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LHC higgs reach

115-120 GeV higgs
search is 

challenging
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Figure 10.39: The signal significance as a function of the Higgs boson mass for 30 fb
−1

of the

integrated luminosity for the different Higgs boson production and decay channels

10.3.3 Study of CP properties of the Higgs boson using angle correlation in

the Φ→ ZZ → e+e−µ+µ− process

The most general ΦV V coupling (V =W
±
,Z

0
) for spin-0 Higgs boson Φ (Φ means the Higgs

particle with unspecified CP -parity, while H (h) and A mean the scalar and pseudoscalar

Higgs particles, respectively) looks as follows [511–514]:

CJ=0
ΦV V = κ · gµν +

ζ

m
2
V

· pµ
p

ν +
η

m
2
V

· �µνρσ
k1ρk2σ, (10.5)

where k1, k2 are four-momenta of vector bosons V and p≡ k1+k2 is four-momentum of the

Higgs boson. In the present analysis a simplified version of above ΦV V coupling (Eq. 10.5)

is studied with a Standard-Model-like scalar and a pseudoscalar contributions (i.e. κ, η �= 0
and ζ = 0). To study deviations from the Standard Model ΦZZ coupling we take κ=1¶. The

decay width for the Φ→ZZ→(�1�̄1)(�2�̄2) process consists now of three terms: a scalar one

(denoted by H), a pseudoscalar one ∼η2
(denoted by A) and the interference term violating

CP ∼η (denoted by I):

dΓ(η) ∼ H + η I + η2
A. (10.6)

This way the Standard-Model scalar (η =0) and the pseudoscalar (in the limit |η|→∞) con-

tributions could be recovered. It is convenient to introduce a new parameter ξ, defined by

tan ξ≡ η, which is finite and has values between −π/2 and π/2. Expressions for H , A and I

can be found in article [512].

In study of the CP-parity of the Higgs boson two angular distributions were used. The first

one is a distribution of the angle ϕ (called plane or azimuthal angle) between the planes

of two decaying Zs in the Higgs boson rest frame. The negatively charged leptons were

used to fix plane orientations. The second one is a distribution of the polar angle θ, in the Z

¶
The ΦV V coupling with κ=1 and arbitrary η is implemented in the PYTHIA generator.
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this  is unfortunate

MSSM higgs is most likely to be found 
in 

115- 130 GeV 
window
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there will be plenty of Higgs 
at LHC

SM cross-section 
source (ATL-PHYS-2008-258)
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MSSM cross-section 
source (ATL-PHYS-2008-258)
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h → γγ

•Most significant decay channel .

•Reconstructed mass peak on top of continuum di-photon bkg.

•Atlas: inclusive γγ and exclusive γγ+jets searches. 

source (ATL-PHYS-2008-258)

S/
√

B = 2.6

S/
√

B = 1.8

S/
√

B = 1.9

Inclusive 
H+!1 jet 

H+!2 jet 

for the lightest mass range the most sensitive channel is h→ γγ

• reconstruct the diphoton invariant mass peak, on top of 
continuum diphoton background

• ATLAS: inclusive diphoton and exclusive                 searchesγγ + jets

for L = 10 fb−1

3Thursday, February 18, 2010
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LHC higgs search in 115-120 GeV

pp → V h
Recently, a new technique for light Higgses  

In associated production of Higgs + Z,W:

(Butterworth, Davison, Rubin, Salam ’08)

significance           for ∼ 4.5 L = 30 fb−1
�
∼ 2.6 for L = 10 fb−1

�
W (�ν)/Z(��) + h(b̄b)

obtained by focusing on  
  boosted Higgses ,   

          
pT,h > 200 GeV

b

b̄

h

W/Z
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Butterworth, Davison,
Rubin, Salam (2008)

significance of 4.2  for
using jet-substructure for jets with  
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substructure

two-pronged decays

Butterworth, Davison, Rubin, Salam (2008)

Plehn, Salam, Spannowsky (2009)

three-pronged decays

Thaler and Wang (2008)

Brooijmans (2008)

Kaplan, Rehermann, Schwartz and Tweedie (2008)

Butterworth, Ellis, Rakhlev, Salam (2009)

pruning/trimming

Ellis, Vermilion, Walsh (2009)

Krohn, Thaler, Wang (2009) 

not an exhaustive list

Tuesday, April 13, 2010



interesting new concept 

but a bit limited in the SM

there are few boosted Higgses  in SM:  
        only ~ 5% of boosted Higgs in  h + W/Z

 need to trigger & suppress  SM backgrounds 

 search is limited to leptonic decay of   W/Z

Search for boosted Higgs

Tuesday, April 13, 2010



Higgs from BSM 

BSM particles can decay to Higgses

 a new source
 of Higgses

h

hh

h

new colored
stuff

=

initial (colored) states are heavy           

higher fraction of 
boosted Higgses

(∼ TeV)
while Higgs can be light 
                   

9Thursday, February 18, 2010

new sources 
of Higgs

much higher fraction 
of boosted Higgs 

Higgs in the BSM

initial colored states are heavy 
while Higgs is light

Tuesday, April 13, 2010



If BSM contains new colored states, production at LHC is 
easily in the ~few pb range

comparable to or greater than SM  EW production of Higgses

BSM production often comes with new effective handles for 
suppressing SM background

Higgses from decays of BSM particles are naturally boosted  

BSM-Higgses have all ingredients for a successful 
substructure analysis

Higgs from BSM
Higgs from BSM 

 BSM production often comes with new, effective 
           handles for suppressing SM backgrounds 

/ET ,high− pT jets, �, γ, HT , · · ·

If BSM contains new colored states, production at  
            LHC is easily in the     few pb range∼

comparable to or greater than 
  SM EW Higgs production

Higgses from BSM have all of the important 
ingredients for a successful substructure analysis

10Thursday, February 18, 2010
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Pick  new physics scenarios as sources of boosted Higgs.

MSSM with a gravitino LSP (low scale mediation)

MSSM with a neutralino LSP (high scale mediation)

Review of jet substructure technicalities:

briefly discuss clustering

simple substructure analysis as proposed by Butterworth et.al..

our algorithm that works in hectic, crowded  BSM environments

Results 

The plan for the talk

Tuesday, April 13, 2010



SUSY sources of boosted Higgs

though our techniques apply to a wide area of BSM 
scenarios, we’ll look at (weak scale) SUSY

Why SUSY ? 

MSSM Higgs is light (                           )

it has new colored particles (squarks, gluinos) 

all events include 

Higgs via various decays 

Part I:  SUSY sources of boosted Higgs

Though our techniques apply to a wide array of BSM 
scenarios, we’ll look at (weak scale) SUSY

why SUSY? 

• MSSM Higgs has to be light                            ,
                                               decays dominantly to 

•   it has new colored particles (squarks, gluinos), which can  
                                be produced with large cross sections
•  all events include 
•  Higgs via various decays:

χ̃0
2 → χ̃0

1 + h

χ̃±2 → χ̃±1 + h

t̃L,R → t̃R,L + h

χ̃0
1 → G̃ + h

mh � 130 GeV

/ET

bb̄
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χ̃0
3,4 → χ̃0

1,2 + h t̃2 → t̃1 + h

χ̃±2 → χ̃±1 + h χ̃0
1 → G̃ + h

Tuesday, April 13, 2010



everything super decays to the NLSP 

the lightest 
neutralino

gravitino  + γ or  Z or  h  

new source of Higgs

MSSM with 
neutralino LSP + gravitino LSP

Tuesday, April 13, 2010



Figure 1: Branching ratios of the lightest neutralino Br(χ̃0
1 → G̃ + γ, h, Z)

as a function of the neutralino mixing angle tan−1(µ/M1), for a fixed mass
Mχ̃0

1
= 160 GeV and mh = 105 GeV for (a) tan β = 3 and (b) tan β = 40.

and M2, have the same sign, sgn(M1M2) = + then χ̃0
1 is the NLSP. For sgn(M1M2) = − it

is however possible in certain regions of parameter space that χ̃±
1 is the NLSP. In this letter

only a χ̃0
1 NLSP, which leads to the interesting di-boson signatures, will be considered.

The branching ratios Br(χ̃0
1 → G̃ + (γ, h, Z)) are determined by the Higgsino and gaugino

content of χ̃0
1 [3, 5]. This is illustrated in Fig. 1 as a function of the neutralino mixing angle

tan−1(µ/M1) for fixed χ̃0
1 mass, where µ is the Higgsino mass parameter, and tan β = vu/vd

is the ratio of Higgs expectation values. For definiteness the Higgs decoupling limit in which

decays to the heavy scalar and pseudoscalar Higgs bosons, H and A, are kinematically blocked

is employed throughout. For gaugino-like χ̃0
1 the γ mode dominates, but for Higgsino-like χ̃0

1

the h and Z modes become important. The dependence on sgn(µ) and tan β apparent in Fig. 1

can be understood in terms of the χ̃0
1 quantum numbers and couplings and will be presented

elsewhere.

3

neutralino branching ratio:

You can almost make a Higgs 
factory out of LHC

Neutralino Decays to Gravitinos

•  happens when the scale of SUSY breaking is low (GMSB)
•  decays of neutralinos governed by 
•  can get appreciable BR to Higgses when the lightest
       neutralino is primarily Higgsino |µ|�M1, M2

M1, M2, µ, tanβ

(Matchev, Thomas ’99)

(Meade, Reece, Shih ’09)
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1 isolated photon  + large missing Et 

additional handles to get rid of 
SM backgrounds 

Why start with                    ?

G̃

G̃

χ̃0

χ̃0

• The mixed decay                          χ̃0χ̃0 → h + γ + /ET

has a smaller rate, but many advantages

γ

h /ET

   hard, isolated photon
 plus large     

kills off much of the SM 
background 

heavier, colored sparticles control LHC production

χ̃0
1 → G̃ + h

• simplest BSM scenario we could think of to test jet  
substructure techniques on

14Thursday, February 18, 2010
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Higgses produced in association             
        with SM particles
smaller cross-section (set by      )
no BSM      
only SM  bkg

MSSM Higgs source comparison

Higgses source comparison 
how we want to look for the 

MSSM Higgs
how people usually look for the 

MSSM Higgs

G̃

G̃

χ̃0

χ̃0
γ

h
b

b̄

τ+

τ−g

g

• Higgs produced in association   
    with SM particles 

• smaller cross section (set by     )
• no (BSM)    
• only SM backgrounds

yb

/ET

• Higgses from sparticle decays
• big cross-section (inclusive SUSY prod.)
• all events have      , lots of extra jets
• SM and BSM backgrounds

/ET

φ
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how we want to 
look for

how people usually 
look for  

with so  much is going on in  inclusive SUSY events.. how can we  
do better than traditional search
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Higgs from BSM 

 BSM production often comes with new, effective 
           handles for suppressing SM backgrounds 

/ET ,high− pT jets, �, γ, HT , · · ·

If BSM contains new colored states, production at  
            LHC is easily in the     few pb range∼

comparable to or greater than 
  SM EW Higgs production

Higgses from BSM have all of the important 
ingredients for a successful substructure analysis

10Thursday, February 18, 2010

yb

Higgses from  sparticle decay

big cross-section (inclusive susy prod.)

all events have     

SM and BSM bkg
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            LHC is easily in the     few pb range∼

comparable to or greater than 
  SM EW Higgs production

Higgses from BSM have all of the important 
ingredients for a successful substructure analysis

10Thursday, February 18, 2010
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use Jet substructure

MSSM Higgs source comparison
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how we want to 
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how people usually 
look for  

Higgses from  sparticle decay

big cross-section (inclusive susy prod.)
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SM and BSM bkg
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substructure 

1. Briefly discuss clustering

2. Discuss simple substructure analysis

3. Describe our algorithm

Tuesday, April 13, 2010



First:
  

clustering

(I will talk about recombination scheme)
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1

2 3

4

5

6

Recombination jet algorithm

dij = min
�
p2n

ti , p2n
tj

�
∆R2

ij/R2

di = p2n
ti

n =
1
0
−1

kt

C/A
anti kt

calculate

Making and breaking jets
to be able to better use the information contained in jets, 

we have to know how they are created 

starting from a list of final particles,
calculate:

dij = min(p2n
Ti, p2n

Tj)
∆R2

ij

R2

di = p2n
Ti

n =






n = 1 kT

n = 0 C/A
n = −1 anti-kT

we use the C/A (angle ordered shower) 
throughout

1
2

3

4

5
6

jet `area’

∆Rij =
�

(δη2
ij) + (δφij)2
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find   min (dij , di)
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2 3

4

5

Recombination jet algorithm

7

min (dij , di) = d1 6

combine 1 and 6 into 7 
and remove 1 and 6  

1

6

example:

Tuesday, April 13, 2010



2 3

4

5

Recombination jet algorithm

7

calculate again min (dij , di)

Tuesday, April 13, 2010



2 3

4

5

Recombination jet algorithm

7

min (dij , di) = d5
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2 3

4

5

Recombination jet algorithm

7

min (dij , di) = d5
promote 5 to jet and 

remove

Tuesday, April 13, 2010



2 3

4

Recombination jet algorithm

7

repeat until the list is empty
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Next:
  

de-clustering and finding heavy
particle threshold

Tuesday, April 13, 2010



J1 J2

J

mJ1 > mJ2

break a C/A  b-jet  J  into two parents 
by undoing its last stage of  clustering

daughter

parent-1

parent-2

Tuesday, April 13, 2010



is J a suspect ? 

mJ1 < 0.68 mJ

check if  

min
�
p2

t1, p
2
t2

� ∆R2
12

m2
J

> (0.3)2

J1 J2

J

Tuesday, April 13, 2010



is J a suspect ? 

mJ1 < 0.68 mJ

check if  

min
�
p2

t1, p
2
t2

� ∆R2
12

m2
J

> (0.3)2

J1 J2

J

if yes   

J is at heavy particle threshold  

exit

if yes   

J is at heavy particle threshold  

exit

Tuesday, April 13, 2010



is J a suspect ? 

mJ1 < 0.68 mJ

check if  

min
�
p2

t1, p
2
t2

� ∆R2
12

m2
J

> (0.3)2

J1 J2

J

if no   

replace     J     by      J1     

repeat

if no   

replace     J     by      J1     

repeat

Tuesday, April 13, 2010



simplest substructure 
algorithm does not work so 

well

extra hard jet may 
enter the Higgs cone

Improved jet substructure

The large number of b quarks, especially when 3rd  
 generation squarks are important in SUSY production,
  becomes a problem (similar to t-tbar-h in SM)
                 

identifying a pair of heavy particles is no longer enough

t

t̄
χ̃+

χ̃−

b

b̄ b

χ̃0

χ̃0

j

j
j

extra b’s can end up in the 
‘higgs jet’ disrupting the 
substructure algorithm

b

b̃

b̃∗

b̄

(Plehn, Salam, Spannowsky ’09)

ex.)

28Thursday, February 18, 2010
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J1 J2

J

mJ1 > mJ2

break a C/A  b-jet  J  into two parents 
by undoing its last stage of  clustering

daughter

parent-1

parent-2

Martin, Kribs, 
TR, Spannowsky
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is J a suspect ? 

mJ1 < 0.68 mJ

check if  

min
�
p2

t1, p
2
t2

� ∆R2
12

m2
J

> (0.3)2

J1 J2

J

Martin, Kribs, 
TR, Spannowsky
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is J a suspect ? 

mJ1 < 0.68 mJ

check if  

min
�
p2

t1, p
2
t2

� ∆R2
12

m2
J

> (0.3)2

J1 J2

J

if yes   

Z =
min

�
p2

tJ1, p2
tJ2

�

p2
tj

∆RJ1J2record

replace  J  by  J1     

repeat as long as J has parents

Martin, Kribs, 
TR, Spannowsky
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is J a suspect ? 

J1 J2

J
J   is a Higgs candidate

if 

Z   is the largest

and

both parents are b-tagged

n

n

n n

Martin, Kribs, 
TR, Spannowsky
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Filtering

J n
J   is a Higgs candidate

J1 J2
n n

n

Jet Substructure #2

For each jet (                ) in the event:R = 1.2

i i

(Butterworth et al
0802.2470)

J

1. Undo the last stage of clustering                     , calling the 
more massive daughter    .i

J → i + j

or

For a heavy particle decay, expect  
       so only keep events with significant mass-drop: 

mi � mJ

mi < µmJ

22Thursday, February 18, 2010
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Filtering

J n
J   is a Higgs candidate

J1 J2
n n

n

record  ∆RJn
1 ,Jn

2

Jet Substructure #2

For each jet (                ) in the event:R = 1.2

i i

(Butterworth et al
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Filtering

J n
J   is a Higgs candidaten

record  ∆RJn
1 ,Jn
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Jet Substructure #2
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J

1. Undo the last stage of clustering                     , calling the 
more massive daughter    .i
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or
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Filtering

J n
J   is a Higgs candidaten

de-cluster J  completely    n

Jet Substructure #2

For each jet (                ) in the event:R = 1.2

i i

(Butterworth et al
0802.2470)

J

1. Undo the last stage of clustering                     , calling the 
more massive daughter    .i

J → i + j

or

For a heavy particle decay, expect  
       so only keep events with significant mass-drop: 

mi � mJ

mi < µmJ
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Filtering

re-cluster using 

Rfilt = min
�

∆RJn
1 ,Jn

2

2
, 0.3

�

Pt order the jets 

Jet Substructure #2

For each jet (                ) in the event:R = 1.2

i i

(Butterworth et al
0802.2470)

J

1. Undo the last stage of clustering                     , calling the 
more massive daughter    .i

J → i + j

or

For a heavy particle decay, expect  
       so only keep events with significant mass-drop: 

mi � mJ

mi < µmJ
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Filtering

• retain only three hardest component and combine.  call it  Higgs Jet 

Jet Substructure #2

For each jet (                ) in the event:R = 1.2

i i

(Butterworth et al
0802.2470)

J

1. Undo the last stage of clustering                     , calling the 
more massive daughter    .i

J → i + j

or

For a heavy particle decay, expect  
       so only keep events with significant mass-drop: 

mi � mJ

mi < µmJ
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For example:  take the spectrum

Results: Point #1
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For example:  this one is harder

Results: Point #1
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Results: Point #3
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Results: Point #3

bb
M

40 60 80 100 120 140 160 180 200 220

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/6

.0
 G

e
V

0

5

10

15

20

25

30

bb
M

40 60 80 100 120 140 160 180 200 220

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/6

.0
 G

e
V

0

5

10

15

20

25

30
tt + jets

bbW + 

bbZ + 
W + jets

Z + jets

SUSY

 = 14 TeVs, -1b invariant mass, L = 10 fbb

BR(χ̃0 → γ + G̃) ∼ 82.6%
BR(χ̃0 → Z + G̃) ∼ 16%
BR(χ̃0 → h + G̃) ∼ 1.3%

boosted fraction ∼ 47%

Candidate Higgs-jet mass

much trickier region of 
parameter space 

|µ|
M1

M2

750 GeV

mQ̃3 1 TeV

mQ̃1,2

200 GeV

36Thursday, February 18, 2010

Results: Point #3

bb
M

40 60 80 100 120 140 160 180 200 220

N
u

m
b

e
r 

o
f 

E
v

e
n

ts
/6

.0
 G

e
V

0

5

10

15

20

25

30

bb
M

40 60 80 100 120 140 160 180 200 220

N
u

m
b

e
r 

o
f 

E
v

e
n

ts
/6

.0
 G

e
V

0

5

10

15

20

25

30
tt + jets

bbW + 

bbZ + 
W + jets

Z + jets

SUSY

 = 14 TeVs, -1b invariant mass, L = 10 fbb

BR(χ̃0 → γ + G̃) ∼ 82.6%
BR(χ̃0 → Z + G̃) ∼ 16%
BR(χ̃0 → h + G̃) ∼ 1.3%

boosted fraction ∼ 47%

Candidate Higgs-jet mass

much trickier region of 
parameter space 

|µ|
M1

M2

750 GeV

mQ̃3 1 TeV

mQ̃1,2

200 GeV

36Thursday, February 18, 2010

For example:  this one is almost 
impossible

Results: Point #1
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work in progress

Higgses from other BSM scenarios
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work in progress

Higgses from other BSM scenarios

Example: MSSM with neutralino LSP

should appear in 1 week

Tuesday, April 13, 2010



�2 �1 0 1 2
0

10

20

30

40

50

60

70

M1�Μ

Results:  MSSM with neutralino LSP

pT(h) > 200 GeV

pT(h) > 300 GeV

�2 �1 0 1 2
0.00

0.05

0.10

0.15

0.20

0.25

M1�Μ
χ3 → h + . . .

χ4 → h + . . .

χ±2 → h + . . .

�2 �1 0 1 2
0.0

0.1

0.2

0.3

0.4

M1�Μ
q̃R → h + . . .

q̃L → h + . . .

Tuesday, April 13, 2010



candidate Higgs jet mass (GeV)
40 60 80 100 120 140 160 180 200 220

N
um

be
r o

f E
ve

nt
s/

9.
0 

G
eV

0

5

10

15

20

25

30

candidate Higgs jet mass (GeV)
40 60 80 100 120 140 160 180 200 220

N
um

be
r o

f E
ve

nt
s/

9.
0 

G
eV

0

5

10

15

20

25

30

tt + jets
bbW + 

bbZ + W + jets
Z + jets
SUSY

 = 14 TeVs, -1L = 10 fb

Results: Point #1

bb
M

40 60 80 100 120 140 160 180 200 220

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/6

.0
 G

e
V

0

10

20

30

40

50

60

70

80

90

bb
M

40 60 80 100 120 140 160 180 200 220

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/6

.0
 G

e
V

0

10

20

30

40

50

60

70

80

90 tt + jets

bbW + 

bbZ + 
W + jets

Z + jets

SUSY

 = 14 TeVs, -1b invariant mass, L = 10 fbb

(Kribs, AM, Roy, Spannowsky)

/ET > 100 GeV
pTγ > 80 GeV

cuts:

substructure + 

light squarks dominate 
SUSY production

BR(χ̃0 → G̃ + γ) ∼ 43%
BR(χ̃0 → G̃ + Z0) ∼ 29%
BR(χ̃0 → G̃ + h) ∼ 28%

∼ 38%boosted fraction

Candidate Higgs-jet mass

|µ|
M1

M2

mQ̃ 750 GeV

600 GeV

300 GeV
−250 GeV

33Thursday, February 18, 2010

1 TeV

150 GeV

Results:  MSSM with neutralino LSP

χ3 → h + χ1 ∼ 16%
χ4 → h + χ1 ∼ 16%

χ±2 → h + χ±1 ∼ 25%
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Example: SUSY with neutralino LSP
fewer handles than                            χ̃0 → h/γ + G̃

require large                    to suppress SM background HT , /ET

|µ|

M1

M2

mQ̃

150 GeV

450 GeV
350 GeV

800 GeV

BR(ũL, d̃L → h + X) ∼ 16%
BR(ũR, d̃R → h + X) ∼ 31%

careful treatment of background is needed, but looks possible

HT > 1.5 TeV, /ET > 150 GeV
2+ high-pT jets + substructure
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Figure 7: Signal/background for the study points listed in Table. 2. In the left column we have

used cuts: /ET > 300 GeV, HT > 1.0 TeV. In the right column we have additionally used a

lepton veto. note that all these points shown here corresponds to large mA. Top row is SHSP

1A, middle is SHSP 1B, and the bottom is SHSP 2A.
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Figure 7: Signal/background for the study points listed in Table. 2. In the left column we have

used cuts: /ET > 300 GeV, HT > 1.0 TeV. In the right column we have additionally used a

lepton veto. note that all these points shown here corresponds to large mA. Top row is SHSP

1A, middle is SHSP 1B, and the bottom is SHSP 2A.
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Figure 11: Signal/background for the study points listed in Table. 2. In the left column we

have used cuts: /ET > 200 GeV, HT > 1.0 TeV. In the right column we have additionally used

a lepton veto. note that all these points shown here corresponds to small mA. Top row is SHSP

4 and the bottom is SHSP 5.
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Figure 7: Signal/background for the study points listed in Table. 2. In the left column we have

used cuts: /ET > 300 GeV, HT > 1.0 TeV. In the right column we have additionally used a

lepton veto. note that all these points shown here corresponds to large mA. Top row is SHSP

1A, middle is SHSP 1B, and the bottom is SHSP 2A.
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conclusions 

decays of BSM particles provide a new and natural 

source of boosted Higgs at the LHC

- rate is smaller but BSM provides additional tools to 

suppress background 

Substructure opens up the dominant channel 

- our algorithm extends it to busier environment

- complimentary to conventional search  

- these new Higgs discovery channels can easily be as 

significant (or more so !) than conventional

Conclusions
Light Higgses are hard to find at the LHC ...

h→ b̄b

the decays of BSM particles offer a new source of Higgses at 
the LHC, especially boosted Higgses

The rate is smaller, but BSM often comes with handles to
     suppress SM backgrounds

Using jet substructure analysis to fight combinatorial BSM 
backgrounds, result is new channels to discover 

• Complementary to conventional Higgs searches, smaller jet-
                                                                       resolution effects

• These new Higgs discovery channels can easily be as significant
   (or more so !) than conventional h→ γγ

improved substructure extends this to ‘b-rich’ environments
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Offering

seems important enough to have a full 
detector simulation 388 Chapter 11. MSSM Higgs Bosons

Higgs bosons, h and H, produced in the vector boson fusion qq → qqh(H) with the h(H) →
ττ → �+jet decay.
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Figure 11.37: The 5σ discovery regions for the light, neutral Higgs boson h from the inclusive

pp → h+X production with the h → γγ decay and for the light and heavy scalar Higgs

bosons, h and H, produced in the vector boson fusion qq → qqh(H) with the h(H) → ττ →
�+jet decay in the m

max
h scenario.

Figure 27: (a) 5σ discovery contours for MSSM Higgs boson detection in various channels in the mA–tanβ plane, in
the maximal mixing scenario, assuming an integrated luminosity of L = 30 fb−1 for the CMS detector [218]. (b) As in
(a), but for an integrated luminosity of L = 300 fb−1 for the ATLAS detector [222].

nearly the entire MSSM parameter space, given sufficient integrated luminosity.29 In order to illustrate
the complementarity of the γγ and bb̄ decay modes, we exhibit in fig. 29 the regions of MSSM Higgs
parameter space that can be covered for the two benchmark scenarios of MSSM parameters described in
Section 3.5.2. The behavior illustrated in this figure can be understood by noting that the φbb̄ coupling
can be significantly suppressed (or enhanced), depending on the impact of the radiative corrections
discussed in Section 3.3. As a result, the branching ratio for φ → γγ is correspondingly larger (or
smaller), with obvious implications for the φ → bb̄ and φ → γγ searches.

We next focus on the potential for observing the heavier Higgs states (H±, A and H). A number of
recent studies [74,75,218,219,220,221] show that the following modes will be effective in searching for the
heavier MSSM Higgs bosons. For the heavy neutral Higgs bosons, the most relevant decay signatures

29One must still demonstrate that it is possible at the LHC to discover the lightest CP-even Higgs boson, even if its
branching ratios into bb̄ and/or γγ are significantly suppressed (either due to the effects of radiative corrections or due
to the existence of a significant branching fraction into invisible modes). Such suppressions can occur in regions of the
MSSM parameter space not yet considered by the LHC Higgs search simulations.
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