 2.

Under the assumption that �� ! �� and ��� ! ��
are in equilibrium, the evolution of the number density
of � is described by a single Boltzmann equation,

dY�

d log x
= �(x)sdh�vi

H
(Y 2

� � Y eq 2
� ), (8)

where Y� ⌘ n�/sd, x ⌘ m�/Td, and (x) ⌘ (1 �
1/3 d log gd

⇤s/d log x). The � relic density is given by
⌦�/⌦DM = m�Y�/(0.4 eV ⇠), where ⌦DMh2 ⇡ 0.12 cor-
responds to the observed DM density [22]. A numerical
solution is shown in Fig. 3.

The Boltzmann equation can be solved analytically in
the sudden freeze-out approximation, neq

� (xf )h�vi = H.
There are two regimes depending on whether the SM or
� dominate the energy density of the Universe when DM
annihilations decouple,

⌦�
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8
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�0
h�vi

T
3/2
d

⇠1/2T
3/2
� D

(⇢SM < ⇢d)
(9)

where all quantities are evaluated at x = xf and �0 =
3 ⇥ 10�26cm3s�1. D > 1 accounts for the entropy in-
jection due to � decay. We evaluate D using a sud-
den decay approximation [23], D = TE

� /TRH , where

TRH ⇡ 0.8 g
�1/4
⇤ �1/2

� M
1/2
P is the temperature that the

SM plasma is reheated to after � decays [24].
According to Eq. (5), Td/T� ⇠ erxf/3, which is natu-

rally very large during cannibalism, requiring a boosted
annihilation cross section compared to conventional sce-
narios. Eq. (9) depends on the temperature DM anni-
hilations decouple, xf = m�/Tf , which in the sudden
freeze-out approximation is,

xf ⇡ ��1 log[ h(r) m�MP h�vi] , (10)

where � = 1 � 2
3r or 1 � 1

3r for SM or � domination,
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FIG. 3. Relic density versus r ⌘ m�/m� for m� =
(1MeV, 1TeV) and h�vi = (1, 10, 100)�0, where �0 = 3 ⇥
10�26cm3s�1

. The relic density grows exponentially with r,
as implied by Eqs. (5), (9), and (10).

respectively, and

h(r) ⇡
(

0.3 g
1
6⇤ ⇠�

2
3 r�

5
3 (1 � 2

3r)
7
6 (⇢SM > ⇢d)

0.2 r�
5
4 (1 � 1

2r)
3
4 (⇢SM < ⇢d)

(11)

Eqs. (5), (9), and (10) imply that the final DM abundance
is exponentially sensitive to r, as shown in Fig. 3.

Phenomenology.— Cannibal DM is not presently
testable by direct detection, because the SM and hidden
sector are kinetically decoupled, implying a small cross
section. However, Cannibal DM predicts rich signals in
indirect detection and cosmology, driven by the boosted
DM annihilation rate, the (exponentially large) age of the
Universe at DM freeze-out, and the decay of relic LDPs.

When � decays, its energy density can modify the num-
ber of relativistic degrees of freedom, which is constrained
by the CMB: Ne↵ = 3.15 ± 0.23 (1�) [22]. If � decays
to photons after neutrino decoupling, the photons are
heated relative to the neutrinos, lowering Ne↵. Alter-
natively, if � decays to dark radiation the resulting en-
ergy density increases Ne↵. These constraints are shown
in Fig. 4, fixing r = m�/m� at each point such that
⌦� = ⌦DM. In the left panel, we assume � decays to
photons and ⇠ = ⇠0 ⇡ 39, which is the entropy ratio if
the SM and the hidden sector of Eq. (7) were in ther-
mal contact above the weak scale. In the right panel,
we assume that � decays to dark radiation and we allow
⇠ to vary. In this case, the constraint on �Ne↵ excludes
the possibility of � ever dominating the expansion of the
Universe. In Fig. 4, we also show the projected sensi-
tivity on Ne↵ coming from CMB Stage-IV experiments,
�Ne↵ = 0.03 (2�) [32]. We have verified that �Ne↵ con-
straints from Big Bang Nucleosynthesis (BBN) [33, 34]
are subdominant to the above constraints.

When � decays to photons, there are indirect detec-
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