Bounds on 4D Conformal and Superconformal Field Theories

David Poland

Harvard University

November 30, 2010

(with David Simmons-Duffin [arXiv:1009.2087])

Motivation

- ▶ Near-conformal dynamics could play a role in BSM physics!
	- \triangleright Walking/Conformal Technicolor [Many people...]
	- ▶ Conformal Sequestering [Luty, Sundrum '01; Schmaltz, Sundrum '06]
	- ▶ Solution to $\mu/B\mu$ problem [Roy, Schmaltz '07; Murayama, Nomura, DP '07]
	- ► Flavor Hierarchies [Georgi, Nelson, Manohar '83; Nelson, Strassler '00]
	- \blacktriangleright ...
- ▶ Many ideas make assumptions about operator dimensions that are difficult to check
- ▶ Hard to calculate anything in non-SUSY theories! Lattice studies may be only hope.
- In $\mathcal{N} = 1$ SCFTs, we actually know lots about chiral operators, but not much about non-chiral operators...

Example: Nelson-Strassler Flavor Models ['00]

 \blacktriangleright Idea: Matter fields T_i have large anomalous dimensions under some CFT, flavor hierarchies generated dynamically!

 $W = T_1 \mathcal{O}_1 + T_2 \mathcal{O}_2 + y^{ij} T_i T_j H + \dots$

- Interactions of matter T_i with CFT operators \mathcal{O}_i are marginal
- \blacktriangleright Yukawa couplings y^{ij} flow to zero at rate controlled by $\dim T_i$
- \blacktriangleright Since T_i are chiral, $\dim T_i = \frac{3}{2} R_{T_i}$ (superconformal $U(1)_R$)
- ▶ Can write down lots of concrete models and then calculate dimensions using a-maximization! [DP, Simmons-Duffin '09]

Example: Nelson-Strassler Flavor Models ['00]

- ► Soft-mass operators $K\sim \frac{1}{M_{pl}^2} X^\dagger X T_i^\dagger T_j$ also flow to zero
	- \blacktriangleright Rate controlled by $\dim T_i^\dagger T_j$
- ▶ Maybe can solve SUSY flavor problem???
	- \triangleright No way to calculate dimensions...
- Similar issue arises in Conformal Sequestering, $\mu/B\mu$ solution
- \blacktriangleright Can we say *anything* about $\dim T^{\dagger}T$, given $\dim T$?
- \blacktriangleright Recently, the papers:

Rattazzi, Rychkov, Tonni, Vichi [arXiv:0807.0004] Rychkov, Vichi [arXiv:0905.2211]

addressed a similar question in non-SUSY CFTs, deriving bounds on $\dim \phi^2$ as a function of $\dim \phi$...

Outline

[CFT Review](#page-4-0)

- [Bounds from Crossing Relations](#page-11-0)
- [Superconformal Blocks](#page-18-0)
- [Bounds on CFTs and SCFTs](#page-23-0)
- [Outlook](#page-30-0)

CFT Review: Primary Operators

 \blacktriangleright In addition to Poincaré generators P^a and M^{ab} , CFTs have dilatations D and special conformal generators K^a

$$
[K^a, P^b] = 2\eta^{ab}D - 2M^{ab}
$$

 \blacktriangleright Primary operators $\mathcal{O}^I(0)$ are defined by

$$
[K^a, \mathcal{O}^I(0)] = 0
$$

(descendants obtained by acting with P^a)

CFT Review: Primary Operators

► Primary 2-pt and 3-pt functions fixed by conformal symmetry in terms of dimensions and spins, up to overall coefficients $\lambda_{\mathcal{O}}$

$$
\langle \mathcal{O}^{a_1...a_l}(x_1) \mathcal{O}^{b_1...b_l}(x_2) \rangle = \frac{I^{a_1b_1} \dots I^{a_l b_l}}{x_{12}^{2\Delta}}
$$

$$
\langle \phi(x_1)\phi(x_2) \mathcal{O}^{a_1...a_l}(x_3) \rangle = \frac{\lambda \mathcal{O}}{x_{12}^{2d-\Delta+l} x_{23}^{\Delta-l} x_{13}^{\Delta-l}} Z^{a_1} \dots Z^{a_l}
$$

$$
\left(I^{ab} = \eta^{ab} - 2 \frac{x_{12}^a x_{12}^b}{x_{12}^2} \right], \quad Z^a = \frac{x_{31}^a}{x_{31}^2} - \frac{x_{32}^a}{x_{32}^2}
$$

 \blacktriangleright Higher *n*-pt functions *not* fixed by conformal symmetry alone, but are determined once spectrum and $\lambda_{\mathcal{O}}$'s are known...

CFT Review: Operator Product Expansion

Let ϕ be a scalar primary of dimension d in a 4D CFT:

$$
\phi(x)\phi(0) = \sum_{\mathcal{O}\in\phi\times\phi}\lambda_{\mathcal{O}}C_{I}(x,P)\,\mathcal{O}^{I}(0) \qquad \text{(OPE)}
$$

- Sum runs over *primary* $O's$
- \blacktriangleright $C_I(x, P)$ fixed by conformal symmetry [Dolan, Osborn '00]
- $\triangleright \mathcal{O}^I = \mathcal{O}^{a_1...a_l}$ can be any spin-*l* Lorentz representation (traceless symmetric tensor) with $l = 0, 2, \ldots$
- ► Unitarity tells us that $\Delta_{\mathcal{O}} \geq l + 2 \delta_{l,0}$ and that $\lambda_{\mathcal{O}}$ is real

CFT Review: Conformal Block Decomposition

Use OPE to evaluate 4-point function

$$
\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle
$$

=
$$
\sum_{\mathcal{O}\in\phi\times\phi} \lambda_{\mathcal{O}}^2 C_I(x_{12}, \partial_2) C_J(x_{34}, \partial_4) \langle \mathcal{O}^I(x_2) \mathcal{O}^J(x_4) \rangle
$$

=
$$
\frac{1}{x_{12}^{2d} x_{34}^{2d}} \sum_{\mathcal{O}\in\phi\times\phi} \lambda_{\mathcal{O}}^2 g_{\Delta,l}(u, v)
$$

► $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$ conformally-invariant cross ratios. ► $g_{\Delta,l}(u, v)$ conformal block $(\Delta = \dim \mathcal{O})$ and $l =$ spin of \mathcal{O})

CFT Review: Conformal Blocks

Explicit formula [Dolan, Osborn '00]

$$
g_{\Delta,l}(u,v) = \frac{(-1)^l}{2^l} \frac{z\overline{z}}{z-\overline{z}} [k_{\Delta+l}(z)k_{\Delta-l-2}(\overline{z}) - z \leftrightarrow \overline{z}]
$$

$$
k_{\beta}(x) = x^{\beta/2} {}_{2}F_{1}(\beta/2, \beta/2, \beta; x),
$$

where $u = z\overline{z}$ and $v = (1 - z)(1 - \overline{z})$.

- ▶ Similar expressions in other even dimensions, recursion relations known in odd dimensions
- \triangleright Alternatively can be viewed as eigenfunctions of the quadratic casimir of the conformal group [Dolan, Osborn '03]

CFT Review: Crossing Relations

- ► Four-point function $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ is clearly symmetric under permutations of x_i
- ▶ After OPE, symmetry is non-manifest!
- Switching $x_1 \leftrightarrow x_3$ gives the "crossing relation":

$$
\sum_{\mathcal{O}\in\phi\times\phi}\lambda_{\mathcal{O}}^{2}g_{\Delta,l}(u,v) = \left(\frac{u}{v}\right)^{d}\sum_{\mathcal{O}\in\phi\times\phi}\lambda_{\mathcal{O}}^{2}g_{\Delta,l}(v,u)
$$

$$
\sum_{2}\sum_{3}^{1}\sum_{\mathcal{O}\in\phi\times\phi}^{4} = \sum_{2}\sum_{3}^{1}\mathcal{O}_{3}
$$

Other permutations give no new information

Outline

1 [CFT Review](#page-4-0)

2 [Bounds from Crossing Relations](#page-11-0)

3 [Superconformal Blocks](#page-18-0)

4 [Bounds on CFTs and SCFTs](#page-23-0)

5 [Outlook](#page-30-0)

- ► Let's study the OPE coefficient of a particular $\mathcal{O}_0 \in \phi \times \phi$
- \triangleright We can rewrite crossing relation as

$$
F_{\Delta,l}(u,v) \equiv \frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}.
$$

Idea: Find a linear functional α such that

$$
\begin{array}{rcl}\n\alpha(F_{\Delta_0,l_0}) & = & 1, \quad \text{and} \\
\alpha(F_{\Delta,l}) & \geq & 0, \quad \text{for all other } \mathcal{O} \in \phi \times \phi.\n\end{array}
$$

Applying to both sides:

$$
\alpha \left(\lambda_{\mathcal{O}_0}^2 F_{\Delta_0, l_0} \right) = \alpha (1 - \sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 F_{\Delta, l})
$$

$$
\lambda_{\mathcal{O}_0}^2 = \alpha (1) - \sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 \alpha (F_{\Delta, l}) \leq \alpha (1)
$$

since $\lambda_{\mathcal O}^2\geq 0$ by unitarity.

- \blacktriangleright To make the bound $\lambda_{\mathcal{O}_0}^2 \leq \alpha(1)$ as strong as possible: *Minimize* $\alpha(1)$ subject to the constraints $\alpha(F_{\Delta_0,l_0})=1$ and $\alpha(F_{\Delta l}) \geq 0 \ (\mathcal{O} \neq \mathcal{O}_0).$
- \blacktriangleright This is an infinite dimensional *linear programming problem...* to use known algorithms (e.g., simplex) we must make it finite
- \blacktriangleright Can take α to be linear combinations of derivatives at some point in z, \overline{z} space

$$
\alpha: F(z,\overline{z}) \mapsto \sum_{m+n \le 2k} a_{mn} \partial_z^m \partial_{\overline{z}}^n F(1/2,1/2)
$$

- ► Discretize constraints to $\alpha(F_{\Delta_i,l_i}) \geq 0$ for $D = \{(\Delta_i,l_i)\}$
- \blacktriangleright Take $k, D \to \infty$ to recover "optimal" bound

- \triangleright Can make any assumptions about the spectrum that we want!
- E.g., can assume that all scalars appearing in the OPE $\phi \times \phi$ have dimension larger than some $\Delta_{\min} = \dim \mathcal{O}_0$
- \blacktriangleright If $\lambda_{\mathcal{O}_0}^2 \leq \alpha(1) < 0,$ there is a contradiction with unitarity and the assumed spectrum can be ruled out

By scanning over different Δ_{min} , one can obtain bounds on $\dim \phi^2$ as a function of $d = \dim \phi$

Bounds on $\dim \phi^2$ (taken from arXiv:0905.2211)

Limitations

- \triangleright Only looked at single real ϕ , can't distinguish between \mathcal{O}' 's in different global symmetry reps
- E.g., chiral Φ in an $\mathcal{N} = 1$ SCFT: ${\rm Re}[\Phi] \times {\rm Re}[\Phi]$ contains ${\cal O}$'s from both $\Phi \times \Phi$ and $\Phi^\dagger \times \Phi$
- $\blacktriangleright \Phi \times \Phi \subset \Phi^2 + \ldots$, with $\dim \Phi^2 = 2 \dim \Phi$: Φ^2 satisfies bound and we learn nothing about $\Phi^\dagger\Phi...$
- ▶ Supersymmetry also relates different conformal primaries, so we should additionally take this information into account

Let's try to generalize the method to deal with this case!

(see Rattazzi, Rychkov, Vichi [arXiv:1009.5985] for more on global symmetries)

Outline

[CFT Review](#page-4-0)

[Bounds from Crossing Relations](#page-11-0)

[Superconformal Blocks](#page-18-0)

[Bounds on CFTs and SCFTs](#page-23-0)

[Outlook](#page-30-0)

$\mathcal{N}=1$ Superconformal Algebra

$$
\{Q,\overline{Q}\}=P \qquad \qquad \{S,\overline{S}\}=K
$$

- Superconformal primary means $[S, \mathcal{O}(0)] = [\overline{S}, \mathcal{O}(0)] = 0$
- \blacktriangleright Descendants obtained by acting with P, Q, \overline{Q}
- ► Chiral means $[*Q*, \phi(0)] = 0$

Superconformal Block Decomposition

 ϕ : scalar chiral superconformal primary of dimension d in an SCFT (lowest component of chiral superfield Φ)

$$
\langle \phi(x_1)\phi^{\dagger}(x_2)\phi(x_3)\phi^{\dagger}(x_4) \rangle = \frac{1}{x_{12}^{2d}x_{34}^{2d}} \sum_{\mathcal{O} \in \Phi \times \Phi^{\dagger}} |\lambda_{\mathcal{O}}|^2 (-1)^l \mathcal{G}_{\Delta,l}(u,v)
$$

- Sum over superconformal primaries \mathcal{O}^{I} with zero R-charge
- \blacktriangleright $\lambda_{\mathcal{O}}$ real for even spin \mathcal{O}^{I} , imaginary for odd spin \mathcal{O}^{I}
- $\blacktriangleright\ x_1\leftrightarrow x_3$ gives crossing relation only involving $\mathcal{O}^I\in \Phi\times \Phi^\dagger$
- ▶ Must organize superconformal descendants into reps of the conformal subalgebra...

Superconformal Block Derivation

Multiplet built from $\mathcal O$ (generically) contains four conformal primaries with vanishing R -charge and definite spin:

- ▶ Superconformal symmetry fixes coefficients of $\langle \phi \phi^{\dagger} J \rangle$, $\langle \phi \phi^{\dagger} N \rangle$, $\langle \phi \phi^{\dagger} D \rangle$ in terms of $\langle \phi \phi^{\dagger} O \rangle$
- \blacktriangleright Must also normalize J, N, D to have canonical 2-pt functions
- ► Superconformal block is then a sum of $g_{\Delta,l}$'s for \mathcal{O}, J, N, D

Superconformal Block Derivation

We find. $¹$ </sup>

$$
\mathcal{G}_{\Delta,l} = g_{\Delta,l} - \frac{(\Delta + l)}{2(\Delta + l + 1)} g_{\Delta+1,l+1} - \frac{(\Delta - l - 2)}{8(\Delta - l - 1)} g_{\Delta+1,l-1} + \frac{(\Delta + l)(\Delta - l - 2)}{16(\Delta + l + 1)(\Delta - l - 1)} g_{\Delta+2,l}.
$$

- ► When unitarity bound $\Delta > l + 2$ is saturated, multiplet is shortened.
- ► $\mathcal{G}_{\Delta,l}$ can also be determined from consistency with $\mathcal{N}=2$ superconformal blocks computed by Dolan and Osborn ['01].

 1 after plenty of algebra

Outline

[CFT Review](#page-4-0)

- [Bounds from Crossing Relations](#page-11-0)
- [Superconformal Blocks](#page-18-0)
- [Bounds on CFTs and SCFTs](#page-23-0)

[Outlook](#page-30-0)

Bounds on Dimension of $\Phi^\dagger\Phi$

Isolating the lowest dimension scalar $\Phi^\dagger \Phi \in \Phi \times \Phi^\dagger$, we have

$$
|\lambda_{\Phi^\dagger\Phi}|^2 \mathcal{F}_{\Delta_{\min},0} = 1 - \sum_{\mathcal{O}\neq \Phi^\dagger\Phi} |\lambda_{\mathcal{O}}|^2 \mathcal{F}_{\Delta,l},
$$

where $\Delta_{\min} = \dim \Phi^{\dagger} \Phi$, and $\mathcal{F}_{\Delta,l}$ is $F_{\Delta,l}$ with $g_{\Delta,l} \to (-1)^l \mathcal{G}_{\Delta,l}$.

Now minimize $\alpha(1)$ subject to

\n- $$
\alpha(\mathcal{F}_{\Delta,0}) \geq 0
$$
 for all $\Delta \geq \Delta_{\min}$,
\n- $\alpha(\mathcal{F}_{\Delta,l}) \geq 0$ for all $\Delta \geq l+2$ and $l \geq 1$,
\n- $\alpha(\mathcal{F}_{\Delta_{\min},0}) = 1$
\n

If $\alpha(1) < 0$, we get $|\lambda_{\Phi^\dagger\Phi}|^2 < 0 \implies \Phi^\dagger\Phi$ can't have dim Δ_{\min}

Upper Bound on Dimension of $\Phi^\dagger\Phi$

Scanning over Δ_{\min} , minimizing $\alpha(1)$ over 21 dimensional space of derivatives

Flavor Currents

 \blacktriangleright If ϕ transforms under flavor symmetry with charges $T^I,$ conserved currents J^I appear in the $\phi\times \phi^\dagger$ OPE:

$$
\langle \phi \phi^{\dagger} J^{I} \rangle \sim -\frac{i}{2\pi^{2}} T^{I}
$$
 (Ward id.)

► Flavor current conformal blocks are then determined by current 2-pt functions

$$
\langle J^I J^J \rangle \sim \frac{3}{4\pi^4} \tau^{IJ}
$$

$$
\langle \phi \phi^\dagger \phi \phi^\dagger \rangle \sim -\frac{1}{3} \tau_{IJ} T^I T^J g_{3,1}
$$
 (general CFTs),

$$
\langle \phi \phi^\dagger \phi \phi^\dagger \rangle \sim \tau_{IJ} T^I T^J g_{2,0}
$$
 (SCFTs),

where $\tau_{IJ} = (\tau^{IJ})^{-1}$ (in SCFTs, $\tau^{IJ} = -3\text{Tr}(RT^IT^J)$).

Upper Bounds on $\tau_{IJ}T^IT^J$

Example: SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$, consider $\langle MM^\dagger MM^\dagger \rangle: d = 3 - \frac{3N_c}{N_f}$ $\frac{3N_c}{N_f}$ and $\tau_{IJ}T^IT^J=\frac{2}{3}$ 3 N_f-1 N_c^2

 \blacktriangleright In dual AdS₅, $(8\pi^2 L)\tau_{IJ}=g_{IJ}^2$. Gauge coupling can't be too strong in presence of charged scalar.

The Stress Tensor

- \blacktriangleright Ward identity ensures $T^{ab} \in \phi \times \phi$
- \blacktriangleright $\langle TT \rangle$ is proportional to the central charge c (trace anomaly $16\pi^2 \langle T_a^a \rangle = c(\text{Weyl})^2 - a(\text{Euler})$)
- In an SCFT, T lives in the supercurrent multiplet ${\cal J}^a=J^a_R+\theta\sigma_b\overline{\theta}T^{ab}+\ldots$, and c is determined in terms of $U(1)_R$ anomalies
- \triangleright Conformal block contributions are

$$
\langle \phi \phi \phi \phi \rangle \sim \frac{d^2}{90c} g_{4,2}
$$
 (general CFTs)
 $\langle \phi \phi^{\dagger} \phi \phi^{\dagger} \rangle \sim -\frac{d^2}{36c} \mathcal{G}_{3,1}$ (SCFTs)

Lower Bound on c in General CFT

- ► Scalar with $d \sim 1$ contributes ≥ 1 degree of freedom
- ► In dual Ad S_5 , $c \sim \pi^2 L^3 M_P^3$. Gravity can't be too strong in presence of bulk scalar.
- ▶ See also Rattazzi, Rychkov, Vichi [arXiv:1009.2725]

Outline

[CFT Review](#page-4-0)

- [Bounds from Crossing Relations](#page-11-0)
- [Superconformal Blocks](#page-18-0)
- [Bounds on CFTs and SCFTs](#page-23-0)

Outlook

We calculated:

- \blacktriangleright Superconformal blocks
- \blacktriangleright Bound dim $\Phi^{\dagger} \Phi < f_{\Phi^{\dagger} \Phi}(d)$
- \blacktriangleright Bound $\tau_{IJ}T^IT^J \leq f_{\tau}(d)$ in CFT, SCFT
- ► Bound $c \ge f_c(d)$ in CFT, SCFT

In the future, we'd like:

- ▶ Stronger bounds to make contact with BSM motivation! Improved numerics and better algorithms.
- SUSY theories that come close to saturating bounds on τ , c.
- \triangleright Bounds in other numbers of dimensions.
- \triangleright Understand bounds from bulk dual perspective.