Is There an *F*-Theorem?

Silviu S. Pufu, MIT

Based on:

- 1011.5487 with C. Herzog, I. Klebanov, and T. Tesileanu
- 1103.1181 with D. Jafferis, I. Klebanov, and B. Safdi
- 1105.2817 and 1106.5484 with D. Gulotta and C. Herzog
- 1105.4598 with I. Klebanov and B. Safdi
- 1111.6290 and 1112.5342 with I. Klebanov, S. Sachdev, and B. Safdi

Rutgers, March 20, 2012

・ロト・西ト・ヨト・ヨー つくぐ

Silviu Pufu (MIT)

3-20-2012 1 / 39

Introduction

Question: What is a good measure of the number of degrees of freedom in CFT_3 on $\mathbb{R}^{2,1}$? (i.e. that decreases under RG flow and is stationary at RG fixed points)

 Same question was asked in other spacetime dimensions. An answer: conformal anomaly coefficients *c* (in 2d) and *a* (in 4d) [Zamolodchikov '86; Cardy '88; Komargodski, Schwimmer '11]

$$\langle T^{\mu}_{\mu}
angle_{2d} = -rac{c}{12}R, \quad \langle T^{\mu}_{\mu}
angle_{4d} = -rac{a}{16\pi^2}$$
Euler density $+rac{c}{16\pi^2}$ Weyl².

• But $\langle T^{\mu}_{\mu} \rangle_{3d} = 0$, so no obvious candidate in 3d.

• Conjecture ("*F*-Theorem"): *F* (to be defined shortly) decreases along RG flow and is stationary at RG fixed points.

ロト (過) () ティラト () ライーラ

Introduction

Question: What is a good measure of the number of degrees of freedom in CFT_3 on $\mathbb{R}^{2,1}$? (i.e. that decreases under RG flow and is stationary at RG fixed points)

 Same question was asked in other spacetime dimensions. An answer: conformal anomaly coefficients *c* (in 2d) and *a* (in 4d) [Zamolodchikov '86; Cardy '88; Komargodski, Schwimmer '11]

$$\langle T^{\mu}_{\mu}
angle_{2d} = -rac{c}{12}R, \quad \langle T^{\mu}_{\mu}
angle_{4d} = -rac{a}{16\pi^2}$$
Euler density $+rac{c}{16\pi^2}$ Weyl².

- But $\langle T^{\mu}_{\mu} \rangle_{3d} = 0$, so no obvious candidate in 3d.
- Conjecture ("*F*-Theorem"): *F* (to be defined shortly) decreases along RG flow and is stationary at RG fixed points.

ロト (過) () ティラト () ライーラ

"F" is for "free energy"

Two equivalent definitions for F:

 In Euclidean signature, use a Weyl rescaling to map the CFT from [®] to S³ (of radius R)

$$ds_{S^3}^2 = \frac{4R^2}{\left(1 + x_1^2 + x_2^2 + x_3^2\right)^2} \left[(dx_1)^2 + (dx_2)^2 + (dx_3)^2 \right]$$

• Compute the partition function on S³, and define

$$\log Z_{S^3} = a_3 \frac{R^3}{\epsilon^3} + a_1 \frac{R}{\epsilon} - F + O(\epsilon/R),$$

3-20-2012

3/39

where ϵ is a UV cutoff.

This definition requires subtraction of cubic and linear UV divergences.

"F" is also entanglement entropy

• *F* is the finite part of the vacuum entanglement entropy between a disk and the complement of the disk.

where $S(R) = -\operatorname{tr}(\rho_A \log \rho_A)$ with $\rho_A \equiv \operatorname{tr}_B |0\rangle \langle 0|$.

- This definition requires subtraction of a linear divergence.
- [Casini, Huerta, Myers '11] showed the equivalence of these two definitions.

- Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP, Tesileanu '10].
 - Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
 - Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq$ 3 SUSY.
- [Jafferis '10] : in $\mathcal{N} = 2$ theories one should extremize F in order to find the correct IR R-charges.
 - Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, ...] : Tests of *F*-extremization in field theories with gravity duals.
 - The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "F-theorem" in non-SUSY flows.

Silviu Pufu (MIT)

3-20-2012 5 / 39

- Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP, Tesileanu '10].
 - Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
 - Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq$ 3 SUSY.
- [Jafferis '10] : in $\mathcal{N} = 2$ theories one should extremize F in order to find the correct IR R-charges.
 - Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, ...] : Tests of *F*-extremization in field theories with gravity duals.
 - The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "F-theorem" in non-SUSY flows.

Silviu Pufu (MIT)

3-20-2012 5 / 39

- Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP, Tesileanu '10].
 - Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
 - Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq$ 3 SUSY.
- [Jafferis '10] : in $\mathcal{N} = 2$ theories one should extremize F in order to find the correct IR R-charges.
 - Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, ...] : Tests of *F*-extremization in field theories with gravity duals.
 - The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "F-theorem" in non-SUSY flows.

3-20-2012

5/39

- Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP, Tesileanu '10].
 - Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
 - Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq$ 3 SUSY.
- [Jafferis '10] : in $\mathcal{N} = 2$ theories one should extremize F in order to find the correct IR R-charges.
 - Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, ...] : Tests of *F*-extremization in field theories with gravity duals.
 - The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "F-theorem" in non-SUSY flows.

3-20-2012

5/39

The Story of *F* as entanglement entropy

- [Myers, Sinha '10] defined a function a_d^* which one can show decreases under holographic RG flow in *d* boundary dimensions.
- $a_2^* \propto c$ and $a_4^* \propto a$.
- For a CFT with a holographic dual, a^{*}_d is the universal part of the entanglement entropy between a disk of radius *R* and its complement.
- [Casini, Huerta '10; Casini, Huerta, Myers '11] : a_d^* can be computed by evaluating the free energy on S^d or on $S^1 \times \mathbb{H}^{d-1}$.
- [Liu and Mezei '12] propose that

$$\mathcal{F}(R) = RS'(R) - S(R)$$

interpolates monotonically between F_{UV} (R = 0) and F_{IR} ($R = \infty$).

The Story of *F* as entanglement entropy

- [Myers, Sinha '10] defined a function a_d^* which one can show decreases under holographic RG flow in *d* boundary dimensions.
- $a_2^* \propto c$ and $a_4^* \propto a$.
- For a CFT with a holographic dual, a_d^* is the universal part of the entanglement entropy between a disk of radius *R* and its complement.
- [Casini, Huerta '10; Casini, Huerta, Myers '11] : a_d^* can be computed by evaluating the free energy on S^d or on $S^1 \times \mathbb{H}^{d-1}$.
- [Liu and Mezei '12] propose that

$$\mathcal{F}(R) = RS'(R) - S(R)$$

interpolates monotonically between $F_{\rm UV}$ (R = 0) and $F_{\rm IR}$ ($R = \infty$).

The Story of F as entanglement entropy

- [Myers, Sinha '10] defined a function a_d^* which one can show decreases under holographic RG flow in *d* boundary dimensions.
- $a_2^* \propto c$ and $a_4^* \propto a$.
- For a CFT with a holographic dual, a_d^* is the universal part of the entanglement entropy between a disk of radius *R* and its complement.
- [Casini, Huerta '10; Casini, Huerta, Myers '11] : a_d^* can be computed by evaluating the free energy on S^d or on $S^1 \times \mathbb{H}^{d-1}$.
- [Liu and Mezei '12] propose that

$$\mathcal{F}(R) = RS'(R) - S(R)$$

interpolates monotonically between F_{UV} (R = 0) and F_{IR} ($R = \infty$).

• Proof that $\mathcal{F}'(R) = RS''(R) < 0$ in [Casini, Huerta '12]. (?)

Spin-offs

- Thorough tests of AdS/CFT and of the Seiberg-like dualities of [Giveon, Kutasov '08].
- Better understanding of 7d tri-Sasakian geometry [Herzog, Klebanov, SSP, Tesileanu '10; Gulotta, Herzog, SSP '11; Gulotta, Ang, Herzog '11; Gulotta, Herzog, Nishioka '11].
- Computation of all Rényi entropies in simple 3d field theories [Klebanov, SSP, Sachdev, Safdi '11]. (Only CS was known before.)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

F can be computed in many CFT₃'s, with or without supersymmetry.

I'll talk about:

- $\mathcal{N} \ge$ 3 field theories with gravity duals.
- An $\mathcal{N} = 2$ example and *F*-maximization.
- 1/N expansions.
- RG flows in non-SUSY theories.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

M-theory compactifications

Why use field theory to compute F in CFTs with gravity duals? Don't we already know the answer?

- Consider AdS₄ × Y compactifications of M-theory (11-d SUGRA).
- Take a stack of *N* coincident M2-branes sitting at the tip of the Calabi-Yau cone over *Y*.
- Close to the M2-branes, the metric is

$$ds_{11}^2 = ds_{AdS_4}^2 + 4L^2 ds_Y^2$$
,

where *L* is the radius of AdS_4 .

M-theory compactifications

Why use field theory to compute F in CFTs with gravity duals? Don't we already know the answer?

- Consider AdS₄ × Y compactifications of M-theory (11-d SUGRA).
- Take a stack of *N* coincident M2-branes sitting at the tip of the Calabi-Yau cone over *Y*.
- Close to the M2-branes, the metric is

$$ds_{11}^2 = ds_{AdS_4}^2 + 4L^2 ds_Y^2$$
,

where L is the radius of AdS_4 .

A Puzzle

SUGRA predicts:

$$F = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}$$
. (*)

- The same N^{3/2} scaling was observed in [Klebanov, Tseytlin '96] for the thermal free energy.
- Puzzle: In *CFT*₃ one expects a field theory written in terms of $N \times N$ matrices. Naively, number of degrees of freedom is N^2 . So how can it be $N^{3/2}$?
- Resolution: The field theory intuition is correct only in the 't Hooft limit where *N*/*k* is kept fixed.
- A non-'t Hooft limit of the CFT_3 reproduces $N^{3/2}$ (details to follow).

A Puzzle

SUGRA predicts:

$$F = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}$$
. (*)

- The same *N*^{3/2} scaling was observed in [Klebanov, Tseytlin '96] for the thermal free energy.
- Puzzle: In *CFT*₃ one expects a field theory written in terms of $N \times N$ matrices. Naively, number of degrees of freedom is N^2 . So how can it be $N^{3/2}$?
- Resolution: The field theory intuition is correct only in the 't Hooft limit where N/k is kept fixed.
- A non-'t Hooft limit of the CFT_3 reproduces $N^{3/2}$ (details to follow).

What can we learn?

- There are many proposals for field theories dual to $AdS_4 \times Y$ for various *Y*.
- Gravity predicts # of d.o.f.'s is ~ N^{3/2}/√Vol(Y). Can we match this with a field theory computation?
- If we can, is this an easier way of computing Vol(Y)?

- Let's start with the simplest example: $Y = S^7 / \mathbb{Z}_k$.
- The dual field theory is ABJM theory [Aharony et al. '08] .

• Field content: $1 \mathcal{N} = 2$ vector multiplet for each gauge group (1 gauge field, 1 gaugino, 1 real scalar σ); 4 bifundamental chiral fields (each contains 1 complex scalar and 1 fermion).

- Let's start with the simplest example: $Y = S^7 / \mathbb{Z}_k$.
- The dual field theory is ABJM theory [Aharony et al. '08] .

Field content: 1 N = 2 vector multiplet for each gauge group (1 gauge field, 1 gaugino, 1 real scalar σ); 4 bifundamental chiral fields (each contains 1 complex scalar and 1 fermion).

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07] .
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering S_t = S + t{Q, V} where Q is a supercharge and V is such that {Q, V} is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of t.
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_{t, \text{classical}}] \times \text{one-loop determinant.}$
- Complicated calculation gives (λ_i, λ̃_i are e'values of σ, σ̃)

$$Z = \frac{1}{(N!)^2} \int \prod_{i=1}^{N} \frac{d\lambda_i \, d\tilde{\lambda}_i}{(2\pi)^2} \frac{\prod_{i < j} \left(4 \sinh \frac{\lambda_i - \lambda_j}{2} \sinh \frac{\lambda_i - \lambda_j}{2}\right)^2}{\prod_{i,j} \left(2 \cosh \frac{\lambda_i - \tilde{\lambda}_j}{2}\right)^2} \times \exp\left(\frac{ik}{4\pi} \sum_{i=1}^{N} (\lambda_i^2 - \tilde{\lambda}_i^2)\right)$$

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07] .
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering S_t = S + t{Q, V} where Q is a supercharge and V is such that {Q, V} is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of t.
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_{t, \text{classical}}] \times \text{one-loop determinant.}$
- Complicated calculation gives $(\lambda_i, \tilde{\lambda}_i \text{ are e'values of } \sigma, \tilde{\sigma})$

$$Z = \frac{1}{(N!)^2} \int \prod_{i=1}^{N} \frac{d\lambda_i d\tilde{\lambda}_i}{(2\pi)^2} \frac{\prod_{i$$

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07] .
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering $S_t = S + t\{Q, V\}$ where Q is a supercharge and V is such that $\{Q, V\}$ is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of t.
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_{t, \text{classical}}] \times \text{one-loop determinant.}$

• Complicated calculation gives $(\lambda_i, \tilde{\lambda}_i \text{ are e'values of } \sigma, \tilde{\sigma})$

$$Z = \frac{1}{(N!)^2} \int \prod_{i=1}^{N} \frac{d\lambda_i d\tilde{\lambda}_i}{(2\pi)^2} \frac{\prod_{i$$

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07] .
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering $S_t = S + t\{Q, V\}$ where Q is a supercharge and V is such that $\{Q, V\}$ is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of t.
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_{t,classical}] \times$ one-loop determinant.
- Complicated calculation gives (λ_i, λ̃_i are e'values of σ, σ̃)

3-20-2012

13/39

Saddle point (large *N*) approximation

- The following techniques were developed in [Herzog, Klebanov, SSP, Tesileanu '10].
- We focus on large *N* where we can use the saddle point approximation:

$$Z = \int {oldsymbol d} \lambda_j \, oldsymbol e^{-F(\lambda_i, ilde\lambda_j)} pprox oldsymbol e^{-F_{ ext{critical}}} \, ,$$

where to compute F_{critical} we require

$$\frac{\partial F}{\partial \lambda_i} = \frac{\partial F}{\partial \tilde{\lambda}_j} = 0.$$
 (1)

イロト 不得 トイヨト イヨト

3-20-2012

14/39

 Original range of integration was the real line, but saddle point can be anywhere in the complex plane!

• How do we solve (1)?

Saddle point (large *N*) approximation

- The following techniques were developed in [Herzog, Klebanov, SSP, Tesileanu '10] .
- We focus on large *N* where we can use the saddle point approximation:

$$Z = \int {oldsymbol d} \lambda_j \, oldsymbol e^{-F(\lambda_i, ilde\lambda_j)} pprox oldsymbol e^{-F_{ ext{critical}}} \, ,$$

where to compute F_{critical} we require

$$\frac{\partial F}{\partial \lambda_i} = \frac{\partial F}{\partial \tilde{\lambda}_i} = \mathbf{0}.$$
 (1)

3-20-2012

14/39

- Original range of integration was the real line, but saddle point can be anywhere in the complex plane!
- How do we solve (1)?

Solution: 1. Numerics

- Think of λ_i and λ̃_j as coordinates of particles in C = R² acted on by forces ∂F/∂λ_i and ∂F/∂λ̃_j.
- Add "viscosities' τ_λ and $\tau_{\tilde{\lambda}}$ and a time direction and use relaxation method:

$$au_{\lambda} \frac{d\lambda_{i}}{dt} = \frac{\partial F}{\partial\lambda_{i}}, \qquad au_{\tilde{\lambda}} \frac{d\tilde{\lambda}_{j}}{dt} = \frac{\partial F}{\partial\tilde{\lambda}_{j}}.$$

• Note that τ_{λ} and $\tau_{\tilde{\lambda}}$ need not be real!

This is for k = 1 and N = 20—compare to N = 40 on next slide.

Movie 1

Silviu Pufu (MIT)

★ E → E → A C 3-20-2012 16/39

イロト イヨト イヨト イヨト

Imaginary parts stay of order 1, while real parts grow as \sqrt{N} .

Movie 2

Silviu Pufu (MIT)

▲ ■ ▶ ■ • つへで 3-20-2012 17/39

Solution: 2. Analytical formulas

Saddle point equations are:

$$\frac{ik}{2\pi}\lambda_i = \sum_{j\neq i} \coth \frac{\lambda_j - \lambda_i}{2} - \sum_j \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2},$$
$$-\frac{ik}{2\pi}\tilde{\lambda}_i = \sum_{j\neq i} \coth \frac{\tilde{\lambda}_j - \tilde{\lambda}_i}{2} - \sum_j \tanh \frac{\lambda_j - \tilde{\lambda}_i}{2}.$$

Assume λ_i = N^αx_i + iy_i and λ̃_j = N^αx̃_j + iỹ̃_j as N → ∞.
Key insight:

$$\operatorname{coth} \frac{\lambda_j - \lambda_i}{2} \approx \operatorname{sgn}(x_j - x_i), \quad \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2} \approx \operatorname{sgn}(\tilde{x}_j - x_i),$$

with *exponentially small corrections*.

• LHS is $O(N^{\alpha})$ at large $N \Longrightarrow$ RHS must also be $O(N^{\alpha})$. • If $\alpha < 1 \implies x_i \approx \tilde{x}_i \implies$ No long-range forces!

Solution: 2. Analytical formulas

Saddle point equations are:

$$\frac{i\mathbf{k}}{2\pi}\lambda_i = \sum_{j\neq i} \coth\frac{\lambda_j - \lambda_i}{2} - \sum_j \tanh\frac{\tilde{\lambda}_j - \lambda_i}{2},$$
$$-\frac{i\mathbf{k}}{2\pi}\tilde{\lambda}_i = \sum_{j\neq i} \coth\frac{\tilde{\lambda}_j - \tilde{\lambda}_i}{2} - \sum_j \tanh\frac{\lambda_j - \tilde{\lambda}_i}{2}.$$

Assume λ_i = N^αx_i + iy_i and λ̃_j = N^αx̃_j + iỹ̃_j as N → ∞.
Key insight:

$$\operatorname{coth} \frac{\lambda_j - \lambda_i}{2} \approx \operatorname{sgn}(x_j - x_i), \quad \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2} \approx \operatorname{sgn}(\tilde{x}_j - x_i),$$

with *exponentially small corrections*.

• LHS is $O(N^{\alpha})$ at large $N \Longrightarrow$ RHS must also be $O(N^{\alpha})$. • If $\alpha < 1 \implies x_i \approx \tilde{x}_i \implies$ No long-range forces!

Why $N^{3/2}$?

• Introduce
$$\rho(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)$$
.

- y_j and \tilde{y}_j approach continuous functions y(x) and $\tilde{y}(x)$.
- In the continuum limit $F(\lambda_i, \tilde{\lambda}_i)$ becomes a *local* functional!

$$F = \frac{k}{2\pi} N^{1+\alpha} \int dx \rho(x) x \left[y(x) - \tilde{y}(x) \right]$$
$$+ N^{2-\alpha} \int dx \rho(x)^2 \left[\pi^2 - (\tilde{y}(x) - y(x))^2 \right] + \dots$$

- To balance out these terms we need $\alpha = 1/2$. Then $F \sim N^{3/2}!$
- Need to minimize *F* under the constraints $\int dx \rho(x) = 1$ and $\rho(x) \ge 0$ almost everywhere.

Why $N^{3/2}$?

• Introduce
$$\rho(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)$$
.

- y_j and \tilde{y}_j approach continuous functions y(x) and $\tilde{y}(x)$.
- In the continuum limit $F(\lambda_i, \tilde{\lambda}_i)$ becomes a *local* functional!

$$F = \frac{k}{2\pi} N^{1+\alpha} \int dx \rho(x) x \left[y(x) - \tilde{y}(x) \right]$$
$$+ N^{2-\alpha} \int dx \rho(x)^2 \left[\pi^2 - (\tilde{y}(x) - y(x))^2 \right] + \dots$$

- To balance out these terms we need $\alpha = 1/2$. Then $F \sim N^{3/2}!$
- Need to minimize *F* under the constraints $\int dx \rho(x) = 1$ and $\rho(x) \ge 0$ almost everywhere.

Why $N^{3/2}$?

• Introduce
$$\rho(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)$$
.

- y_j and \tilde{y}_j approach continuous functions y(x) and $\tilde{y}(x)$.
- In the continuum limit $F(\lambda_i, \tilde{\lambda}_i)$ becomes a *local* functional!

$$F = \frac{k}{2\pi} N^{1+\alpha} \int dx \rho(x) x \left[y(x) - \tilde{y}(x) \right]$$
$$+ N^{2-\alpha} \int dx \rho(x)^2 \left[\pi^2 - (\tilde{y}(x) - y(x))^2 \right] + \dots$$

- To balance out these terms we need $\alpha = 1/2$. Then $F \sim N^{3/2}!$
- Need to minimize *F* under the constraints $\int dx \rho(x) = 1$ and $\rho(x) \ge 0$ almost everywhere.

Solution is

$$\rho(x) = \frac{1}{2x_*}, \qquad y(x) = -\tilde{y}(x) = \frac{\pi}{2} \frac{x}{x_*} \qquad \text{for } x \in [-x_*, x_*],$$

with $x_* = \pi \sqrt{2/k}$.

• Comparison: analytical formula (dashed) and numerics (orange):

Free energy is

$$F = \frac{\pi\sqrt{2}}{3}k^{1/2}N^{3/2}$$

in agreement with the gravity computation.

 Also in agreement with the large N/k limit of [Drukker et al. '10].

More general theories with $\mathcal{N} = 3$ SUSY

- We can consider more general "necklace" quiver gauge theories with $\mathcal{N}=3$ SUSY [Jafferis, Tomasiello '08].
- The $\mathcal{N} = 3$ superpotential is

$$W = -\sum_{a=1}^{p} rac{2\pi}{k_a} (B_{a-1}A_{a-1} - A_aB_a)^2$$

• Take the gauge groups to be all U(N).

• Require
$$\sum_{a=1}^{p} k_a = 0$$
.

3-20-2012 21/39

- Dual SUGRA background is AdS₄ × Y where Y is a tri-Sasakian space. (=an Einstein manifold which is the base of a hyperKähler cone.)
- From [Kapustin, Willet, Yaakov '10] :

$$Z \propto \int \left(\prod_{a,i} \frac{d\lambda_{a,i}}{2\pi}\right) \prod_{a=1}^{p} \left(\frac{\prod_{i < j} \left(2\sinh\frac{\lambda_{a,i} - \lambda_{a,j}}{2}\right)^{2}}{\prod_{i,j} 2\cosh\frac{\lambda_{a,i} - \lambda_{a+1,j}}{2}}\exp\left[\frac{i}{4\pi}\sum_{i} k_{a}\lambda_{a,i}^{2}\right]\right)$$

A (10) A (10)

Numerics for 3 nodes:

Movie 3

Silviu Pufu (MIT)

▲ ■ ▶ ■ • つへで 3-20-2012 23/39

イロト イヨト イヨト イヨト

4 nodes:

Movie 4

Silviu Pufu (MIT)

★ E → E → A C 3-20-2012 24/39

イロト イロト イヨト イヨト

The long-range forces between the eigenvalues cancel iff

$$\lambda_{a,i} = N^{1/2} x_i + i y_{a,i} \, ,$$

i.e. to leading order in *N* the real parts of λ_{a,i} are the same.
Then

$$\begin{split} F[\rho, \delta y_a] &= \frac{N^{3/2}}{2\pi} \int dx \, x \rho(x) \sum_{a=1}^p q_a \delta y_a(x) \\ &+ \frac{N^{3/2}}{2} \int dx \, \rho(x)^2 \sum_{a=1}^p f(\delta y_a(x)) + o(N^{3/2}) \,, \end{split}$$

where $k_a = q_a - q_{a-1}$, $\delta y_a = y_{a-1} - y_a$, and as before

$$f(\delta y_a) = \pi^2 - (\delta y_a)^2$$
 if $|\delta y_a| < \pi$.

イロト イポト イヨト イヨト

Features of the solution:

- $\rho(x)$ and $\rho(x)\delta y_a(x)$ are piecewise linear functions.
- The δy_a saturate at $\pm \pi$: $\delta y_a(x) = \pm \pi$ for $|x| > x_{a*}$ for some x_{a*} .

• • • • • • • • • • • • •

イロト イヨト イヨト イヨト

Silviu Pufu (MIT)

★ ■ ▶ ■ • ○ Q C 3-20-2012 27 / 39 What are we learning from all this?

- In a large class of $\mathcal{N} = 3$ theories, we can show that the free energy on S^3 grows as $N^{3/2}$ at large N as expected from the dual gravity side.
- Using AdS/CFT, we can compute the volumes of the internal spaces *Y*:

$$F = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}} . \quad (*)$$

• For necklace quivers the volume agrees with the geometrical computation of [Lee, Yee '06, Yee '07].

What are we learning from all this?

- In a large class of $\mathcal{N} = 3$ theories, we can show that the free energy on S^3 grows as $N^{3/2}$ at large *N* as expected from the dual gravity side.
- Using AdS/CFT, we can compute the volumes of the internal spaces *Y*:

$$F = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}$$
. (*)

• For necklace quivers the volume agrees with the geometrical computation of [Lee, Yee '06, Yee '07].

Volume formula

• For *p* = 3 nodes, one obtains

$$\frac{\mathsf{Vol}(Y)}{\mathsf{Vol}(\mathcal{S}^7)} = \frac{|k_1||k_2| + |k_1||k_3| + |k_2||k_3|}{(|k_1| + |k_2|)(|k_2| + |k_3|)(|k_1| + |k_3|)} \,.$$

 Tree formula: The volume of the tri-Sasakian spaces can be written as a sum over tree diagrams [Herzog, Klebanov, SSP, Tesileanu '10]. Proof in [Gulotta, Herzog, SSP '11].

$$\frac{\operatorname{Vol}(Y)}{\operatorname{Vol}(S^7)} = \frac{\sum_{(V,E)\in\mathcal{T}} \prod_{(a,b)\in E} |q_a - q_b|}{\prod_{a=1}^{p} \left[\sum_{b=1}^{p} |q_a - q_b| \right]},$$

where $k_a = q_a - q_{a-1}$, and \mathcal{T} is the set of all trees with nodes $V = \{1, 2, ..., p\}$ and edges E. (# of edges is p - 1 for any tree with p nodes!)

$\mathcal{N}=2$ theories

- Correct R-symmetry in the IR extremizes e^{-F} [Jafferis '10].
- For each bifundamental $X_{a,b}$, replace

$$\frac{1}{\sqrt{\cosh\frac{\delta\lambda}{2}}} \to \exp\left[\ell\left(1 - R[X_{a,b}] + i\frac{\delta\lambda}{2\pi}\right)\right]$$

where

$$\ell(z) = -z \ln\left(1 - e^{2\pi i z}\right) + \frac{i}{2} \left(\pi z^2 + \frac{1}{\pi} \operatorname{Li}_2\left(e^{2\pi i z}\right)\right) - \frac{i\pi}{12}$$

• Extremize over $R[X_{a,b}]$ under the constraint that the superpotential should have R-charge R[W] = 2.

• The superpotential $W = tr[\epsilon^{ij}\epsilon^{kl}A_iB_kA_jB_l]$ has R[W] = 2, so

$$R[A_1] + R[A_2] + R[B_1] + R[B_2] = 2$$
.

• The free energy is

$$F(R[A_i], R[B_i]) = \frac{4\sqrt{2}\pi k^{1/2} N^{3/2}}{3} \sqrt{R[A_1]R[A_2]R[B_1]R[B_2]}.$$

- *F* is maximized when $R[A_i] = R[B_i] = 1/2$.
- When k = 1, one can trigger an RG flow by adding A₁² to the superpotential. Then R[A₁] = 1 and F is maximized when R[A₂] = R[B₁] = R[B₂] = 1/3.
- Holographic RG flow to $U(1)_R \times SU(3)$ -invariant fixed point of $\mathcal{N} = 8$ gauged SUGRA [Warner '83; Corrado, Pilch, Warner '01; Benna, Klebanov, Klose, Smedback '08]. A_2 , B_1 , and B_2 are expected to form an SU(3) triplet.

• The superpotential $W = tr[\epsilon^{ij}\epsilon^{kl}A_iB_kA_jB_l]$ has R[W] = 2, so

$$R[A_1] + R[A_2] + R[B_1] + R[B_2] = 2$$
.

• The free energy is

$$F(R[A_i], R[B_i]) = \frac{4\sqrt{2}\pi k^{1/2} N^{3/2}}{3} \sqrt{R[A_1]R[A_2]R[B_1]R[B_2]}.$$

- *F* is maximized when $R[A_i] = R[B_i] = 1/2$.
- When k = 1, one can trigger an RG flow by adding A₁² to the superpotential. Then R[A₁] = 1 and F is maximized when R[A₂] = R[B₁] = R[B₂] = 1/3.

• Holographic RG flow to $U(1)_R \times SU(3)$ -invariant fixed point of $\mathcal{N} = 8$ gauged SUGRA [Warner '83; Corrado, Pilch, Warner '01; Benna, Klebanov, Klose, Smedback '08]. A_2 , B_1 , and B_2 are expected to form an SU(3) triplet.

• The superpotential $W = tr[\epsilon^{ij}\epsilon^{kl}A_iB_kA_jB_l]$ has R[W] = 2, so

$$R[A_1] + R[A_2] + R[B_1] + R[B_2] = 2$$
.

• The free energy is

$$F(R[A_i], R[B_i]) = \frac{4\sqrt{2}\pi k^{1/2} N^{3/2}}{3} \sqrt{R[A_1]R[A_2]R[B_1]R[B_2]}.$$

- *F* is maximized when $R[A_i] = R[B_i] = 1/2$.
- When k = 1, one can trigger an RG flow by adding A₁² to the superpotential. Then R[A₁] = 1 and F is maximized when R[A₂] = R[B₁] = R[B₂] = 1/3.
- Holographic RG flow to U(1)_R × SU(3)-invariant fixed point of N = 8 gauged SUGRA [Warner '83; Corrado, Pilch, Warner '01; Benna, Klebanov, Klose, Smedback '08]. A₂, B₁, and B₂ are expected to form an SU(3) triplet.

1/N expansion

- Localization and *F*-maximization allow us to compute *F* in all *N* ≥ 2 supersymmetric theories.
- In $\mathcal{N} = 4 U(1)$ gauge theory with N hypers, the partition function is

$$Z = e^{-F} = \frac{1}{2^N} \int_{-\infty}^{\infty} \frac{d\lambda}{\cosh^N(\pi\lambda)} = \frac{2^{-N} \Gamma\left(\frac{N}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{N+1}{2}\right)} \,.$$

• 1/*N* expansion is quite powerful:

$$F = -\log Z = N\log 2 + rac{1}{2}\log\left(rac{N\pi}{2}
ight) - rac{1}{4N} + rac{1}{24N^3} + \dots$$

Exact result in orange, large *N* approximation in black and brown.

Silviu Pufu (MIT)

3-20-2012 33 / 39

- 4 – 5

э.

The Power of 1/N

 Consider N = 2 CS theory with level k and N pairs of fundamental and anti-fundamental flavors with no superpotential.

Assume the flavor fields have R-charge

$$\Delta = \frac{1}{2} + \frac{\Delta_1}{N} + \dots$$

• Denoting $\kappa = 2k/(N\pi)$, the free energy is

$$\mathsf{F}(\Delta) = N \log 2 + \frac{1}{2} \log \left(\frac{N\pi}{2} \sqrt{1 + \kappa^2} \right)$$
$$- \left(\frac{\pi^2 \Delta_1^2}{2} + \frac{2\Delta_1}{1 + \kappa^2} + \frac{1 - \kappa^2}{4(1 + \kappa^2)^2} \right) \frac{1}{N} + \dots$$

• Extremizing over Δ_1 one finds

$$\Delta_1 = -\frac{2}{\pi^2(1+\kappa^2)}\,.$$

• Add superpotential $\sum (Q\tilde{Q})^2 \implies$ flow to IR where $\Delta_1 = 0$. $F_{UV} > F_{IR}$ because of *F*-maximization.

The Power of 1/N

- Consider $\mathcal{N} = 2$ CS theory with level *k* and *N* pairs of fundamental and anti-fundamental flavors with no superpotential.
- Assume the flavor fields have R-charge

$$\Delta = \frac{1}{2} + \frac{\Delta_1}{N} + \dots$$

• Denoting $\kappa = 2k/(N\pi)$, the free energy is

$$F(\Delta) = N \log 2 + \frac{1}{2} \log \left(\frac{N\pi}{2} \sqrt{1 + \kappa^2} \right)$$
$$- \left(\frac{\pi^2 \Delta_1^2}{2} + \frac{2\Delta_1}{1 + \kappa^2} + \frac{1 - \kappa^2}{4(1 + \kappa^2)^2} \right) \frac{1}{N} + \dots$$

• Extremizing over Δ_1 one finds

$$\Delta_1 = -\frac{2}{\pi^2(1+\kappa^2)}\,.$$

• Add superpotential $\sum (Q\tilde{Q})^2 \implies$ flow to IR where $\Delta_1 = 0$. $F_{UV} > F_{IR}$ because of *F*-maximization.

- Consider $\mathcal{N} = 2$ CS theory with level *k* and *N* pairs of fundamental and anti-fundamental flavors with no superpotential.
- Assume the flavor fields have R-charge

$$\Delta = \frac{1}{2} + \frac{\Delta_1}{N} + \dots$$

• Denoting $\kappa = 2k/(N\pi)$, the free energy is

$$F(\Delta) = N \log 2 + \frac{1}{2} \log \left(\frac{N\pi}{2} \sqrt{1 + \kappa^2} \right)$$
$$- \left(\frac{\pi^2 \Delta_1^2}{2} + \frac{2\Delta_1}{1 + \kappa^2} + \frac{1 - \kappa^2}{4(1 + \kappa^2)^2} \right) \frac{1}{N} + \dots$$

• Extremizing over Δ_1 one finds

$$\Delta_1 = -\frac{2}{\pi^2(1+\kappa^2)}.$$

• Add superpotential $\sum (Q\tilde{Q})^2 \implies$ flow to IR where $\Delta_1 = 0$. $F_{UV} > F_{IR}$ because of *F*-maximization.

Non-supersymmetric CFTs

One can compute *F* in the following theories with no SUSY by evaluating functional determinants [Klebanov, SSP, Safdi '11; Klebanov, SSP, Sachdev, Safdi '11] :

• Free complex scalar and Dirac fermion:

$$\mathsf{F}_{\mathcal{S}} = rac{\log 2}{4} - rac{3\zeta(3)}{8\pi^2} pprox 0.128\,, \qquad \mathcal{F}_{D} = rac{\log 2}{4} + rac{3\zeta(3)}{8\pi^2} pprox 0.219\,.$$

 CS theory at level k with N_f fermions and N_b bosons with electric charges q_f and q_b:

$$F = \frac{\log 2}{4} (N_f + N_b) + \frac{3\zeta(3)}{8\pi^2} (N_f - N_b) + \frac{1}{2} \log \left[\pi \sqrt{\left(\frac{N_f q_f^2 + N_b q_b^2}{8}\right)^2 + \left(\frac{k}{\pi}\right)^2} \right] + \dots$$

"Close" RG fixed points

- CFT perturbed by O w/ dimension 3 − ε. Perturbative IR fixed point at coupling g_{*} ∝ ε with F_{IR} − F_{UV} ∝ −ε³.
- Double trace deformation in a large N QFT: δL = λ₀/2 Φ² where Φ is a single trace operator with dimension Δ < 3/2.

$$F_{\rm IR} - F_{\rm UV} = -rac{\pi}{6} \int_{\Delta}^{3/2} dx (x-1)(x-rac{3}{2})(x-2)\cot(\pi x) < 0$$
 .

• Fermionic double trace deformation: $\delta \mathcal{L} = \lambda_0 \bar{\chi} \chi$.

$$F_{\text{IR}} - F_{\text{UV}} = -\frac{2\pi}{3} \int_{\Delta}^{3/2} dx \left(x - \frac{1}{2}\right) \left(x - \frac{3}{2}\right) \left(x - \frac{5}{2}\right) \tan(\pi x) < 0$$

Entanglement entropy proof of *c*-theorem

• For a CFT on $\mathbb{R}^{1,1}$, $S(r) = \frac{c}{3} \log r$, so rS'(r) = c/3.

- Take |AB| = r, |CD| = R, $|AD| = |BC| = 0 \implies$ $|AC| = |BD| = \sqrt{Rr}$.
- Strong subadditivity: $S(AB \cup BC) + S(AB \cup AD) \ge S(AB) + S(AB \cup BC \cup AD).$
- But $S(AB \cup BC) = S(AB \cup AD) = S(\sqrt{Rr})$; S(AB) = S(r); $S(AB \cup BC \cup AD) = S(R)$.
- Consequently $2S(\sqrt{Rr}) \ge S(R) + S(r) \Longrightarrow (rS'(r))' < 0$.

Entanglement entropy proof of *F*-theorem

• The 3d proof involves a large number of boosted circles.

- [Casini, Huerta '12] show that S''(r) < 0.
- Recall that $\mathcal{F}(r) = rS'(r) S(r)$, so $\mathcal{F}'(r) = rS''(r)$.

Conclusions

- In all examples, F decreases under RG flow.
- *F* is calculable in many field theories; if there's $N \ge 2$ SUSY, *F* can be expressed as the log of a finite-dimensional integral using localization.
- For field theories on M2-branes, a field theory computation reproduces the *N*^{3/2} scaling of the number of degrees of freedom.
- Main question three weeks ago: can the F-theorem be proven?

Conclusions

- In all examples, F decreases under RG flow.
- *F* is calculable in many field theories; if there's $N \ge 2$ SUSY, *F* can be expressed as the log of a finite-dimensional integral using localization.
- For field theories on M2-branes, a field theory computation reproduces the *N*^{3/2} scaling of the number of degrees of freedom.
- Main question three weeks ago: can the *F*-theorem be proven?