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Bootstrap Review

Conformal Bootstrap

» The conformal bootstrap aims to use basic consistency conditions to
map out and solve the space of CFTs

» Conformal symmetry
» Associativity of the OPE (crossing symmetry)
> Unitarity
» Beautiful success story in 2D
[Ferrara, Gatto, Grillo '73; Polyakov '74; Belavin, Polyakov, Zamolodchikov '84]

» Great progress in D > 2 starting in 2008
[Rattazzi, Rychkov, Tonni, Vichi '08; ]
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Motivations

Many motivations to learn about CFTs in D > 2:

v

3D: Condensed Matter and Statistical Systems at Phase Transitions
4D: Scenarios for Physics Beyond the Standard Model

Structure of QFT and space of CFTs

AdS/CFT Correspondence (precise way to study quantum gravity)

v

v

v
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Example: 3D Ising Model
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» CFTs describe condensed matter systems at phase transitions
» Liquid-vapor critical point in fluids (*He, Oz, Ar, Xe, ...)
» Continuum limit of 3D spin lattice: H = Z@j) o;-0; at T,
— Both described by 3D Ising CFT: scalar with ¢* interaction
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Single Correlator Bootstrap

Simplest bootstrap involves evaluating scalar 4-point functions with OPE:

(6(21)pla2)b(z3) b(a))

Z AoCr(x12,02)Cy (w34, 04) (O (22)O7 (24))
O€¢x¢

= 3A, 2A, Z No ga,e(u,v)
Lo 9534 Ocpxgd

I2 :)32 I2 2
>y = 2734 g = 24738 conformally-invariant cross ratios
T13%24 27323,

> ga¢(u,v) conformal block, labeled by A = dim(O) and ¢ = spin(O)
(known in any D using explicit formulas or recursion relations)



Bootstrap Review

Crossing Symmetry

> (¢(x1)p(x2)d(r3)p(x4)) is symmetric under permutations of x;
» Switching x1 <> x3 after OPE gives the crossing relation:

=) o= E,

VB YT Abgas(u,v) = ut Y Apga(v,u)
Ocopx¢ Ocpxg

» This is a constraint on the spectrum of primary A's, £'s, and A\p's
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Crossing Symmetry

Convenient to write as a sum rule (separating out ¢ X ¢ ~ 1+ ...)

2
0 = F070(u, U) + Z )\OFA7g(u, ’U)
—_———
unit op. everything else

where

Fao(u,v) = vA¢gA,g(u,v)—uA‘lﬁgA,g(v,u).
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How Does Crossing Symmetry Lead to CFT Bounds?

Crossing relation for real scalar ¢:

0 = Foo(uw,0)+ > A\oFa(u,v)

—— ~

unit op. everything else
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How Does Crossing Symmetry Lead to CFT Bounds?

Crossing relation for real scalar ¢:

0 = Foolu,v)+ Z Ao Fa(u,v)
—— ~
unit op. everything else

» Make an assumption: all scalars have dimension A > Anin
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How Does Crossing Symmetry Lead to CFT Bounds?

Crossing relation for real scalar ¢:

0 = Foolu,v)+ Z Ao Fa(u,v)
—— ~
unit op. everything else

» Make an assumption: all scalars have dimension A > Anin

» Search for a linear functional « such that

a(Fpp) = 1, and
a(Fag) > 0, forall other O € ¢ x ¢.

» If you find one, the assumption is ruled out!
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CFT Bounds

» Can be solved with linear or semidefinite programming techniques
[Rattazzi, Rychkov, Tonni, Vichi '08; DP, Simmons-Duffin, Vichi '11]

» Many nice results between 2008-2014 following this approach in
(2-6)D, as well as generalizations to SUSY and other global symmetries

» Here | will focus on the 3D story...
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3D Dimension Bounds

A¢2 3D Dimension Bound
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[El-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, '12]

» 3D Ising dimensions from numerical simulations:
A, ~0.51813(5), A =~ 1.41275(25) [Hasenbusch '10]



Bootstrap Review

c-minimization and Spectrum Extraction

c lower bound (153,190,231 comp.)
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[EI-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, '14]

» Under the conjecture that the central charge (T'T") ¢ is minimized, a
precise spectrum in 0 X 0 ~ 1 + €+ ¢ + ... can be extracted:

A, ~ 0.518154(15), A, ~ 1.41267(13), A = 3.8303(18), ...
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c-minimization and Spectrum Extraction

1=0 spectrum @ min ¢ (153,190,231 comp.) 1=2 spectrum @ min ¢ (153,190,231 comp.)

L5 | 15} A
|

o e

i
NWDUIONOOO RN

U

0.

A(o) A(o)

[El-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, '14]

» Operators merge and disappear from the spectrum!
» Reminiscent of null states in 2D
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3D O(N) Bounds

O(N) Singlet Bounds
Ag
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[Kos, DP, Simmons-Duffin "13]

» Extension to (¢;¢;¢r¢;), where ¢; is O(N) vector
» OPE ¢; x ¢; ~ 1+ S +T;; + ... contains singlets and two-index tensors
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3D O(N) Bounds

b
b.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535

[Kos, DP, Simmons-Duffin "13]

Ay

» Extension to (¢;¢;¢rd1), where ¢; is O(N) vector
» OPE ¢; x ¢; ~ 14 S +T;; + ... contains singlets and two-index tensors
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3D O(N) Bounds

O(N) Central Charge Bounds
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[Kos, DP, Simmons-Duffin '13]

> In general ¢ bounds do not show a minimum
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Mixed Correlator Bootstrap

Missing Operators?

Studies so far failed to access parts of the operator spectrum:

> In 3D Ising, only saw Zs-even operatorsin o x o ~1+¢€+ ...
> In O(N) models, only saw O(N) singlets S and two-index tensors Tj;

In fact, there are good reasons to expect that the unaccessed operators are

important...
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Non-perturbative Equations of Motion

> In ¢* theory, one expects an equation of motion like 9%¢ ~ ¢3 + . ..
» This means that the ¢® operator becomes a descendant, and is
removed from the primary spectrum

» The consequence is that there is a large gap in the Zo-odd spectrum,
along with many other relations between operators (e.g., p9?¢ ~ ¢*)

It is very important to understand the role of these gaps (and operator
relations) in the context of the conformal bootstrap!
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Mixed Correlators

» To probe gaps, one must consider mixed correlators like (coee)
» However, the expansion

M n
(coee)y ~ Z)\aao)\eeogA,Z(U,U)
(@]

does not have positive coefficients, so we cannot use the same logic

» In fact, it turns out that the positivity constraints must be phrased in
terms of positive semidefinite matrices (SDP is manditory)
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Mixed Correlators

» The positivity properties can be made manifest by considering the
system {(coo0), (0o€e), (eeee) }, which leads to 5 sum rules:

¥ )\crcr ¥
; ()\M@ )\“o) Viae(u,v) (Aee(f) + ; AieOV_,A,e(u,v) = 0,

where Vi A ¢(u,v) are 5-vectors and Vi A ¢(u,v) is a 2 X 2 matrix
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Mixed Correlators

» The positivity properties can be made manifest by considering the
system {(coo0), (0o€e), (eeee) }, which leads to 5 sum rules:

¥ )\crcr ¥
; ()\M@ )\“o) Viae(u,v) (Aee(f) + ; AieOV_,A,e(u,v) = 0,

where Vi A ¢(u,v) are 5-vectors and Vi A ¢(u,v) is a 2 X 2 matrix

» Bounds follow from applying a 5-vector of functionals & such that

(1 1)@ Vioo G) = 1,

a-Viag 0, for all Zy-even operators O,

Y

—

-V_ae = 0, forall Zo-odd operators O~ .

Q1
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Mixed Correlator Bounds

upper bound on A,/ (npax = 6)

; ; ; ! ; ! A,
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[Kos, DP, Simmons-Duffin '14]

» Imposing a gap in Zy-odd spectrum restricts A, to a small interval!
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Mixed Correlator Bounds
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allowed region with Ay > 3 (npax = 6)
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[Kos, DP, Simmons-Duffin '14]
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Mixed Correlator Bounds

allowed region with A, Ayr > 3 (npax = 10)
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Mixed Correlator Bounds
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Pushing farther, the region keeps shrinking! [Simmons-Duffin '15]
{As, A} = {0.518151(6),1.41264(6) }
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Mixed Correlator Lessons

> The 3D Ising CFT is isolated in the space of 3D CFTs with Z5
symmetry and 2 relevant operators

> It is a plausible conjecture that it is the only CFT with this property

» The conformal bootstrap can place the idea of critical universality on a
rigorous footing
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Mixed Correlator Lessons

> The 3D Ising CFT is isolated in the space of 3D CFTs with Z5
symmetry and 2 relevant operators

> It is a plausible conjecture that it is the only CFT with this property

» The conformal bootstrap can place the idea of critical universality on a
rigorous footing

» Extension to O(N) symmetry in progress [Kos, DP, Simmons-Duffin, Vichi]
» Challenge is many relevant operators:

e.g. i, 0iPj,. .., 0i0;PrP1Pm all relevant at large N
» However, preliminary results show isolated regions from system:

{(pipjordr), (9i;d°D?), (B*$*P° %)}
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Spinning Bootstrap

Spinning Bootstrap

» Another important direction is to extend the conformal bootstrap to
external operators with spin
» E.g., one would like to include fermions, global symmetry currents, the
stress tensor, higher spin operators, ...
» This brings two complications:
» Multiple tensor structures in the 3- and 4-point functions
> Need to calculate the conformal blocks
» Current work in progress: fermion bootstrap in 3D
[Nliesiu, Kos, DP, Pufu, Simmons-Duffin, Yacoby, in progress]
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Fermion Bootstrap

» Consider 4-point functions (1111)) of a Majorana fermion in 3D
(SO(2,1) ~ Sp(2,R) — real two-component spinors)
» For now, we will also assume a parity symmetry: (z,y) — (—x,y)

» To classify 3-point and 4-point structures, we can work in an
embedding space, where SO(3,2) ~ Sp(4,R) is linearly realized
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Fermion Bootstrap

» Consider 4-point functions (1111)) of a Majorana fermion in 3D
(SO(2,1) ~ Sp(2,R) — real two-component spinors)

» For now, we will also assume a parity symmetry: (z,y) — (—x,y)

» To classify 3-point and 4-point structures, we can work in an
embedding space, where SO(3,2) ~ Sp(4,R) is linearly realized

Results:

> (1/11/1(’)(6 e"e")> has two structures of even parity and one of odd parity
> (PpOU °dd)) has one structure of odd parity
» (Yyyh) has 5 independent tensor structures
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Fermion Bootstrap

» Crossing symmetry leads to a 5-vector of sum rules:

0= > (Al A )ﬁ Ae(u,v) Yo,
o, 2o, ) Fryaelu, v

O+7€+
+ ) AP aeuv)+ Y (MG ) F_ au(u,v),
o_ts o1

» To calculate the conformal blocks, we express (1)10O), = Dy {(p¢O),
which lets us relate [(110),(Oph)y to [(ppO)(Ogp)

» Bounds follow from applying functionals oy (again SDP is mandatory!)
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Preliminary Fermion Bounds

Bound on Lowest Parityodd Scalap (nmax=6)
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» Bound converges to free fermion values: 1) x ¢ ~ 1 4+ % + ...
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Preliminary Fermion Bounds

Allowed Region withA,= 3 (Nmax=6)
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» Assuming a parity-odd gap carves out a large region
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Preliminary Fermion Bounds

Allowed Region withA,= 3 (Nmax=6)
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» Assuming a parity-odd gap carves out a large region
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Preliminary Fermion Bounds

Allowed Region with A= 3 (nmax=6)
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» Conjecture: Lower tip will converge to the 3D N =1 Ising model
(perhaps with a slightly smaller ¢’ gap)

» SCFT with superpotential W = X2 and ¥ = o + ¢ + 6%
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Preliminary Fermion Bounds

Allowed Region with Ay = 3 (Nmax=6)
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> Here it is at {A;, Ay} ~ {.562,1.062}, not far from previous estimates
(Ay ~ .571 [Grover, Sheng, Vishwanath '13], A, 2 .565 [Bashkirov '13])
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Future

>

Extend spinning bootstrap to currents, stress tensor, higher spins, ...

v

Larger systems of mixed correlators (all relevant operators!)

v

Develop efficient algorithms for high-precision SDP

v

Improve analytic arguments: large N, large £, SUSY chiral algebras, ...
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Future

>

Extend spinning bootstrap to currents, stress tensor, higher spins, ...

v

Larger systems of mixed correlators (all relevant operators!)

v

Develop efficient algorithms for high-precision SDP

v

Improve analytic arguments: large N, large £, SUSY chiral algebras, ...

» Classify and map out space of CFTs in all dimensions!
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Targets for the Bootstrap

» 2D CFTs with ¢ > 1

» 3D Gross-Neveu Models (landscape of theories with fermions-scalars)
» 3D QED or QCD + matter (monopole ops?)

» 3D Chern-Simons + vector matter (connect to higher spin theory!)

» 4D QCD/SQCD in conformal window (archipelago for each N;7?)

» Classify space of 5D and 6D CFTs

» Existence of CFTs in D > 67

» Conformal manifolds
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