Dark Matters in Supersymmetry

Josh Ruderman UC Berkeley @Rutgers, April 22, 2013

Lawrence Hall, JTR, Tomer Volansky, 1302.2620 Cliff Cheung, Lawrence Hall, David Pinner, JTR 1211.4873

m_h

h

$\begin{array}{c} \mbox{MSSM 1\% tuned} & = & m \\ \mbox{For this talk, I am agnostic about naturalness.} \\ \mbox{λSH_uH_d} & = & h \end{array}$

 $\tilde{m} \gg m_h$

 $\tilde{m} \gg m_h$

• what constrains \tilde{m} ?

 $\tilde{m} \gg m_h$

• what constrains \tilde{m} ?

• what can we measure in experiments?

 $\tilde{m} \gg m_h$

- what constrains \tilde{m} ?
- what can we measure in experiments?

Wednesday, April 24, 13

experimental status of SUSY DM?

the plan

gravitino miracle

 \tilde{G}

2. neutralino DM vs. experiment

Wednesday, April 24, 13

Ι.

the plan

gravitino miracle

 \tilde{N}_1

neutralino DM vs. experiment

Wednesday, April 24, 13

Ι.

2.

Gravitino Miracle

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Lawrence Hall, JTR, Tomer Volansky, 1302.2620

 $\tilde{m} Y_{FO} \leq T_{eq}$

$$\tilde{m} Y_{FO} \leq T_{eq}$$

$$Y_{FO} = \frac{n_{FO}}{s} = \frac{1}{M_p \langle \sigma v \rangle T_{FO}}$$

$$\tilde{m} Y_{FO} \leq 1$$
$$Y_{FO} = \frac{n_{FO}}{s} = \frac{1}{M_p \langle \sigma v \rangle T_{FO}}$$

$$\tilde{m} \le \alpha \sqrt{T_{eq} M_p}$$

 $\sqrt{T_{eq}M_p} \approx 60 \text{ TeV}$

 $\sqrt{T_{eq}}M_p \approx 60 \text{ TeV}$

applied to SUSY:

• mass scale of LSP is tied to the weak scale

•Goldberg, 1983

applied to SUSY:

mass scale of LSP is tied to the weak scale

•Goldberg, 1983

in Split SUSY, invoked to keep fermions near weak scale

 $\ldots \widetilde{q}, \widetilde{l}$

- Wells, 2003
- Arkani-Hamed, Dimopoulos 2004

applied to SUSY:

mass scale of LSP is tied to the weak scale

•Goldberg, 1983

in Split SUSY, invoked to keep fermions near weak scale

 $\ldots \widetilde{q}, \widetilde{l}$

Wells, 2003

Arkani-Hamed, Dimopoulos 2004

relies on several assumptions!

key assumptions:

key assumptions:

I. stable LSP (R-parity)

key assumptions:

I.stable LSP (R-parity)2. $T_R > \tilde{m}$

key assumptions:

I.stable LSP (R-parity)2. $T_R > \tilde{m}$ 3.no dilution

key assumptions:

I.stable LSP (R-parity)2. $T_R > \tilde{m}$ 3.no dilution4.LSP reaches equilibrium

key assumptions:

I.stable LSP (R-parity)2. $T_R > \tilde{m}$ 3.no dilution4.LSP reaches equilibrium

key assumptions:

key assumptions:

I.stable LSP (R-parity)2. $T_R > \tilde{m}$ 3.no dilution4.LSP reaches equilibrium

what about gravitino LSP?

 \tilde{G}

 \tilde{N}_1

gravitino primer

$$m_{3/2} \approx \frac{F}{M_p}$$
$$\tilde{m} = \frac{F}{M}$$

gravitino primer

 $M < M_p$ $ilde{N}_1$ \tilde{G}
gravitino primer

 $M < M_p$ $ilde{N}_1$ \tilde{G}

 $\frac{1}{F}J^{\mu}_{Q}\,\partial_{\mu}\tilde{G}$

Wednesday, April 24, 13

gravitino primer

gravitino loophole?

$$\Omega_{3/2} = \frac{m_{3/2}}{m_{\rm NLSP}} \,\Omega_{\rm NLSP}$$

Wednesday, April 24, 13

 T_R

when is: $\Omega_{3/2} \leq \Omega_{obs}$?

when is: $\Omega_{3/2} \leq \Omega_{obs}$?

a simple parameterization:

 $\tilde{m}, m_{3/2}, T_R$

constraining the reheat temperature

Moroi, Murayama, Yamaguchi 1993

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FI} + m_{3/2}Y_{FO} \le T_{eq}$

what about constraining \tilde{m} ?

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FO} \le T_{eq}$

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FO} \le T_{eq}$

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FO} \le T_{eq}$

$$\frac{1}{m_{3/2}} \frac{T_R \,\tilde{m}^2}{M_p} + m_{3/2} \frac{\tilde{m}}{\alpha^2 M_p} \le T_{eq}$$

abundance minimized when:

$$m_{3/2} = \left(\frac{T_R}{\tilde{m}}\right)^{1/2} \alpha \,\tilde{m}$$

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FO} \le T_{eq}$

$$\frac{1}{m_{3/2}} \frac{T_R \,\tilde{m}^2}{M_p} + \frac{m_{3/2}}{\alpha^2 M_p} \leq T_{eq}$$

abundance minimized when:

$$m_{3/2} = \left(\frac{T_R}{\tilde{m}}\right)^{1/2} \alpha \,\tilde{m}$$

$$\tilde{m} \leq \left(\frac{T_R}{\tilde{m}}\right)^{-1/4} \alpha^{1/2} \sqrt{T_{eq} M_p}$$

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FO} \le T_{eq}$

$$\frac{1}{m_{3/2}} \frac{T_R \,\tilde{m}^2}{M_p} + \frac{m_{3/2}}{\alpha^2 M_p} \leq T_{eq}$$

abundance minimized when:

$$m_{3/2} = \left(\frac{T_R}{\tilde{m}}\right)^{1/2} \alpha \,\tilde{m}$$

$$\tilde{m} \leq \left(\frac{T_R}{\tilde{m}}\right)^{-1/4} \alpha^{1/2} \sqrt{T_{eq} M_p}$$

 $\tilde{m} \le \alpha^{1/2} \sqrt{T_{eq} M_p}$

• very light gravitinos thermalize: $Y_{UV} \sim \mathcal{O}(1)$

• very light gravitinos thermalize: $Y_{UV} \sim \mathcal{O}(1)$

$$m_{3/2}^2 \leq \left(\frac{T_R}{\tilde{m}}\right) \frac{\tilde{m}^3}{M_p} \approx \text{keV}^2\left(\frac{T_R}{\tilde{m}}\right) \left(\frac{\tilde{m}}{100 \text{ GeV}}\right)^3$$

• very light gravitinos thermalize: $Y_{UV} \sim \mathcal{O}(1)$

$$m_{3/2}^2 \leq \left(\frac{T_R}{\tilde{m}}\right) \frac{\tilde{m}^3}{M_p} \approx \text{keV}^2\left(\frac{T_R}{\tilde{m}}\right) \left(\frac{\tilde{m}}{100 \text{ GeV}}\right)^3$$

overclosure bound

 $m_{3/2} \lesssim 100 \text{ eV}$

• Pagels, Primack 1982

• very light gravitinos thermalize: $Y_{UV} \sim \mathcal{O}(1)$

$$m_{3/2}^2 \leq \left(\frac{T_R}{\tilde{m}}\right) \frac{\tilde{m}^3}{M_p} \approx \text{keV}^2\left(\frac{T_R}{\tilde{m}}\right) \left(\frac{\tilde{m}}{100 \text{ GeV}}\right)^3$$

overclosure bound

 $m_{3/2} \lesssim 100 \text{ eV}$

• Pagels, Primack 1982

• free streaming length:

 $m_{3/2} \lesssim 16 \text{ eV}$

• Viel et al., 2005
thermalized gravitinos

implies low SUSY breaking scale

thermalized gravitinos

implies low SUSY breaking scale

$$m_{3/2} \lesssim 16 \text{ eV}$$
 $\sqrt{F} \lesssim 260 \text{ TeV}$
 $\tilde{m} = \left(\frac{g_{\text{susy}}}{4\pi}\right)^2 \sqrt{F}$

$$m_{3/2} < T_{eq}$$

 $F \leq T_{eq} M_p$

$$\tilde{m} \le \left(\frac{g_{\text{susy}}}{4\pi}\right)^2 \sqrt{T_{eq} M_p}$$

TR

m3/2

Wednesday, April 24, 13

SM-superpartner LSP

TR

m3/2

TR

m3/2

TR

m3/2

Wednesday, April 24, 13

TR

Ĩ

m3/2

generalizations

no freeze-out and decay split SUSY

- RPV
- light hidden sector
- colored LOSP

- RPV
- light hidden sector
- colored LOSP

$$\frac{1}{m_{3/2}} \frac{T_R \,\tilde{m}^2}{M_p} \le T_{eq}$$

- RPV
- light hidden sector
- colored LOSP

$$\frac{1}{m_{3/2}} \frac{T_R \,\tilde{m}^2}{M_p} \le T_{eq} \lim_{\substack{m_{3/2} < \tilde{m}}} \left[\tilde{m} \le \left(\frac{T_R}{\tilde{m}} \right)^{-1/2} \sqrt{T_{eq} \, M_p} \right]$$

split

$$\ldots \ldots \widetilde{q}, \widetilde{l}$$

Wednesday, April 24, 13

ullet same as above with $\, ilde{m} o m_f \,$

gravitino production in split

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FI} + m_{3/2}Y_{FO} \le T_{eq}$

gravitino production in split

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FI} + m_{3/2}Y_{FO} \le T_{eq}$

gravitino production in split

 $m_{3/2}Y_{UV} + m_{3/2}Y_{FI} + m_{3/2}Y_{FO} \le T_{eq}$

constraint on splitting

constraint on splitting

DM and the Weak Scale

 $m_{3/2} > \tilde{m}$

DM and the Weak Scale

Wednesday, April 24, 13

Cliff Cheung, Lawrence Hall, David Pinner, JTR 1211.4873

Wednesday, April 24, 13

spin-independent

 $ar{\chi}\chiar{N}N$

spin-dependent

 $ar{oldsymbol{\chi}}\gamma^\mu\gamma^5oldsymbol{\chi}\ ar{N}\gamma_\mu\gamma^5N$

spin-independent

spin-dependent

 $ar{\chi}\gamma^{\mu}\gamma^{5}\chi\ ar{N}\gamma_{\mu}\gamma^{5}N$

 $ar{\chi}\chiar{N}N$

$$\sigma_{SI} \approx 6 \times 10^{-45} \,\mathrm{cm}^2 \left(\frac{c_{h\chi\chi}}{0.1}\right)^2$$

spin-independent

spin-dependent

 $ar{\chi}\gamma^{\mu}\gamma^{5}\chi\ ar{N}\gamma_{\mu}\gamma^{5}N$

 $ar{\chi}\chiar{N}N$

$$\sigma_{SI} \approx 6 \times 10^{-45} \,\mathrm{cm}^2 \left(\frac{c_{h\chi\chi}}{0.1}\right)^2$$

 $\sigma_{SD} \approx 3 \times 10^{-39} \,\mathrm{cm}^2 \left(\frac{c_{Z\chi\chi}}{0.1}\right)^2$

spin-independent

spin-independent

spin-independent

spin-dependent

indirect

FERMI-LAT 1108.3546

updated in Alex Drlica-Wagner's talk, Fermi Symposium, 11/2012

collider

LEP: $\mu, M_2 \gtrsim 100 \text{ GeV}$

CMS

ATLAS

$$SM + \tilde{B}, \tilde{W}, \tilde{H}$$
 $h = \frac{\tilde{B}, \tilde{W}, \tilde{H}}{h = \frac{\tilde{B}}{2}}$

• assume scalar superpartners can be decoupled when computing: $\sigma_{\chi N}, \Omega$

$$SM + \tilde{B}, \tilde{W}, \tilde{H}$$
 $h = \frac{\tilde{B}, \tilde{W}, \tilde{H}}{h}$

- assume scalar superpartners can be decoupled when computing: $\sigma_{\chi N}, \Omega$
- assume CP

$$SM + \tilde{B}, \tilde{W}, \tilde{H}$$
 $h = \frac{\tilde{B}, \tilde{W}, \tilde{H}}{h}$

• assume scalar superpartners can be decoupled when computing: $\sigma_{\chi N}, \Omega$

- assume CP
- parameters:

 $M_1, M_2, \mu, \tan\beta$

thermal DM with pure eigenstates

• wino

 $m_{\tilde{W}} \approx 2.7 \text{ TeV}$

hidden dark matter

hidden dark matter

hidden dark matter

blindspots

 $c_{h\chi\chi} = \frac{\partial m_{\chi}}{\partial v} = 0$

blindspots

$$c_{h\chi\chi} = \frac{\partial m_{\chi}}{\partial v} = 0$$

bino wino higgsino bino/wino

\mathbf{m}_{χ}	condition	signs
M_1	$M_1 + \mu \sin 2\beta = 0$	$\operatorname{sign}(M_1/\mu) = -1$
M_2	$M_2 + \mu \sin 2\beta = 0$	$\operatorname{sign}(M_2/\mu) = -1$
$-\mu$	$\tan\beta = 1$	$\operatorname{sign}(M_{1,2}/\mu) = -1$
M_2	$M_1 = M_2$	$\operatorname{sign}(M_{1,2}/\mu) = -1$

studied in singlet/doublet model by

Cohen, Kearney, Pierce, Tucker-Smith 1109.2604

bino-higgsino

decouple wino

bino-higgsino

• decouple wino

• parameters

$$M_1, \mu, \tan \beta$$

bino-higgsino

decouple wino

• parameters

$$M_1, \mu, \tan\beta$$

- allow for non-thermal cosmology $\Omega_{FO} \neq \Omega_{obs}$

 μ [GeV]

 $\tan \beta = 20$

$\Omega_{FO} = \Omega_{obs}$

solve for: $M_1(\mu, \tan\beta)$

target

conclusions
conclusions

• gravitino miracle

$$\begin{split} \tilde{m} &< \alpha^n \sqrt{T_{eq} \, M_p} \\ \text{LSP} = \tilde{N}_1 & n = 1 \\ \text{LSP} = \tilde{G} & n = 1/2 \end{split}$$

conclusions

gravitino miracle

$$\tilde{m} < \alpha^n \sqrt{T_{eq} M_p}$$

$$LSP = \tilde{N}_1 \qquad n = 1$$

$$LSP = \tilde{G} \qquad n = 1/2$$

direct detection is now testing DM-Higgs coupling

conclusions

gravitino miracle

$$\tilde{m} < \alpha^n \sqrt{T_{eq} M_p}$$

$$LSP = \tilde{N}_1 \qquad n = 1$$

$$LSP = \tilde{G} \qquad n = 1/2$$

direct detection is now testing DM-Higgs coupling

• but there are blindspots

CDMS II silicon

rate coefficients:

$$C_{UV} = \gamma_3 \frac{15\sqrt{90}}{2\pi^3 g_*^{3/2}} \qquad C_{FI} = \frac{405}{2\pi^4} \sqrt{\frac{5}{2}} \frac{1}{g_*^{3/2}} \frac{n_{FI}}{4\pi} \qquad C_{FO} = \frac{3\sqrt{5}x_f}{8\sqrt{2}g_*\pi^2}$$

superpartner mass bound: $m_{3/2} = \sqrt{\frac{C_D}{C_{FO}}} \alpha_{eff} \tilde{m}$

$$\tilde{m}^2 \leq \frac{a/2}{\sqrt{C_{FO}C_D}} \alpha_{\text{eff}} M_{Pl} T_{eq} \qquad C_D = C_{UV}(T_R/\tilde{m}) + C_{FI}$$

variations on gravitino bound

neutralino mass matrix

strange quark

$$f_q = \frac{m_q}{m_N} \langle N | q\bar{q} | N \rangle \qquad \begin{array}{l} \sigma \propto f^2 \\ f = \Sigma_q f_q \end{array}$$

strange quark

 $f_s = 0.053$

Giedt, Thomas, Young, 0907.4177

Junnarkar, Walker-Loud 1301.1114

strange quark

tuning

blindspots

$$\mathcal{L} \supset \frac{1}{2} m_{\chi} \left(v + h \right) \, \chi^2 = \frac{1}{2} m_{\chi} \, \chi^2 + \frac{1}{2} \frac{\partial m_{\chi}}{\partial v} \, h \, \chi^2 + \dots$$

Higgs-DM-DM
$$c_{h\chi\chi} = \frac{\partial m_{\chi}}{\partial v} = 0$$
 coupling:

 $\det(M_{\chi} - \mathbb{1}m_{\chi_i}(v)) = 0$

$$(m_{\chi_i}(v) + \mu \sin 2\beta) \left(m_{\chi_i}(v) - \frac{1}{2} (M_1 + M_2 + \cos 2\theta_W (M_1 - M_2)) \right) = 0$$

multi-component

loop

with squarks

non–thermal $\tilde{B}/\tilde{W}/\tilde{h}$

purity

tree-level Higgs coupling vanishes for pure higgsino or Wino

loop contribution smaller than expected

Hisano, Ishiwata, Nagata, Takesako 1104.0228
 Hill, Solon 1111.0016