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Introduction

Introduction

Question: What is a good measure of the number of degrees of
freedom in CFT3 on R2,1? (i.e. that decreases under RG flow and is
stationary at RG fixed points)

Same question was asked in other spacetime dimensions. An
answer: conformal anomaly coefficients c (in 2d) and a (in 4d)
[Zamolodchikov ’86; Cardy ’88; Komargodski, Schwimmer ’11]

〈Tµ
µ 〉2d = − c

12
R , 〈Tµ

µ 〉4d = − a
16π2 Euler density +

c
16π2 Weyl2 .

But 〈Tµ
µ 〉3d = 0, so no obvious candidate in 3d.

Conjecture (“F -Theorem”): F (to be defined shortly) decreases
along RG flow and is stationary at RG fixed points.
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Introduction

“F ” is for “free energy”

Two equivalent definitions for F :

In Euclidean signature, use a Weyl rescaling to map the CFT from
R3 to S3 (of radius R)

ds2
S3 =

4R2(
1 + x2

1 + x2
2 + x2

3

)2

[
(dx1)2 + (dx2)2 + (dx3)2

]
.

Compute the partition function on S3, and define

log ZS3 = a3
R3

ε3
+ a1

R
ε
− F + O(ε/R) ,

where ε is a UV cutoff.
This definition requires subtraction of cubic and linear UV
divergences.
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Introduction

“F ” is also entanglement entropy

F is the finite part of the vacuum entanglement entropy between a
disk and the complement of the disk.

RAB

S(R) = α
R
ε
− F + O(ε/R) ,

where S(R) = − tr(ρA log ρA) with ρA ≡ trB |0〉〈0|.
This definition requires subtraction of a linear divergence.

[Casini, Huerta, Myers ’11] showed the equivalence of these two
definitions.
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Introduction

The Story of F as a free energy

Starts with [Drukker, Marino, Putrov ’10; Herzog, Klebanov, SSP,
Tesileanu ’10] .

Field theory computation of F for 3d field theories with gravity
duals. Strong test of AdS/CFT.
Used [Kapustin, Willett, Yaakov ’09] . Only N ≥ 3 SUSY.

[Jafferis ’10] : in N = 2 theories one should extremize F in order to
find the correct IR R-charges.

Analog of a-maximization in 4d.

[Jafferis, Klebanov, SSP, Safdi ’11; Martelli, Sparks ’11,
Cheon et al. ’11, . . . ] : Tests of F -extremization in field theories with
gravity duals.

The extremum of F is always a maximum. Consequently, F
decreases under SUSY RG flow.

[Klebanov, SSP, Safdi ’11] : Tests of the “F -theorem” in non-SUSY
flows.
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Introduction

The Story of F as entanglement entropy

[Myers, Sinha ’10] defined a function a∗d which one can show
decreases under holographic RG flow in d boundary dimensions.

a∗2 ∝ c and a∗4 ∝ a.

For a CFT with a holographic dual, a∗d is the universal part of the
entanglement entropy between a disk of radius R and its
complement.

[Casini, Huerta ’10; Casini, Huerta, Myers ’11] : a∗d can be computed
by evaluating the free energy on Sd or on S1 ×Hd−1.

[Liu and Mezei ’12] propose that

F(R) = RS′(R)− S(R)

interpolates monotonically between FUV (R = 0) and FIR (R =∞).

Proof that F ′(R) = RS′′(R) < 0 in [Casini, Huerta ’12] . (?)
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Introduction

Spin-offs

Thorough tests of AdS/CFT and of the Seiberg-like dualities of
[Giveon, Kutasov ’08] .

Better understanding of 7d tri-Sasakian geometry [Herzog,
Klebanov, SSP, Tesileanu ’10; Gulotta, Herzog, SSP ’11; Gulotta, Ang,
Herzog ’11; Gulotta, Herzog, Nishioka ’11] .

Computation of all Rényi entropies in simple 3d field theories
[Klebanov, SSP, Sachdev, Safdi ’11] . (Only CS was known before.)
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Introduction

Outline

F can be computed in many CFT3’s, with or without supersymmetry.

I’ll talk about:

N ≥ 3 field theories with gravity duals.

An N = 2 example and F -maximization.

1/N expansions.

RG flows in non-SUSY theories.
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Field theories on M2-branes

M-theory compactifications

Why use field theory to compute F in CFTs with gravity duals? Don’t
we already know the answer?

Consider AdS4 × Y
compactifications of M-theory
(11-d SUGRA).

Take a stack of N coincident
M2-branes sitting at the tip of the
Calabi-Yau cone over Y .

Close to the M2-branes, the
metric is

ds2
11 = ds2

AdS4
+ 4L2ds2

Y ,

where L is the radius of AdS4.
N M2’s

cone C(Y ) Y
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Field theories on M2-branes

A Puzzle

SUGRA predicts:

F = N3/2

√
2π6

27Vol(Y )
. (?)

The same N3/2 scaling was observed in [Klebanov, Tseytlin ’96] for
the thermal free energy.

Puzzle: In CFT3 one expects a field theory written in terms of
N × N matrices. Naively, number of degrees of freedom is N2. So
how can it be N3/2?

Resolution: The field theory intuition is correct only in the ’t Hooft
limit where N/k is kept fixed.

A non-’t Hooft limit of the CFT3 reproduces N3/2 (details to follow).
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Field theories on M2-branes

What can we learn?

There are many proposals for field theories dual to AdS4 × Y for
various Y .

Gravity predicts # of d.o.f.’s is ∼ N3/2/
√

Vol(Y ). Can we match
this with a field theory computation?

If we can, is this an easier way of computing Vol(Y )?
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Field theories on M2-branes

Localization in ABJM Theory

Let’s start with the simplest example: Y = S7/Zk .

The dual field theory is ABJM theory [Aharony et al. ’08] .

A1,A2

B1,B2

k −k

U(N) U(N)

Field content: 1 N = 2 vector multiplet for each gauge group (1
gauge field, 1 gaugino, 1 real scalar σ); 4 bifundamental chiral
fields (each contains 1 complex scalar and 1 fermion).
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Field theories on M2-branes

Localization in ABJM Theory

Due to [Kapustin, Willett, Yaakov ’10] inspired by [Pestun ’07] .
How do we compute Z =

∫
[DX ] exp[−S]?

Clever trick: change the theory by considering St = S + t{Q,V}
where Q is a supercharge and V is such that {Q,V} is positive
definite.
One can show that Z =

∫
[DX ] exp[−St ] is independent of t .

Then take t to be large. The integral localizes where {Q,V} = 0
and Z = exp[−St ,classical]× one-loop determinant.
Complicated calculation gives (λi , λ̃i are e’values of σ, σ̃)

Z =
1

(N!)2

∫ N∏
i=1

dλi d λ̃i

(2π)2

∏
i<j

(
4 sinh λi−λj

2 sinh λ̃i−λ̃j
2

)2

∏
i,j

(
2 cosh λi−λ̃j

2

)2

×exp

(
ik
4π

∑
i

(λ2
i − λ̃2

i )

)
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Field theories on M2-branes

Saddle point (large N) approximation

The following techniques were developed in [Herzog, Klebanov,
SSP, Tesileanu ’10] .

We focus on large N where we can use the saddle point
approximation:

Z =

∫
dλid λ̃j e−F (λi ,λ̃j ) ≈ e−Fcritical ,

where to compute Fcritical we require

∂F
∂λi

=
∂F
∂λ̃j

= 0 . (1)

Original range of integration was the real line, but saddle point can
be anywhere in the complex plane!

How do we solve (1)?
Silviu Pufu (MIT) 3-20-2012 14 / 39
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Field theories on M2-branes

Solution: 1. Numerics

Think of λi and λ̃j as coordinates of particles in C = R2 acted on
by forces ∂F/∂λi and ∂F/∂λ̃j .

Add “viscosities’ τλ and τλ̃ and a time direction and use relaxation
method:

τλ
dλi

dt
=
∂F
∂λi

, τλ̃
d λ̃j

dt
=
∂F
∂λ̃j

.

Note that τλ and τλ̃ need not be real!
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Field theories on M2-branes

This is for k = 1 and N = 20—compare to N = 40 on next slide.

Movie 1
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Field theories on M2-branes

Imaginary parts stay of order 1, while real parts grow as
√

N.

Movie 2
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Field theories on M2-branes

Solution: 2. Analytical formulas

Saddle point equations are:

ik
2π
λi =

∑
j 6=i

coth
λj − λi

2
−
∑

j

tanh
λ̃j − λi

2
,

− ik
2π
λ̃i =

∑
j 6=i

coth
λ̃j − λ̃i

2
−
∑

j

tanh
λj − λ̃i

2
.

Assume λi = Nαxi + iyi and λ̃j = Nαx̃j + i ỹj as N →∞.
Key insight:

coth
λj − λi

2
≈ sgn(xj − xi) , tanh

λ̃j − λi

2
≈ sgn(x̃j − xi) ,

with exponentially small corrections.

LHS is O(Nα) at large N =⇒ RHS must also be O(Nα).
If α < 1 =⇒ xi ≈ x̃i =⇒ No long-range forces!
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Field theories on M2-branes

Why N3/2?

Introduce ρ(x) = 1
N
∑N

i=1 δ(x − xi).

yj and ỹj approach continuous functions y(x) and ỹ(x).

In the continuum limit F (λi , λ̃i) becomes a local functional!

F =
k

2π
N1+α

∫
dxρ(x)x [y(x)− ỹ(x)]

+ N2−α
∫

dxρ(x)2
[
π2 − (ỹ(x)− y(x))2

]
+ . . . .

To balance out these terms we need α = 1/2. Then F ∼ N3/2!

Need to minimize F under the constraints
∫

dxρ(x) = 1 and
ρ(x) ≥ 0 almost everywhere.
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Field theories on M2-branes

Solution is

ρ(x) =
1

2x∗
, y(x) = −ỹ(x) =

π

2
x
x∗

for x ∈ [−x∗, x∗] ,

with x∗ = π
√

2/k .
Comparison: analytical formula (dashed) and numerics (orange):
Free energy is

F =
π
√

2
3

k1/2N3/2

in agreement with the
gravity computation.
Also in agreement with
the large N/k limit of
[Drukker et al. ’10] .
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Field theories on M2-branes

More general theories with N = 3 SUSY

We can consider more general
“necklace” quiver gauge theories
with N = 3 SUSY [Jafferis,
Tomasiello ’08] .

The N = 3 superpotential is

W = −
p∑

a=1

2π
ka

(Ba−1Aa−1 − AaBa)2

Take the gauge groups to be all
U(N).

Require
∑p

a=1 ka = 0.

k1

k2

k3
k4

kp

Ap A1

A2

A3

B1

B2

B3

Bp
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Field theories on M2-branes

Dual SUGRA background is AdS4 × Y where Y is a tri-Sasakian
space. (=an Einstein manifold which is the base of a hyperKähler
cone.)

From [Kapustin, Willet, Yaakov ’10] :

Z ∝
∫ ∏

a,i

dλa,i

2π

 p∏
a=1


∏

i<j

(
2 sinh λa,i−λa,j

2

)2

∏
i,j 2 cosh λa,i−λa+1,j

2

exp

[
i

4π

∑
i

kaλ
2
a,i

]
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Field theories on M2-branes

Numerics for 3 nodes:

Movie 3
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Media File (video/mp4)



Field theories on M2-branes

4 nodes:

Movie 4
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Field theories on M2-branes

The long-range forces between the eigenvalues cancel iff

λa,i = N1/2xi + iya,i ,

i.e. to leading order in N the real parts of λa,i are the same.
Then

F [ρ, δya] =
N3/2

2π

∫
dx xρ(x)

p∑
a=1

qaδya(x)

+
N3/2

2

∫
dx ρ(x)2

p∑
a=1

f (δya(x)) + o(N3/2) ,

where ka = qa − qa−1,δya = ya−1 − ya, and as before

f (δya) = π2 − (δya)2 if |δya| < π .
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Field theories on M2-branes

Features of the solution:

ρ(x) and ρ(x)δya(x) are piecewise linear functions.

The δya saturate at ±π: δya(x) = ±π for |x | > xa∗ for some xa∗.

ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ
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Field theories on M2-branes
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Field theories on M2-branes

What are we learning from all this?

In a large class of N = 3 theories, we can show that the free
energy on S3 grows as N3/2 at large N as expected from the dual
gravity side.

Using AdS/CFT, we can compute the volumes of the internal
spaces Y :

F = N3/2

√
2π6

27Vol(Y )
. (?)

For necklace quivers the volume agrees with the geometrical
computation of [Lee, Yee ’06, Yee ’07] .
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Field theories on M2-branes

Volume formula

For p = 3 nodes, one obtains

Vol(Y )

Vol(S7)
=

|k1||k2|+ |k1||k3|+ |k2||k3|
(|k1|+ |k2|)(|k2|+ |k3|)(|k1|+ |k3|)

.

Tree formula: The volume of the tri-Sasakian spaces can be
written as a sum over tree diagrams [Herzog, Klebanov, SSP,
Tesileanu ’10] . Proof in [Gulotta, Herzog, SSP ’11] .

Vol(Y )

Vol(S7)
=

∑
(V ,E)∈T

∏
(a,b)∈E |qa − qb|∏p

a=1

[∑p
b=1|qa − qb|

] ,

where ka = qa − qa−1, and T is the set of all trees with nodes
V = {1,2, . . . ,p} and edges E . (# of edges is p − 1 for any tree
with p nodes!)
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Generalization to N = 2 theories

N = 2 theories

Correct R-symmetry in the IR extremizes e−F [Jafferis ’10] .

For each bifundamental Xa,b, replace

1√
cosh δλ

2

→ exp
[
`

(
1− R[Xa,b] + i

δλ

2π

)]

where

`(z) = −z ln
(

1− e2πiz
)

+
i
2

(
πz2 +

1
π

Li2
(

e2πiz
))
− iπ

12
.

Extremize over R[Xa,b] under the constraint that the superpotential
should have R-charge R[W ] = 2.
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Generalization to N = 2 theories

The superpotential W = tr[εijεklAiBkAjBl ] has R[W ] = 2, so

R[A1] + R[A2] + R[B1] + R[B2] = 2 .

The free energy is

F (R[Ai ],R[Bi ]) =
4
√

2πk1/2N3/2

3

√
R[A1]R[A2]R[B1]R[B2] .

F is maximized when R[Ai ] = R[Bi ] = 1/2.

When k = 1, one can trigger an RG flow by adding A2
1 to the

superpotential. Then R[A1] = 1 and F is maximized when
R[A2] = R[B1] = R[B2] = 1/3.

Holographic RG flow to U(1)R × SU(3)-invariant fixed point of
N = 8 gauged SUGRA [Warner ’83; Corrado, Pilch, Warner ’01;
Benna, Klebanov, Klose, Smedback ’08] . A2, B1, and B2 are
expected to form an SU(3) triplet.
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The Power of 1/N

1/N expansion

Localization and F -maximization allow us to compute F in all
N ≥ 2 supersymmetric theories.

In N = 4 U(1) gauge theory with N hypers, the partition function is

Z = e−F =
1

2N

∫ ∞
−∞

dλ
coshN(πλ)

=
2−NΓ

(N
2

)
√
πΓ
(N+1

2

) .

1/N expansion is quite powerful:

F = − log Z = N log 2 +
1
2

log
(

Nπ
2

)
− 1

4N
+

1
24N3 + . . . .
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The Power of 1/N

Exact result in orange, large N approximation in black and brown.

1 2 3 4 5
N

1

2

3

4

F
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The Power of 1/N

Consider N = 2 CS theory with level k and N pairs of
fundamental and anti-fundamental flavors with no superpotential.
Assume the flavor fields have R-charge

∆ =
1
2

+
∆1

N
+ . . .

Denoting κ = 2k/(Nπ), the free energy is

F (∆) = N log 2 +
1
2

log
(

Nπ
2

√
1 + κ2

)
−

(
π2∆2

1
2

+
2∆1

1 + κ2 +
1− κ2

4(1 + κ2)2

)
1
N

+ . . . .

Extremizing over ∆1 one finds

∆1 = − 2
π2(1 + κ2)

.

Add superpotential
∑

(QQ̃)2 =⇒ flow to IR where ∆1 = 0.
FUV > FIR because of F -maximization.
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Non-supersymmetric CFTs

Non-supersymmetric CFTs

One can compute F in the following theories with no SUSY by
evaluating functional determinants [Klebanov, SSP, Safdi ’11; Klebanov,
SSP, Sachdev, Safdi ’11] :

Free complex scalar and Dirac fermion:

FS =
log 2

4
− 3ζ(3)

8π2 ≈ 0.128 , FD =
log 2

4
+

3ζ(3)

8π2 ≈ 0.219 .

CS theory at level k with Nf fermions and Nb bosons with electric
charges qf and qb:

F =
log 2

4
(Nf + Nb) +

3ζ(3)

8π2 (Nf − Nb)

+
1
2

log

π
√√√√(Nf q2

f + Nbq2
b

8

)2

+

(
k
π

)2

+ . . . .
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Non-supersymmetric CFTs

“Close” RG fixed points

CFT perturbed by O w/ dimension 3− ε. Perturbative IR fixed
point at coupling g∗ ∝ ε with FIR − FUV ∝ −ε3.

Double trace deformation in a large N QFT: δL = λ0
2 Φ2 where Φ is

a single trace operator with dimension ∆ < 3/2.

FIR − FUV = −π
6

∫ 3/2

∆
dx(x − 1)(x − 3

2
)(x − 2) cot(πx) < 0 .

Fermionic double trace deformation: δL = λ0χ̄χ.

FIR−FUV = −2π
3

∫ 3/2

∆
dx
(

x − 1
2

)(
x − 3

2

)(
x − 5

2

)
tan(πx) < 0 .
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Non-supersymmetric CFTs

Entanglement entropy proof of c-theorem

For a CFT on R1,1, S(r) = c
3 log r , so rS′(r) = c/3.

B A

DC t

x

Take |AB| = r , |CD| = R, |AD| = |BC| = 0 =⇒
|AC| = |BD| =

√
Rr .

Strong subadditivity:
S(AB ∪ BC) + S(AB ∪ AD) ≥ S(AB) + S(AB ∪ BC ∪ AD).

But S(AB ∪ BC) = S(AB ∪ AD) = S(
√

Rr); S(AB) = S(r);
S(AB ∪ BC ∪ AD) = S(R).

Consequently 2S(
√

Rr) ≥ S(R) + S(r) =⇒ (rS′(r))′ < 0.
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Non-supersymmetric CFTs

Entanglement entropy proof of F -theorem

The 3d proof involves a large number of boosted circles.

[Casini, Huerta ’12] show that S′′(r) < 0.

Recall that F(r) = rS′(r)− S(r), so F ′(r) = rS′′(r).
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Conclusions

Conclusions

In all examples, F decreases under RG flow.

F is calculable in many field theories; if there’s N ≥ 2 SUSY, F
can be expressed as the log of a finite-dimensional integral using
localization.

For field theories on M2-branes, a field theory computation
reproduces the N3/2 scaling of the number of degrees of freedom.

Main question three weeks ago: can the F -theorem be proven?
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