Boosting BSM-Higgs discovery with jet-substructure

Tuhín S. Roy

Martín, Kríbs, TR, Spannowsky arxív 0912.4731 ín preparatíon

Tuesday, April 13, 2010

LHC híggs reach

115-120 GeV higgs search ís challengíng

CMS TDR 2006

this is unfortunate

MSSM híggs ís most líkely to be found ín 115- 130 GeV window

there will be plenty of Higgs at LHC

SM cross-section

source (ATL-PHYS-2008-258)

MSSM cross-section

source (ATL-PHYS-2008-258)

$$h \rightarrow \gamma \gamma$$

- Most sígnífícant decay channel.
- Reconstructed mass peak on top of continuum di-photon bkg.
- Atlas: inclusive $\gamma \gamma$ and exclusive $\gamma \gamma + jets$ searches.

LHC higgs search in 115-120 GeV

 $\begin{array}{rcl} pp & \rightarrow & V h & & & W(\ell\nu)/Z(\ell\ell) \\ \sim 4.5 & & & & W_{\ell(\overline{\ell}\overline{\nu})} & & & & \\ & & & & & \\ significantes of 4.24 & & & & \\ significantes of & & & & \\ using jet-substructure for jets with & & & \\ p_{T,h} > 200 & & & \\ \end{array}$

substructure

not an exhaustive list

two-pronged decays

Butterworth, Davíson, Rubín, Salam (2008)

Plehn, Salam, Spannowsky (2009)

three-pronged decays

Thaler and Wang (2008)

Brooíjmans (2008)

Kaplan, Rehermann, Schwartz and Tweedie (2008)

Butterworth, Ellís, Rakhlev, Salam (2009)

pruning/trimming

Ellís, Vermílíon, Walsh (2009)

Krohn, Thaler, Wang (2009)

Search for boosted Higgs

interesting new concept but a bit limited in the SM

*there are few boosted Higgses in SM:*only ~ 5% of boosted Higgs in h + W/Z

need to trigger & suppress SM backgrounds search is limited to leptonic decay of W/Z

Higgs in the BSM

new sources of Higgs

9

Higgs from BSM

If BSM contains new colored states, production at LHC is easily in the ~few pb range

comparable to or greater than SM EW production of Higgses

SSM production often comes with new effective handles for suppressing SM background

$$\not\!\!E_T, \text{high} - p_T \text{ jets}, \, \ell, \gamma, H_T, \cdots$$

Jiggses from decays of BSM particles are naturally boosted

BSM-Híggses have all ingredients for a successful substructure analysis

Thursday, February 18, 2010

The plan for the talk

Pick new physics scenarios as sources of boosted Higgs.

MSSM with a gravitino LSP (low scale mediation)

MSSM with a neutralino LSP (high scale mediation)

Review of jet substructure technicalities:

briefly discuss clustering

símple substructure analysis as proposed by Butterworth et.al.. our algorithm that works in hectic, crowded BSM environments Results

Part I: SUSY sources of boosted Higgs Spart I: SUSY sources of boosted Higgs

though our techniques apply to a wide area of BSM scenarios, we'll look at (weak scale) SUSY

Why SUSY ?

 $m_h \lesssim 130 \text{ GeV}$

- MSSM Higgs is light ($m_h \lesssim 130 \ {
 m GeV}$)
- it has new colored particles (squarks, gluinds)

MSSM with neutralino LSP + gravitino LSP

everything super decays to the NLSP

new source of Higgs

Thursday, February 18, 2010

addition Why state with $g\tilde{\chi}_{1}^{0} + i\tilde{d} + f$? SM back $g_{\chi} \chi_{\chi} \to h + \gamma + E_{T}$

1 isolated photon + large missing Et

Thursday, February 18, 2010

MSSM Higgs source comparison

Thursday, February 18, 2010 Thursday, February 18, 2010 Thursday, February 18, 2010

10

MSSM Higgs source comparison

Thursday, February 18, 2010

Thursday, February 18, 2010

use Jet substructure

15

substructure

- 1. Briefly discuss clustering
- 2. Díscuss símple substructure analysís
- 3. Descríbe our algoríthm

First:

clustering

(I will talk about recombination scheme)

find $\min(d_{ij}, d_i)$

example:

 $\min\left(d_{ij}, d_i\right) = d_{1\,6}$

combine 1 and 6 into 7 and remove 1 and 6

calculate again $\min(d_{ij}, d_i)$

$$\min\left(d_{ij}, d_i\right) = d_5$$

$$\min\left(d_{ij}, d_i\right) = d_5$$

promote 5 to jet and remove

repeat until the list is empty

Next:

de-clustering and finding heavy particle threshold

break a C/A b-jet J into two parents by undoing its last stage of clustering

check íf

$$\min\left(p_{t1}^2, p_{t2}^2\right) \; \frac{\Delta R_{12}^2}{m_J^2} \; > (0.3)^2$$

check if

check if

extra hard jet may enter the Higgs cone

símplest substructure algoríthm does not work so Well break a C/A b-jet J into two parents by undoing its last stage of clustering

Martín, Kríbs, TR, Spannowsky

Martín, Kríbs, TR, Spannowsky

check if

$$\min\left(p_{t1}^2, p_{t2}^2\right) \frac{\Delta R_{12}^2}{m_J^2} > (0.3)^2$$

Martín, Kríbs, TR, Spannowsky

check if

$$m_{J1} < 0.68 \ m_J$$
$$\min\left(p_{t1}^2, p_{t2}^2\right) \ \frac{\Delta R_{12}^2}{m_J^2} > (0.3)^2$$
if yes
$$record \ Z = \frac{\min\left(p_{tJ1}^2, p_{tJ2}^2\right)}{p_{tj}^2} \ \Delta R_{J1J2}$$

replace J by J1

repeat as long as J has parents

Martín, Kríbs, TR, Spannowsky

Butterworth et al

$$R = 1.2$$
 Filtering
 J^{n} is a^J Higgs^jcandidate
 J^{n} de-cluster J^{n} completely.
 $m_{i} \ll m_{J}$
 $m_{i} < \mu m_{J}$

$$R = 1.2$$
Filtering

$$J \rightarrow i + j$$

$$re-cluster using$$

$$\dot{R}_{\text{filt}} = \min\left(\frac{\Delta R_{J_1^n, J_2^n}}{2}, \dot{t}_{0.3}\right)$$

$$m_i \ll m_J$$

$$m_i < \mu m_J$$

$$Pt \text{ order the jets}$$

J

R = 1.2*Filtering*

 $J \to i+j$ \bullet retain only three hardest component and combine. call it Higgs Jet

boosted analysis finds Higgs peak even when conventional search completely fails

Higgses from other BSM scenarios

work in progress

Higgses from other BSM scenarios Example: MSSM with neutralino LSP

work in progress

should appear in 1 week

Results: MSSM with neutralino LSP

 $\overset{60}{\text{candidate Higgs jet mass (GeV)}} \overset{60}{\text{candidate Higgs jet mass (GeV)}} \overset{200}{\text{candidate Niggs jet mass (GeV)}} \overset{200}{\text{candidate Niggs jet mass (GeV)}} \overset{200}{\text{candidate Niggs jet mass (GeV)}} \overset{200}{\text{candidate Higgs jet mass (GeV)}} \overset{200}{\text{candidate Niggs jet mass (GeV)}} \overset{200}{\text{candidate Niggs jet mass (GeV)}} \overset{200}{\text{candidate Higgs jet$

$E_T > 300 \text{ GeV}, H_T$ <u>Results: Point #2</u>

Can even discover heavier A,H states! $1~{\rm TeV}$

conclusions

<u>Conclusions</u>

light Higgs are hard to find at the LHC

decays of BSM particles provide a new and natural

source of boosted Higgs at the LHC

- rate is smaller but BSM provides additional tools to

suppress background

Substructure opens up the dominant channel $h \to \overline{b}b$

- our algorithm extends it to busier environment
- complimentary to conventional search
- these new Higgs discovery channels can easily be as significant (or more so !) than conventional $h \to \gamma \gamma$

Offering

seems important enough to have a full detector simulation

