Is There an *F*-Theorem?

Silviu S. Pufu, MIT

Based on:

- **0** 1011.5487 with C. Herzog, I. Klebanov, and T. Tesileanu
- 1103.1181 with D. Jafferis, I. Klebanov, and B. Safdi
- 1105.2817 and 1106.5484 with D. Gulotta and C. Herzog
- **1105.4598 with L. Klebanov and B. Safdi**
- 1111.6290 and 1112.5342 with I. Klebanov, S. Sachdev, and B. Safdi

Rutgers, March 20, 2012

 Ω

Kロ → K個 → Kミ → Kミ → 「ミ」 の Q (^

Silviu Pufu (MIT) 3-20-2012 1/39

Introduction

Question: What is a good measure of the number of degrees of freedom in CFT $_3$ on $\mathbb{R}^{2,1}$? (i.e. that decreases under RG flow and is stationary at RG fixed points)

• Same question was asked in other spacetime dimensions. An answer: conformal anomaly coefficients *c* (in 2d) and *a* (in 4d) [Zamolodchikov '86; Cardy '88; Komargodski, Schwimmer '11]

$$
\langle T^\mu_\mu\rangle_{2{\mathsf d}}=-\frac{c}{12}R\,,\quad \langle T^\mu_\mu\rangle_{4{\mathsf d}}=-\frac{a}{16\pi^2}\text{Euler density}+\frac{c}{16\pi^2}\text{Weyl}^2\,.
$$

But $\langle T_\mu^\mu\rangle_{\rm 3d} = 0$, so no obvious candidate in 3d.

Conjecture ("*F*-Theorem"): *F* (to be defined shortly) decreases along RG flow and is stationary at RG fixed points.

 Ω

Introduction

Question: What is a good measure of the number of degrees of freedom in CFT $_3$ on $\mathbb{R}^{2,1}$? (i.e. that decreases under RG flow and is stationary at RG fixed points)

• Same question was asked in other spacetime dimensions. An answer: conformal anomaly coefficients *c* (in 2d) and *a* (in 4d) [Zamolodchikov '86; Cardy '88; Komargodski, Schwimmer '11]

$$
\langle T^\mu_\mu\rangle_{2{\mathsf d}}=-\frac{c}{12}R\,,\quad \langle T^\mu_\mu\rangle_{4{\mathsf d}}=-\frac{a}{16\pi^2}\text{Euler density}+\frac{c}{16\pi^2}\text{Weyl}^2\,.
$$

But $\langle T_\mu^\mu\rangle_{\rm 3d} =$ 0, so no obvious candidate in 3d.

Conjecture ("*F*-Theorem"): *F* (to be defined shortly) decreases along RG flow and is stationary at RG fixed points.

 Ω

"*F*" is for "free energy"

Two equivalent definitions for *F*:

In Euclidean signature, use a Weyl rescaling to map the CFT from \mathbb{R}^3 to S^3 (of radius R)

$$
ds_{S^3}^2 = \frac{4R^2}{\left(1+x_1^2+x_2^2+x_3^2\right)^2}\left[(dx_1)^2 + (dx_2)^2 + (dx_3)^2 \right].
$$

Compute the partition function on *S* 3 , and define

$$
\log Z_{S^3}=a_3\frac{R^3}{\epsilon^3}+a_1\frac{R}{\epsilon}-F+O(\epsilon/R)\,,
$$

イロト イ押ト イヨト イヨ

 Ω

where ϵ is a UV cutoff.

This definition requires subtraction of cubic and linear UV divergences.

Silviu Pufu (MIT) 3/39

"*F*" is also entanglement entropy

F is the finite part of the vacuum entanglement entropy between a disk and the complement of the disk.

where $S(R) = -\text{tr}(\rho_A \log \rho_A)$ with $\rho_A \equiv \text{tr}_B |0\rangle\langle 0|$.

- This definition requires subtraction of a linear divergence.
- [Casini, Huerta, Myers '11] showed the equivalence of these two definitions. $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

 Ω

Silviu Pufu (MIT) 3-20-2012 4/39

- Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP, Tesileanu '10] .
	- Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
	- Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq 3$ SUSY.
- [Jafferis '10] : in $\mathcal{N} = 2$ theories one should extremize *F* in order to find the correct IR R-charges.
	- Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, . . .] : Tests of *F*-extremization in field theories with gravity duals.
	- The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "*F*-theorem" in non-SUSY flows. (ロトイ部)→(差)→(差)→ **E** QQ

Silviu Pufu (MIT) 3-20-2012 5/39

- Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP, Tesileanu '10] .
	- Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
	- Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq 3$ SUSY.
- \bullet [Jafferis '10] : in $\mathcal{N} = 2$ theories one should extremize *F* in order to find the correct IR R-charges.
	- Analog of *a*-maximization in 4d.
- **•** [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, . . .] : Tests of *F*-extremization in field theories with gravity duals.
	- The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "*F*-theorem" in non-SUSY flows. $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ Ω

Silviu Pufu (MIT) 3-20-2012 5/39

- **Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP,** Tesileanu '10] .
	- Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
	- Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq 3$ SUSY.
- [Jafferis '10] in $\mathcal{N} = 2$ theories one should extremize *F* in order to find the correct IR R-charges.
	- Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, . . .] : Tests of *F*-extremization in field theories with gravity duals.
	- The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "*F*-theorem" in non-SUSY flows. $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ QQQ

Silviu Pufu (MIT) 3-20-2012 5/39

- **Starts with [Drukker, Marino, Putrov '10; Herzog, Klebanov, SSP,** Tesileanu '10] .
	- Field theory computation of *F* for 3d field theories with gravity duals. Strong test of AdS/CFT.
	- Used [Kapustin, Willett, Yaakov '09] . Only $\mathcal{N} \geq 3$ SUSY.
- [Jafferis '10] in $\mathcal{N} = 2$ theories one should extremize *F* in order to find the correct IR R-charges.
	- Analog of *a*-maximization in 4d.
- [Jafferis, Klebanov, SSP, Safdi '11; Martelli, Sparks '11, Cheon *et al.* '11, . . .] : Tests of *F*-extremization in field theories with gravity duals.
	- The extremum of *F* is always a *maximum*. Consequently, *F* decreases under SUSY RG flow.
- [Klebanov, SSP, Safdi '11] : Tests of the "*F*-theorem" in non-SUSY flows. $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$ \Rightarrow QQQ

Silviu Pufu (MIT) 3-20-2012 5 / 39

The Story of *F* as entanglement entropy

- [Myers, Sinha '10] defined a function a_d^* which one can show decreases under holographic RG flow in *d* boundary dimensions.
- $a_2^* \propto c$ and $a_4^* \propto a$.
- For a CFT with a holographic dual, a_d^* is the universal part of the entanglement entropy between a disk of radius *R* and its complement.
- [Casini, Huerta '10; Casini, Huerta, Myers '11] : *a* ∗ *d* can be computed by evaluating the free energy on S^d or on $S^1 \times \mathbb{H}^{d-1}.$
- [Liu and Mezei '12] propose that

$$
\mathcal{F}(R) = RS'(R) - S(R)
$$

interpolates monotonically between F_{UV} ($R = 0$) and F_{IR} ($R = \infty$).

Proof [t](#page-9-0)h[a](#page-10-0)t $\mathcal{F}'(R) = RS''(R) < 0$ $\mathcal{F}'(R) = RS''(R) < 0$ $\mathcal{F}'(R) = RS''(R) < 0$ in [Casini, [H](#page-9-0)[uer](#page-11-0)ta^{'[1](#page-13-0)[2](#page-1-0)[\]](#page-2-0)}[.](#page-14-0) [\(](#page-15-0)[?](#page-1-0))

 Ω

The Story of *F* as entanglement entropy

- [Myers, Sinha '10] defined a function a_d^* which one can show decreases under holographic RG flow in *d* boundary dimensions.
- $a_2^* \propto c$ and $a_4^* \propto a$.
- For a CFT with a holographic dual, a_d^* is the universal part of the entanglement entropy between a disk of radius *R* and its complement.
- [Casini, Huerta '10; Casini, Huerta, Myers '11] : *a* ∗ *d* can be computed by evaluating the free energy on S^d or on $S^1 \times \mathbb{H}^{d-1}.$
- [Liu and Mezei '12] propose that

$$
\mathcal{F}(R) = RS'(R) - S(R)
$$

interpolates monotonically between F_{UV} ($R = 0$) and F_{IR} ($R = \infty$).

Proof [t](#page-9-0)h[a](#page-10-0)t $\mathcal{F}'(R) = RS''(R) < 0$ $\mathcal{F}'(R) = RS''(R) < 0$ $\mathcal{F}'(R) = RS''(R) < 0$ in [Casini, [H](#page-10-0)[uer](#page-12-0)ta^{'[1](#page-13-0)[2](#page-1-0)[\]](#page-2-0)}[.](#page-14-0) [\(](#page-15-0)[?](#page-1-0))

 000

The Story of *F* as entanglement entropy

- [Myers, Sinha '10] defined a function a_d^* which one can show decreases under holographic RG flow in *d* boundary dimensions.
- $a_2^* \propto c$ and $a_4^* \propto a$.
- For a CFT with a holographic dual, a_d^* is the universal part of the entanglement entropy between a disk of radius *R* and its complement.
- [Casini, Huerta '10; Casini, Huerta, Myers '11] : a_d can be computed by evaluating the free energy on S^d or on $S^1 \times \mathbb{H}^{d-1}$.
- [Liu and Mezei '12] propose that

$$
\mathcal{F}(R)=RS'(R)-S(R)
$$

interpolates monotonically between F_{UV} ($R = 0$) and F_{IR} ($R = \infty$).

Proof [t](#page-9-0)h[a](#page-10-0)t $\mathcal{F}'(R) = RS''(R) < 0$ $\mathcal{F}'(R) = RS''(R) < 0$ $\mathcal{F}'(R) = RS''(R) < 0$ in [Casini, [H](#page-11-0)[uer](#page-13-0)ta ['](#page-12-0)[1](#page-13-0)[2](#page-1-0)[\]](#page-2-0) [\(](#page-15-0)[?](#page-1-0))

Spin-offs

- Thorough tests of AdS/CFT and of the Seiberg-like dualities of [Giveon, Kutasov '08] .
- Better understanding of 7d tri-Sasakian geometry [Herzog, Klebanov, SSP, Tesileanu '10; Gulotta, Herzog, SSP '11; Gulotta, Ang, Herzog '11; Gulotta, Herzog, Nishioka '11] .
- Computation of *all* Rényi entropies in simple 3d field theories [Klebanov, SSP, Sachdev, Safdi '11] . (Only CS was known before.)

 Ω

イロト イ押 トイラト イラト

Outline

F can be computed in many CFT₃'s, with or without supersymmetry.

イロト イ押ト イヨト イヨ

 Ω

I'll talk about:

- $\bullet N > 3$ field theories with gravity duals.
- An $\mathcal{N} = 2$ example and \mathcal{F} -maximization.
- 1/*N* expansions.
- **RG flows in non-SUSY theories.**

M-theory compactifications

Why use field theory to compute *F* in CFTs with gravity duals? Don't we already know the answer?

- Consider *AdS*₄ × Y compactifications of M-theory (11-d SUGRA).
- Take a stack of *N* coincident M2-branes sitting at the tip of the Calabi-Yau cone over *Y*.
- Close to the M2-branes, the metric is

$$
ds_{11}^2=ds_{AdS_4}^2+4L^2ds_Y^2\,,
$$

where *L* is the radius of *AdS*4.

M-theory compactifications

Why use field theory to compute *F* in CFTs with gravity duals? Don't we already know the answer?

- Consider *AdS*⁴ × *Y* compactifications of M-theory (11-d SUGRA).
- Take a stack of *N* coincident M2-branes sitting at the tip of the Calabi-Yau cone over *Y*.
- Close to the M2-branes, the metric is

$$
ds_{11}^2=ds_{AdS_4}^2+4L^2ds_Y^2\,,
$$

where *L* is the radius of *AdS*4.

A Puzzle

• SUGRA predicts:

$$
\mathcal{F} = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}. \qquad (*)
$$

- The same *N* ³/² scaling was observed in [Klebanov, Tseytlin '96] for the thermal free energy.
- Puzzle: In *CFT*₃ one expects a field theory written in terms of $N \times N$ matrices. Naively, number of degrees of freedom is N^2 . So how can it be *N* ³/2?
- Resolution: The field theory intuition is correct only in the 't Hooft limit where *N*/*k* is kept fixed.
- A non-'t Hooft limit of th[e](#page-14-0)*CFT*<[s](#page-14-0)ub>3</sub> repro[d](#page-19-0)uces $N^{3/2}$ $N^{3/2}$ [\(](#page-18-0)de[t](#page-15-0)[a](#page-46-0)[il](#page-47-0)s [t](#page-15-0)[o](#page-46-0) [fol](#page-0-0)[low](#page-61-0)).

A Puzzle

• SUGRA predicts:

$$
\mathcal{F} = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}. \qquad (*)
$$

- The same *N* ³/² scaling was observed in [Klebanov, Tseytlin '96] for the thermal free energy.
- Puzzle: In *CFT*₃ one expects a field theory written in terms of $N \times N$ matrices. Naively, number of degrees of freedom is N^2 . So how can it be *N* ³/2?
- Resolution: The field theory intuition is correct only in the 't Hooft limit where *N*/*k* is kept fixed.
- A non-'t Hooft limit of th[e](#page-14-0) CFT_3 reproduce[s](#page-14-0) $N^{3/2}$ $N^{3/2}$ [\(](#page-18-0)[d](#page-19-0)e[t](#page-15-0)[a](#page-46-0)[il](#page-47-0)s [t](#page-15-0)[o](#page-46-0) [fol](#page-0-0)[low](#page-61-0)).

What can we learn?

- There are many proposals for field theories dual to $AdS_4 \times Y$ for various *Y*.
- Gravity predicts # of d.o.f.'s is $\sim \mathsf{N}^{3/2}/\sqrt{\mathsf{Vol}(Y)}$. Can we match this with a field theory computation?
- If we can, is this an easier way of computing Vol(*Y*)?

 Ω

- Let's start with the simplest example: $\textit{Y} = \textit{S}^{7}/\mathbb{Z}_{k}.$
- The dual field theory is ABJM theory [Aharony *et al.* '08] .

• Field content: 1 $\mathcal{N} = 2$ vector multiplet for each gauge group (1 gauge field, 1 gaugino, 1 real scalar σ); 4 bifundamental chiral fields (each contains 1 complex scalar and 1 fermion).

 Ω

K ロメ K 御 メ K 君 メ K 君 X

- Let's start with the simplest example: $\textit{Y} = \textit{S}^{7}/\mathbb{Z}_{k}.$
- The dual field theory is ABJM theory [Aharony *et al.* '08] .

• Field content: 1 $\mathcal{N} = 2$ vector multiplet for each gauge group (1 gauge field, 1 gaugino, 1 real scalar σ); 4 bifundamental chiral fields (each contains 1 complex scalar and 1 fermion).

 Ω

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07].
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering $S_t = S + t\{Q, V\}$ where *Q* is a supercharge and *V* is such that $\{Q, V\}$ is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of *t.*
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_t]$ _{classical} \times one-loop determinant.
- Complicated calculation gives $(\lambda_i, \tilde{\lambda}_i)$ are e'values of σ , $\tilde{\sigma}$)

$$
Z = \frac{1}{(N!)^2} \int \prod_{i=1}^N \frac{d\lambda_i d\tilde{\lambda}_i}{(2\pi)^2} \frac{\prod_{i < j} \left(4 \sinh \frac{\lambda_i - \lambda_j}{2} \sinh \frac{\tilde{\lambda}_i - \tilde{\lambda}_j}{2}\right)^2}{\prod_{i,j} \left(2 \cosh \frac{\lambda_i - \tilde{\lambda}_j}{2}\right)^2} \times \exp\left(\frac{ik}{4\pi} \sum_{i \in \mathbb{N}} (\lambda_i^2 - \tilde{\lambda}_i^2)\right)_{\mathbb{R}} \exp\left(\frac{ik}{4\pi} \sum_{i \in \mathbb{N}} (\lambda_i^2 - \lambda_i^2)\right)_{\mathbb{R}} \exp\left(\frac{ik}{4\pi} \sum_{i \in \mathbb{N}} (\lambda_i^2 - \lambda_i^2)\right)_{\mathbb{R}} \exp\left(\frac{ik}{4\pi} \sum_{i \in \mathbb{N}} (\lambda_i^2 - \lambda_i^2)\right)_{\mathbb{R}}
$$

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07].
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering $S_t = S + t\{Q, V\}$ where *Q* is a supercharge and *V* is such that $\{Q, V\}$ is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of $t.$
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_t]$ _{classical} × one-loop determinant.
- Complicated calculation gives $(\lambda_i, \tilde{\lambda}_i)$ are e'values of σ , $\tilde{\sigma}$)

$$
Z = \frac{1}{(N!)^2} \int \prod_{i=1}^N \frac{d\lambda_i d\tilde{\lambda}_i}{(2\pi)^2} \frac{\prod_{i < j} \left(4 \sinh \frac{\lambda_i - \lambda_j}{2} \sinh \frac{\tilde{\lambda}_i - \tilde{\lambda}_j}{2}\right)^2}{\prod_{i,j} \left(2 \cosh \frac{\lambda_i - \tilde{\lambda}_j}{2}\right)^2} \times \exp\left(\frac{ik}{4\pi} \sum_{i \in \mathbb{N}} (\lambda_i^2 - \tilde{\lambda}_i^2)\right)_{\mathbb{R}} \text{ g.s.}
$$

 $Z=\frac{1}{\sqrt{M}}$ (*N*!)²

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07].
- How do we compute $Z = \int [DX] \exp[-S]$?

 $\int \frac{N}{\prod}$

i=1

- Clever trick: change the theory by considering $S_t = S + t\{Q, V\}$ where *Q* is a supercharge and *V* is such that $\{Q, V\}$ is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of $t.$
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_t]$ _{classical} × one-loop determinant.

 $\prod_{i,j}\left(2\cosh\frac{\lambda_i-\tilde{\lambda}_j}{2}\right)^2$

Complicated calculation gives $(\lambda_i, \tilde{\lambda}_i)$ are e'values of σ , $\tilde{\sigma}$) $\prod_{i < j} \left(4 \sinh \frac{\lambda_i - \lambda_j}{2} \sinh \frac{\tilde{\lambda}_i - \tilde{\lambda}_j}{2} \right)^2$

 $d\lambda_i d\tilde\lambda_i$ $(2\pi)^2$

!

- Due to [Kapustin, Willett, Yaakov '10] inspired by [Pestun '07].
- How do we compute $Z = \int [DX] \exp[-S]$?
- Clever trick: change the theory by considering $S_t = S + t\{Q, V\}$ where *Q* is a supercharge and *V* is such that $\{Q, V\}$ is positive definite.
- One can show that $Z = \int [DX] \exp[-S_t]$ is independent of $t.$
- Then take *t* to be large. The integral localizes where $\{Q, V\} = 0$ and $Z = \exp[-S_t]$ _{classical} × one-loop determinant.
- Complicated calculation gives $(\lambda_i, \tilde{\lambda}_i$ are e'values of $\sigma, \tilde{\sigma})$

Z = 1 (*N*!)² Z Y *N i*=1 *d*λ*ⁱ d*λ˜ *i* (2π) 2 Q *i*<*j* 4 sinh ^λ*i*−λ*^j* 2 sinh ^λ˜ *ⁱ*−λ˜ *j* 2 2 Q *i*,*j* 2 cosh ^λ*i*−λ˜ *j* 2 2 [×] exp *ik* [4](#page-24-0)[π](#page-26-0) X *[i](#page-22-0)* (λ 2 *ⁱ* [−] ^λ˜² *i*) !

Saddle point (large *N*) approximation

- The following techniques were developed in [Herzog, Klebanov, SSP, Tesileanu '10] .
- We focus on large *N* where we can use the saddle point approximation:

$$
Z = \int d\lambda_i d\tilde\lambda_j\, e^{-{\cal F}(\lambda_i,\tilde\lambda_j)} \approx e^{-{\cal F}_{\text{critical}}}\,,
$$

where to compute F_{critical} we require

$$
\frac{\partial F}{\partial \lambda_i} = \frac{\partial F}{\partial \tilde{\lambda}_j} = 0.
$$
 (1)

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

 Ω

Original range of integration was the real line, but saddle point can be anywhere in the complex plane!

• How do we solve [\(1\)](#page-26-1)? Silviu Pufu (MIT) 3-20-2012 14 / 39

Saddle point (large *N*) approximation

- The following techniques were developed in [Herzog, Klebanov, SSP, Tesileanu '10] .
- We focus on large *N* where we can use the saddle point approximation:

$$
Z = \int d\lambda_i d\tilde\lambda_j\, e^{-{\cal F}(\lambda_i,\tilde\lambda_j)} \approx e^{-{\cal F}_{\text{critical}}}\,,
$$

where to compute F_{critical} we require

$$
\frac{\partial F}{\partial \lambda_i} = \frac{\partial F}{\partial \tilde{\lambda}_j} = 0.
$$
 (1)

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

 Ω

Original range of integration was the real line, but saddle point can be anywhere in the complex plane!

• How do we solve [\(1\)](#page-26-1)?

Silviu Pufu (MIT) 3-20-2012 14 / 39

Solution: 1. Numerics

- Think of λ_i and $\tilde{\lambda}_j$ as coordinates of particles in $\mathbb{C}=\mathbb{R}^2$ acted on by forces $\partial \bar{F}/\partial \lambda_i$ and $\partial \bar{F}/\partial \tilde{\lambda}_j$.
- Add "viscosities' τ_{λ} and $\tau_{\tilde{\lambda}}$ and a time direction and use relaxation method:

$$
\tau_{\lambda} \frac{d\lambda_i}{dt} = \frac{\partial F}{\partial \lambda_i}, \qquad \tau_{\tilde{\lambda}} \frac{d\tilde{\lambda}_j}{dt} = \frac{\partial F}{\partial \tilde{\lambda}_j}.
$$

• Note that τ_{λ} and $\tau_{\tilde{\lambda}}$ need not be real!

 Ω

This is for $k = 1$ and $N = 20$ —compare to $N = 40$ on next slide.

Movie 1

重 Silviu Pufu (MIT) 3-20-2012 16 / 39

 2990

イロト イ団 トイモト イモト

Imaginary parts stay of order 1, while real parts grow as $\sqrt{\mathsf{N}}.$

Movie 2

÷. Silviu Pufu (MIT) 3-20-2012 17/39

 \sim

 299

イロトメ 倒 トメ 差 トメ 差

Solution: 2. Analytical formulas

Saddle point equations are:

$$
\frac{ik}{2\pi}\lambda_i = \sum_{j\neq i} \coth \frac{\lambda_j - \lambda_i}{2} - \sum_j \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2},
$$

$$
-\frac{ik}{2\pi}\tilde{\lambda}_i = \sum_{j\neq i} \coth \frac{\tilde{\lambda}_j - \tilde{\lambda}_i}{2} - \sum_j \tanh \frac{\lambda_j - \tilde{\lambda}_i}{2}.
$$

Assume $\lambda_i = \mathcal{N}^{\alpha}x_i + iy_i$ and $\tilde{\lambda}_j = \mathcal{N}^{\alpha}\tilde{x}_j + i\tilde{y}_j$ as $\mathcal{N} \to \infty$. • Key insight:

$$
\coth \frac{\lambda_j - \lambda_i}{2} \approx \text{sgn}(x_j - x_i), \qquad \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2} \approx \text{sgn}(\tilde{x}_j - x_i),
$$
\nwith exponentially small corrections.

LHS is $O(N^{\alpha})$ at large $N \Longrightarrow$ RHS must also be $O(N^{\alpha})$. \bullet If $\alpha < 1$ $\Longrightarrow X_i \approx \tilde{X}_i \Longrightarrow$ No long-range [for](#page-30-0)[ce](#page-32-0)[s](#page-30-0)[!](#page-31-0)

 QQ

Solution: 2. Analytical formulas

Saddle point equations are:

$$
\frac{ik}{2\pi}\lambda_i = \sum_{j\neq i} \coth \frac{\lambda_j - \lambda_i}{2} - \sum_j \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2},
$$

$$
-\frac{ik}{2\pi}\tilde{\lambda}_i = \sum_{j\neq i} \coth \frac{\tilde{\lambda}_j - \tilde{\lambda}_i}{2} - \sum_j \tanh \frac{\lambda_j - \tilde{\lambda}_i}{2}.
$$

Assume $\lambda_i = \mathcal{N}^{\alpha}x_i + iy_i$ and $\tilde{\lambda}_j = \mathcal{N}^{\alpha}\tilde{x}_j + i\tilde{y}_j$ as $\mathcal{N} \to \infty$. • Key insight:

$$
\coth \frac{\lambda_j - \lambda_i}{2} \approx \text{sgn}(x_j - x_i), \qquad \tanh \frac{\tilde{\lambda}_j - \lambda_i}{2} \approx \text{sgn}(\tilde{x}_j - x_i),
$$
\nwith exponentially small corrections.

LHS is $O(N^{\alpha})$ at large $N \Longrightarrow$ RHS must also be $O(N^{\alpha})$. • If $\alpha < 1 \implies x_i \approx \tilde{x}_i \implies$ $\alpha < 1 \implies x_i \approx \tilde{x}_i \implies$ $\alpha < 1 \implies x_i \approx \tilde{x}_i \implies$ No long-range [for](#page-31-0)[ce](#page-33-0)s[!](#page-31-0)

 QQ

Why *N* ³/²?

• Introduce
$$
\rho(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)
$$
.

- y_i and \tilde{y}_i approach continuous functions $y(x)$ and $\tilde{y}(x)$.
- In the continuum limit $F(\lambda_i, \tilde{\lambda}_i)$ becomes a *local* functional!

$$
F = \frac{k}{2\pi} N^{1+\alpha} \int dx \rho(x) x [y(x) - \tilde{y}(x)]
$$

+ $N^{2-\alpha} \int dx \rho(x)^{2} [\pi^{2} - (\tilde{y}(x) - y(x))^{2}] + ...$

- To balance out these terms we need $\alpha = 1/2.$ Then $F \sim N^{3/2}!$
- Need to minimize F under the constraints $\int dx \rho(x) = 1$ and $\rho(x) > 0$ almost everywhere.

 Ω

Why *N* ³/²?

• Introduce
$$
\rho(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)
$$
.

- y_i and \tilde{y}_i approach continuous functions $y(x)$ and $\tilde{y}(x)$.
- In the continuum limit $F(\lambda_i, \tilde{\lambda}_i)$ becomes a *local* functional!

$$
F = \frac{k}{2\pi} N^{1+\alpha} \int dx \rho(x) x [y(x) - \tilde{y}(x)]
$$

+
$$
N^{2-\alpha} \int dx \rho(x)^{2} [\pi^{2} - (\tilde{y}(x) - y(x))^{2}] + \dots
$$

- To balance out these terms we need $\alpha = 1/2.$ Then $F \sim N^{3/2}!$
- Need to minimize F under the constraints $\int dx \rho(x) = 1$ and $\rho(x) > 0$ almost everywhere.

 Ω

Why *N* ³/²?

• Introduce
$$
\rho(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)
$$
.

- y_i and \tilde{y}_i approach continuous functions $y(x)$ and $\tilde{y}(x)$.
- In the continuum limit $F(\lambda_i, \tilde{\lambda}_i)$ becomes a *local* functional!

$$
F = \frac{k}{2\pi} N^{1+\alpha} \int dx \rho(x) x [y(x) - \tilde{y}(x)]
$$

+ $N^{2-\alpha} \int dx \rho(x)^2 \left[\pi^2 - (\tilde{y}(x) - y(x))^2 \right] + \dots$

- To balance out these terms we need $\alpha =$ 1/2. Then $\mathit{F} \sim \mathit{N}^{3/2}!$
- Need to minimize F under the constraints $\int dx \rho(x) = 1$ and $\rho(x) > 0$ almost everywhere.

 Ω

• Solution is

$$
\rho(x) = \frac{1}{2x_*}, \qquad y(x) = -\tilde{y}(x) = \frac{\pi}{2} \frac{x}{x_*} \qquad \text{for } x \in [-x_*, x_*],
$$

with $x_* = \pi \sqrt{2/k}$.

Comparison: analytical formula (dashed) and numerics (orange):

• Free energy is

$$
F = \frac{\pi\sqrt{2}}{3}k^{1/2}N^{3/2}
$$

in agreement with the gravity computation.

• Also in agreement with the large *N*/*k* limit of [Drukker *et al.* '10] $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

More general theories with $\mathcal{N}=3$ SUSY

- We can consider more general "necklace" quiver gauge theories with $\mathcal{N} = 3$ SUSY [Jafferis, Tomasiello '08] .
- The $\mathcal{N} = 3$ superpotential is

$$
W=-\sum_{a=1}^{\rho}\frac{2\pi}{k_a}(B_{a-1}A_{a-1}-A_aB_a)^2
$$

• Take the gauge groups to be all *U*(*N*).

• Require
$$
\sum_{a=1}^{p} k_a = 0
$$
.

 Ω

- Dual SUGRA background is $AdS_4 \times Y$ where *Y* is a tri-Sasakian space. (=an Einstein manifold which is the base of a hyperKähler cone.)
- **From [Kapustin, Willet, Yaakov '10]:**

$$
Z \propto \int \left(\prod_{a,i} \frac{d\lambda_{a,i}}{2\pi}\right) \prod_{a=1}^p \left(\frac{\prod_{i
$$

 Ω

医不良 医不全面

Numerics for 3 nodes:

Movie 3

イロト イ部 トイ君 トイ君 ト

重

 2990

Silviu Pufu (MIT) 3-20-2012 23/39

4 nodes:

Movie 4

目 Silviu Pufu (MIT) 3-20-2012 24 / 39

 2990

メロメメ 倒 メメ きょくきょ

• The long-range forces between the eigenvalues cancel iff

$$
\lambda_{a,i}=N^{1/2}x_i+iy_{a,i},
$$

i.e. to leading order in N the real parts of $\lambda_{a,i}$ are the same. **•** Then

$$
F[\rho, \delta y_a] = \frac{N^{3/2}}{2\pi} \int dx \, x \rho(x) \sum_{a=1}^p q_a \delta y_a(x) \\ + \frac{N^{3/2}}{2} \int dx \, \rho(x)^2 \sum_{a=1}^p f(\delta y_a(x)) + o(N^{3/2}),
$$

where $k_a = q_a - q_{a-1}$, $\delta y_a = y_{a-1} - y_a$, and as before

$$
f(\delta y_a) = \pi^2 - (\delta y_a)^2 \quad \text{if } |\delta y_a| < \pi.
$$

 QQ

Features of the solution:

- $\rho(x)$ and $\rho(x)\delta y_a(x)$ are piecewise linear functions.
- The δy_a saturate at $\pm \pi$: $\delta y_a(x) = \pm \pi$ for $|x| > x_{a*}$ for some x_{a*} . egeæ ضخض ووارد òòòòòòòò *<u>AANIN</u>* ììì ììì -3 -2 -1 -1 2 -3 3 *x* -3 -2 -1 1 2 3 ∆*y* $N=100, k=\{1, 3, -4\}$ -3 -2 -1 1 2 *x* 0.05 0.10 0.15 0.20 Ρ $N=100, k=\{1,3,-4\}$

 Ω

4 ロ ト 4 何 ト 4 ヨ ト 4

イロト イ部 トイ君 トイ君 ト

Silviu Pufu (MIT) 3-20-2012 27/39

重

 2980

What are we learning from all this?

- In a large class of $\mathcal{N} = 3$ theories, we can show that the free energy on *S* ³ grows as *N* ³/² at large *N* as expected from the dual gravity side.
- Using AdS/CFT, we can compute the volumes of the internal spaces *Y*:

$$
F = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}. \qquad (*)
$$

For necklace quivers the volume agrees with the geometrical computation of [Lee, Yee '06, Yee '07] .

 Ω

What are we learning from all this?

- In a large class of $\mathcal{N} = 3$ theories, we can show that the free energy on *S* ³ grows as *N* ³/² at large *N* as expected from the dual gravity side.
- Using AdS/CFT, we can compute the volumes of the internal spaces *Y*:

$$
F = N^{3/2} \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y)}}. \qquad (*)
$$

For necklace quivers the volume agrees with the geometrical computation of [Lee, Yee '06, Yee '07] .

 Ω

 $(0,1)$ $(0,1)$

Volume formula

• For $p = 3$ nodes, one obtains

$$
\frac{\text{Vol}(Y)}{\text{Vol}(S^7)} = \frac{|k_1||k_2| + |k_1||k_3| + |k_2||k_3|}{(|k_1| + |k_2|)(|k_2| + |k_3|)(|k_1| + |k_3|)}.
$$

Tree formula: The volume of the tri-Sasakian spaces can be written as a sum over tree diagrams [Herzog, Klebanov, SSP, Tesileanu '10] . Proof in [Gulotta, Herzog, SSP '11] .

$$
\frac{\text{Vol}(Y)}{\text{Vol}(S^7)} = \frac{\sum_{(V,E)\in\mathcal{T}}\prod_{(a,b)\in E}|q_a-q_b|}{\prod_{a=1}^p\left[\sum_{b=1}^p|q_a-q_b|\right]},
$$

where $k_a = q_a - q_{a-1}$, and $\mathcal T$ is the set of all trees with nodes $V = \{1, 2, \ldots, p\}$ and edges *E*. (# of edges is $p - 1$ for any tree with *p* nodes!) 4 ロ ト 4 何 ト 4 ラ ト 4 ラ ト Ω

$\mathcal{N}=2$ theories

- Correct R-symmetry in the IR extremizes *e* −*F* [Jafferis '10] .
- \bullet For each bifundamental $X_{a,b}$, replace

$$
\frac{1}{\sqrt{\cosh \frac{\delta \lambda}{2}}} \to \text{exp}\left[\ell \left(1 - R[X_{a,b}] + i \frac{\delta \lambda}{2\pi}\right)\right]
$$

where

$$
\ell(z)=-z\ln\left(1-e^{2\pi i z}\right)+\frac{i}{2}\left(\pi z^2+\frac{1}{\pi} \text{Li}_2\left(e^{2\pi i z}\right)\right)-\frac{i\pi}{12}\,.
$$

 \bullet Extremize over $R[X_{a,b}]$ under the constraint that the superpotential should have R-charge $R[W] = 2$.

 Ω

イロト イ押ト イヨト イヨ

The superpotential $W = \text{tr}[\epsilon^{\vec{y}} \epsilon^{kl} A_i B_k A_j B_l]$ has $R[W] = 2$, so

$$
R[A_1]+R[A_2]+R[B_1]+R[B_2]=2\,.
$$

• The free energy is

$$
F(R[A_i], R[B_i]) = \frac{4\sqrt{2}\pi k^{1/2}N^{3/2}}{3}\sqrt{R[A_1]R[A_2]R[B_1]R[B_2]}\,.
$$

- *F* is maximized when $R[A_i] = R[B_i] = 1/2$.
- When $k=1$, one can trigger an RG flow by adding A_1^2 to the superpotential. Then $F[A_1] = 1$ and F is maximized when $R[A_2] = R[B_1] = R[B_2] = 1/3.$
- Holographic RG flow to $U(1)_R \times SU(3)$ -invariant fixed point of $\mathcal{N}=8$ gauged SUGRA [Warner '83; Corrado, Pilch, Warner '01; Benna, Klebanov, Klose, Smedback '08] . A_2 , B_1 , and B_2 are expected to form an *SU*(3) triplet.

 Ω

The superpotential $W = \text{tr}[\epsilon^{\vec{y}} \epsilon^{kl} A_i B_k A_j B_l]$ has $R[W] = 2$, so

$$
R[A_1]+R[A_2]+R[B_1]+R[B_2]=2\,.
$$

• The free energy is

$$
F(R[A_i], R[B_i]) = \frac{4\sqrt{2}\pi k^{1/2}N^{3/2}}{3}\sqrt{R[A_1]R[A_2]R[B_1]R[B_2]}\,.
$$

- *F* is maximized when $R[A_i] = R[B_i] = 1/2$.
- When $k = 1$, one can trigger an RG flow by adding A_1^2 to the superpotential. Then $F[A_1] = 1$ and F is maximized when $R[A_2] = R[B_1] = R[B_2] = 1/3.$

• Holographic RG flow to $U(1)_R \times SU(3)$ -invariant fixed point of $\mathcal{N}=8$ gauged SUGRA [Warner '83; Corrado, Pilch, Warner '01; Benna, Klebanov, Klose, Smedback '08] . A_2 , B_1 , and B_2 are expected to form an *SU*(3) triplet.

 Ω

イロト イ押 トイラ トイラトー

The superpotential $W = \text{tr}[\epsilon^{\vec{y}} \epsilon^{kl} A_i B_k A_j B_l]$ has $R[W] = 2$, so

$$
R[A_1]+R[A_2]+R[B_1]+R[B_2]=2\,.
$$

• The free energy is

$$
F(R[A_i], R[B_i]) = \frac{4\sqrt{2}\pi k^{1/2}N^{3/2}}{3}\sqrt{R[A_1]R[A_2]R[B_1]R[B_2]}\,.
$$

- *F* is maximized when $R[A_i] = R[B_i] = 1/2$.
- When $k = 1$, one can trigger an RG flow by adding A_1^2 to the superpotential. Then $F[A_1] = 1$ and F is maximized when $R[A_2] = R[B_1] = R[B_2] = 1/3.$
- Holographic RG flow to $U(1)_R \times SU(3)$ -invariant fixed point of $\mathcal{N}=8$ gauged SUGRA [Warner '83; Corrado, Pilch, Warner '01; Benna, Klebanov, Klose, Smedback '08] . A_2 , B_1 , and B_2 are expected to form an *SU*(3) triplet.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

1/*N* expansion

Localization and *F*-maximization allow us to compute *F* in all $\mathcal{N} > 2$ supersymmetric theories.

• In $\mathcal{N} = 4$ U(1) gauge theory with N hypers, the partition function is

$$
Z = e^{-F} = \frac{1}{2^N} \int_{-\infty}^{\infty} \frac{d\lambda}{\cosh^N(\pi\lambda)} = \frac{2^{-N} \Gamma(\frac{N}{2})}{\sqrt{\pi} \Gamma(\frac{N+1}{2})}.
$$

1/*N* expansion is quite powerful:

$$
\digamma=-\log Z=N\log 2+\frac{1}{2}\log\left(\frac{N\pi}{2}\right)-\frac{1}{4N}+\frac{1}{24N^3}+\ldots.
$$

 Ω

イロト イ押ト イヨト イヨ

Exact result in orange, large *N* approximation in black and brown.

Silviu Pufu (MIT) 3-20-2012 33 / 39

[The Power of 1](#page-53-0)/*N*

• Consider $\mathcal{N} = 2$ CS theory with level *k* and *N* pairs of fundamental and anti-fundamental flavors with no superpotential.

Assume the flavor fields have R-charge

$$
\Delta = \frac{1}{2} + \frac{\Delta_1}{N} + \dots
$$

• Denoting $\kappa = 2k/(N\pi)$, the free energy is

$$
F(\Delta) = N \log 2 + \frac{1}{2} \log \left(\frac{N\pi}{2} \sqrt{1 + \kappa^2} \right)
$$

$$
- \left(\frac{\pi^2 \Delta_1^2}{2} + \frac{2\Delta_1}{1 + \kappa^2} + \frac{1 - \kappa^2}{4(1 + \kappa^2)^2} \right) \frac{1}{N} + \dots
$$

• Extremizing over Δ_1 one finds

$$
\Delta_1=-\frac{2}{\pi^2(1+\kappa^2)}.
$$

Add superpotential $\sum (Q\tilde{Q})^2 \Longrightarrow$ flow to IR where $\Delta_1=0.$ F_{UV} > F_{IR} because of *F*-maximization. **K ロ メ イ 団 メ ス ミ メ ス ミ メ**

 000

- Consider $\mathcal{N} = 2$ CS theory with level *k* and *N* pairs of fundamental and anti-fundamental flavors with no superpotential.
- Assume the flavor fields have R-charge

$$
\Delta = \frac{1}{2} + \frac{\Delta_1}{N} + \ldots
$$

• Denoting $\kappa = 2k/(N\pi)$, the free energy is

$$
F(\Delta) = N \log 2 + \frac{1}{2} \log \left(\frac{N\pi}{2} \sqrt{1 + \kappa^2} \right)
$$

$$
- \left(\frac{\pi^2 \Delta_1^2}{2} + \frac{2\Delta_1}{1 + \kappa^2} + \frac{1 - \kappa^2}{4(1 + \kappa^2)^2} \right) \frac{1}{N} + \dots
$$

• Extremizing over Δ_1 one finds

$$
\Delta_1=-\frac{2}{\pi^2(1+\kappa^2)}.
$$

Add superpotential $\sum (Q\tilde{Q})^2 \Longrightarrow$ flow to IR where $\Delta_1=0.$ F_{UV} > F_{IR} because of *F*-maximization. $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

 000

- Consider $\mathcal{N} = 2$ CS theory with level *k* and *N* pairs of fundamental and anti-fundamental flavors with no superpotential.
- Assume the flavor fields have R-charge

$$
\Delta = \frac{1}{2} + \frac{\Delta_1}{N} + \ldots
$$

• Denoting $\kappa = 2k/(N\pi)$, the free energy is

$$
F(\Delta) = N \log 2 + \frac{1}{2} \log \left(\frac{N\pi}{2} \sqrt{1 + \kappa^2} \right)
$$

$$
- \left(\frac{\pi^2 \Delta_1^2}{2} + \frac{2\Delta_1}{1 + \kappa^2} + \frac{1 - \kappa^2}{4(1 + \kappa^2)^2} \right) \frac{1}{N} + \dots
$$

 \bullet Extremizing over Δ_1 one finds

$$
\Delta_1=-\frac{2}{\pi^2(1+\kappa^2)}\,.
$$

Add superpotential $\sum (Q\tilde{Q})^2 \Longrightarrow$ flow to IR where $\Delta_1=$ 0. F_{UV} > F_{IR} because of *F*-maximization.

Non-supersymmetric CFTs

One can compute *F* in the following theories with no SUSY by evaluating functional determinants [Klebanov, SSP, Safdi '11; Klebanov, SSP, Sachdev, Safdi '11] :

• Free complex scalar and Dirac fermion:

$$
\digamma_S = \frac{\log 2}{4} - \frac{3\zeta(3)}{8\pi^2} \approx 0.128\,, \qquad \digamma_D = \frac{\log 2}{4} + \frac{3\zeta(3)}{8\pi^2} \approx 0.219\,.
$$

CS theory at level k with N_f fermions and N_b bosons with electric charges q_f and q_b :

$$
F = \frac{\log 2}{4} (N_f + N_b) + \frac{3\zeta(3)}{8\pi^2} (N_f - N_b) + \frac{1}{2} \log \left[\pi \sqrt{\left(\frac{N_f q_f^2 + N_b q_b^2}{8} \right)^2 + \left(\frac{k}{\pi} \right)^2} \right] + \dots
$$

 Ω

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

"Close" RG fixed points

- CFT perturbed by $\mathcal O$ w/ dimension 3 ϵ . Perturbative IR fixed point at coupling $g_* \propto \epsilon$ with $F_{\sf IR} - F_{\sf UV} \propto -\epsilon^3.$
- Double trace deformation in a large *N* QFT: $\delta \mathcal{L} = \frac{\lambda_0}{2} \Phi^2$ where Φ is a single trace operator with dimension $\Delta < 3/2$.

$$
F_{IR}-F_{UV}=-\frac{\pi}{6}\int_{\Delta}^{3/2}dx(x-1)(x-\frac{3}{2})(x-2)\cot(\pi x)<0.
$$

• Fermionic double trace deformation: $\delta \mathcal{L} = \lambda_0 \bar{\chi} \chi$.

$$
F_{IR} - F_{UV} = -\frac{2\pi}{3} \int_{\Delta}^{3/2} dx \left(x - \frac{1}{2}\right) \left(x - \frac{3}{2}\right) \left(x - \frac{5}{2}\right) \tan(\pi x) < 0.
$$

 Ω

Entanglement entropy proof of *c*-theorem

For a CFT on $\mathbb{R}^{1,1}$, $S(r) = \frac{c}{3} \log r$, so $rS'(r) = c/3$.

• Take
$$
|AB| = r
$$
, $|CD| = R$, $|AD| = |BC| = 0 \implies$
 $|AC| = |BD| = \sqrt{Rr}$.

- Strong subadditivity: $S(AB \cup BC) + S(AB \cup AD) \geq S(AB) + S(AB \cup BC \cup AD)$.
- But *S*(*AB* ∪ *BC*) = *S*(*AB* ∪ *AD*) = *S*(√ *Rr*); *S*(*AB*) = *S*(*r*); $S(AB \cup BC \cup AD) = S(R)$.
- Consequently 2*S*(\sqrt{Rr} \sqrt{Rr} \sqrt{Rr} [\)](#page-55-0) $\geq S(R) + S(r) \Longrightarrow (rS'(r))' < 0.$ $\geq S(R) + S(r) \Longrightarrow (rS'(r))' < 0.$

 Ω

Entanglement entropy proof of *F*-theorem

The 3d proof involves a large number of boosted circles.

[Casini, Huerta '12] show that $S''(r) < 0$.

Recall that $\mathcal{F}(r) = rS'(r) - S(r)$, so $\mathcal{F}'(r) = rS''(r)$.

 QQQ

(ロ) (A) (ヨ)

Conclusions

- In all examples, F decreases under RG flow.
- \bullet F is calculable in many field theories; if there's $\mathcal{N} > 2$ SUSY, F can be expressed as the log of a finite-dimensional integral using localization.
- For field theories on M2-branes, a field theory computation reproduces the *N* ³/² scaling of the number of degrees of freedom.
- Main question three weeks ago: can the *F*-theorem be proven?

 Ω

イロト イ押ト イヨト イヨ

Conclusions

- In all examples, F decreases under RG flow.
- \bullet F is calculable in many field theories; if there's $\mathcal{N} > 2$ SUSY, F can be expressed as the log of a finite-dimensional integral using localization.
- For field theories on M2-branes, a field theory computation reproduces the *N* ³/² scaling of the number of degrees of freedom.
- Main question three weeks ago: can the *F*-theorem be proven?

イロト イ押ト イヨト イヨ