Recent advances in perturbative QCD and LHC physics

Frank Petriello

Rutgers HET seminar April 2007

Outline

Motivation

- Importance of perturbative QCD at colliders
- Testing tools with HERA, Tevatron data
- Merging LO with parton showers
- Status of NLO calculations
 - LHC phenomenology at NLO
 - Difficulties at NLO: $2 \rightarrow 3, 4, \ldots$ processes
 - Automating NLO calculations: $pp \rightarrow VVV$ (Lazopoulos, Melnikov, FP)

Conclusions

Physics at the LHC

- LHC turns on in < 1 year!</p>
- Excellent discovery reach at $\sqrt{s} = 14$ TeV:
 - SUSY: squark/gluino reach of 2.5-3 TeV
 - Z', graviton reach of 5-6 TeV
- Enormous event rates at $10 \, \text{fb}^{-1}$ /year:
 - $W \to e\nu$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $t\bar{t}$: 10⁷ events
 - Higgs ($m_H = 700 \text{ GeV}$): 10⁴ events
- ⇒ Both an opportunity (precision, low systematics) and a challenge (backgrounds)

Physics at the LHC

proton - (anti)proton cross sections

- Not all discovery channels produce dramatic signatures!
- Need theoretical control of distribution shapes, backgrounds, uncertainties, ...
- Measurements of new physics parameters needs theory
- Incorrect theory leads to:
 - Tevatron high E_T jets
 - Tevatron *B*-meson production
 - NuTeV $\sin^2 \theta_W$
 - Brookhaven g-2 of the muon

QCD tools for hadron colliders

- Develop, test QCD tools at HERA, Tevatron
- What are the possible approaches?
 - Fixed-order pQCD: systematic expansion in α_s (LO, NLO, NⁿLO)
 - Quantify, reduce error by studying $\mu_{R,F}$ variation at each order
 - Analytic resummation: treat large logarithms to all orders in α_s
 - ${}_{m{s}}$ Typical cases: $\ln(m_H^2/p_T^2),\,\ln(1-m_H^2/\hat{s})$
 - Parton shower Monte Carlos (HERWIG, PYTHIA)
 - Generate many partons in collinear (leading log) approximation
 - Shower is probablistic and universal; codes contain many processes
 - Combinations of the above (CKKW, MC@NLO)

Important to cross-check and understand their limitations!

Bottom production at the Tevatron

- Long-standing discrepancy for B-hadron production
 - Tevatron Run I: factor of $2 3 \pm 0.4$ higher than NLO QCD!
 - Motivated light sbottom/gluino interpretation of data (Berger et al.)

- Missing theory components: inconsistent $b \rightarrow B$ fragmentation functions, updated PDF extractions, p_{\perp}/m_b resummation, underestimated uncertainties, ... (Cacciari et al.)
- Detailed theory analysis needed to understand data

SUSY searches and PYTHIA

- $M_{eff} = \sum_{j} p_{\perp}^{j} + E_{\perp}^{miss}$: standard SUSY discriminator
- ALPGEN (Mangano et al.): exact LO matrix elements, correct hard emissions
- PYTHIA: extra jets generated via parton shower
- \Rightarrow PYTHIA does not describe multiple hard emissions well

W production and HERWIG

• $\frac{A_W[NLO]}{A_W[HERWIG]} \approx 2 - 10$ for $p^e_{T,min} \ge 50$ GeV

- Extra hard emission at NLO generates all events for $p_{T,min}^e > M_W/2$
- \Rightarrow HERWIG misses important effects for the W acceptance

Isolated photons at HERA

• Production of isolated photons in $e^{\pm}p$ studies by H1, ZEUS

Data/Pythia = 2.3; Data/Herwig = 7.9; both get kinematics incorrect

- PYTHIA γ only from lepton
- HERWIG γ from quark
- Simple LO QCD gets both effects
 - (Gehrmann et al. hep-ph/0601073)

Moral

Moral: need systematic, controlled QCD expansion

- pQCD expansion in α_s augmented with necessary resummation
- Cross-check and improve Monte Carlo tools

Issues to consider:

- Are the kinematics described correctly? Hard jets, azimuthal correlations require matrix elements; multiple soft/collinear emissions better described by parton showers
 full phase-space coverage requires merging parton-shower with multi-parton tree-level (CKKW)
- What is the correct normalization, and what is its uncertainty?
 ⇒ requires NⁿLO fixed-order calculations
- Do new qualitative effects like the gluon pdf (large at the LHC) appear at higher orders?
- Have kinematic boundaries where resummation may be required been considered?

Precision QCD

Observables in hadronic collisions

$$N_{events} = L \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \sigma_{ij}(x_1, x_2, \mu^2)$$

Require

- luminosity measurement
- parton distribution functions
- scattering cross sections

⇒ All of these require precise QCD cross sections!

Cross sections in QCD

•
$$\sigma = \sigma_0 \left\{ 1 + \frac{\alpha_S}{\pi} \left(l + \sigma_1 \right) + \frac{\alpha_S^2}{\pi^2} \left(l^2 + l + \sigma_2 \right) + \mathcal{O}(\alpha_S^3) \right\}$$

$$\longrightarrow +\alpha_S \left\{ \xrightarrow{} \infty \left\{ \xrightarrow{} \infty \left\{ a_S \right\} + \alpha_S^2 \left\{ \xrightarrow{} \alpha_S^2 \left\{ a_S \right\} + \alpha_S^2 \left$$

- Strong coupling constant not small: $\alpha_S(M_Z) \approx 0.12$
- Contains scales $l = \ln(\mu^2/Q^2)$
 - Get scales from UV and IR renormalization
 - Scales are arbitrary: $\frac{d\sigma}{d\mu} = 0$
 - ⇒ but truncation of expansion at $\mathcal{O}(\alpha_S^n)$ induces a scale dependence of $\mathcal{O}(\alpha_S^{n+1})$
 - Residual scale dependences provide estimate of neglected higher order effects

Merging LO with parton showers

- An N jet event: N m jets from parton shower, m from MEs, $m = 0, \ldots, N$
- MEs describe hard/large angle emissions, PS describes soft/collinear
- **CKKW** (Catani, Krauss, Kuhn, Webber): prescription to cover entire phase-space correctly
- Define $P_m = \frac{\sigma_m}{\sigma_0 + \ldots + \sigma_N}$; generate *m* hard jets from MEs; feed this into showering algorithm and veto hard jets from shower

- ME/PS matching describes Run II data well (hep-ex/0608052)
- Codes: SHERPA includes ME generator, HERWIG, PYTHIA use external tree-level generator (MADGRAPH) and apply CKKW (Mrenna, Richardson)

The need for NLO

- Predictions at LO suffer from debilitating theory errors
 - Example: $pp \rightarrow \nu \bar{\nu} + N$ jets, $p_T^j > 80$ GeV, $|\eta^j| < 2.5, \mu = \sqrt{m_Z^2 + \sum p_T^{j,2}}$

Ν	$\sigma(2\mu)$	$\sigma(\mu/2)$
3	6.47 pb	13.52 pb
4	0.90 pb	2.48 pb

- Uncertainty from μ variation must vanish at higher orders \Rightarrow large NLO corrections
- Typical NLO size: 30-100% \Rightarrow not just naive α_s/π expansion!
 - New channels open up at higher orders \rightarrow gluon pdf large at small x
 - New kinematics regions allowed \rightarrow generate p_{\perp} , other effects
 - Large coefficients in perturbative corrections (π^2 for *s*-channel processes)

Status of NLO calculations

- Parton-level results available for all $2 \rightarrow 2$ and some $2 \rightarrow 3$ processes:
 - AYLEN/EMILIA (de Florian et al.): $pp \rightarrow (W, Z) + (W, Z, \gamma)$
 - DIPHOX (Aurenche et al.): $pp \rightarrow \gamma j, \gamma \gamma, \gamma^* p \rightarrow \gamma j$
 - HQQB (Dawson et al.): $pp \rightarrow t\bar{t}H, b\bar{b}H$
 - MCFM (Campbell, Ellis): $pp \rightarrow (W, Z) + (0, 1, 2) j$, $(W, Z) + b\overline{b}, V_1V_2, \ldots$
 - NLOJET++ (Nagy): $pp \rightarrow (2,3) j, ep \rightarrow (3,4) j, \gamma^* p \rightarrow (2,3) j$
 - VBFNLO (Figy et al.): $pp \rightarrow (W, Z, H) + 2j$
- Recent:
 - $pp \rightarrow Wb\bar{b}, m_b \neq 0$ (Cordero, Reina, Wackeroth hep-ph/0606102)
 - $pp \rightarrow Hjj$ (Campbell, Ellis, Zanderighi hep-ph/0608194)
 - $pp \rightarrow t\bar{t}j$ (Dittmaier, Uwer, Weinzierl, hep-ph/0703120)
 - $pp \rightarrow VVV$ (Lazopoulos, Melnikov, FP, hep-ph/0703273)

Campbell, Knuteson

Want flexibile, automated approach \Rightarrow many backgrounds, possible new states

Computing cross sections at NLO

Two components of an NLO calculation:

Obtain a cross section in the form:

 $\sigma_{NLO} = \int d\Phi_n \left(\sigma_B + \alpha_S \sigma_{virt} \right) + \alpha_S \int d\Phi_{n+1} \sigma_{real}$

Dealing with real emission divergences

- Typically use dipole subtraction (Catani, Seymour)
 - Introduce counterterm D which reproduces IR divergences of σ_{real} :

$$\begin{split} \sigma_{NLO} &= \int d\Phi_n \left(\sigma_B + \alpha_S \left[\sigma_{virt} + D_I\right]\right) + \alpha_S \, \int d\Phi_{n+1} \left[\sigma_{real} - D\right] \;\;, \\ \text{with} \; D_I &= \int d\Phi_1 \, D \end{split}$$

- Cancel divergences analytically in $\sigma_{virt} + D_I = \sigma_{virt}^{fin}$
- $\sigma_{real} D$ is pointwise finite, numerically integrable
- D is a simple function depending only on external particles
- A simple, universal prescription

NLO difficulties

- Sticking point: loops for $n = 5, 6, \ldots$ external legs
 - Standard analytic treatment (Passarino-Veltman reduction) leads to I_{scalar}/D
 - For $pp \rightarrow t\bar{t}H$, $D \sim \sin^2 \theta_{t\bar{t}} \sin^2 \phi_{t\bar{t}}$ (Dawson et al.) \Rightarrow vanishes in non-negligible phase-space region; spurious, but tough to establish cancellation analytically
 - Identify problem areas, extrapolate numerics from safe region
 - Thresholds in *I*_{scalar} where internal loop particles go on-shell
 - Feynman parameterization vanishes as $1/(-i\delta)^{n-2} \Rightarrow$ unsuitable for numerics
 - Compute analytically in Euclidean region, continue resulting polylogs
 - \Rightarrow complex when many kinematics scales, masses present
 - Extraction of infrared singularities, simple algebriac complexity, production of numerical code with percent-level precision, ...
- No simple, universal calculational method
- ⇒ Each a multi-year effort requiring ingenuity and great effort

Automating NLO calculations

Much recent activity on new methods:

- Expand reduction coefficients around fictitious singularities (Denner, Dittmaier)
- Numerical solution of reduction equations (R. K. Ellis, Giele, Glover, Zanderighi)
- Sector decomposition for singularity extraction (Binoth, Heinrich; Lazopoulos et al.)
- Contour deformation (Soper, Nagy; Lazopoulos et al.)
- Twistor-inspired (C. Berger, Bern, Dixon, Kosower; Britto, Cachazo, Feng; ...)
- ⇒ both traditional analytic and new semi-numerical methods
- Important to gain experience with what to expect from NLO
- ⇒ will present several phenomenological results fi rst

H+2 jets at NLO

 QCD corrections to Hjj recently completed (Campbell, Ellis, Zanderighi hep-ph/0506196,hep-ph/0608194)

NLO needed for extraction of HWW coupling in WBF

- Residual scale dependence reduced
- $\sigma_{NLO}/\sigma_{LO} = 15 25\%$; corrections are kinematic-independent
- Could this kinematic independence have been guessed?

tt+jet at NLO

- QCD corrections to $t\bar{t}j$ recently completed (Dittmaier, Uwer, Weinzierl hep-ph/0408137,hep-ph/0703120)
 - Background to Higgs in WBF, $t\bar{t}H$ channels; measurement of t properties

- Residual scale dependence reduced
- NLO corrections wipe out forward-backward charge asymmetry!

Higgs discovery at higher orders

- NLO important for discovery
 - Important Higgs mode for $140 < m_H < 180 \text{ GeV}$ is $gg \rightarrow H \rightarrow WW \rightarrow ll\nu\nu$
 - Cannot reconstruct mass peak; rely upon kinematic distributions

- NLO $pp \rightarrow WW$ background correction large: $\sigma_{NLO}/\sigma_{LO} > 1.5$
- Loop-induced $gg \rightarrow WW$ formally NNLO; enhanced by $\Delta \phi_{T,ll} < 45^{o}$
- ⇒ further increases background by 30% (Binoth et al., Dührssen et al. hep-ph/0504006, hep-ph/0611170)

Numerical approach

- Corrections large, no obvious kinematic dependence pattern
- ⇒ for now, must have complete result for each process
- Can we construct an automated, numerical approach to multi-leg loop integrals?
- Must confront three main issues:
 - Find and extract soft/collinear singularities
 - Pick a good regulator for internal thresholds
 - If tensor integrals reduced, avoid vanishing denominators

Loop integral singularities

- IR loop singularities governed by Landau equations
 - In Feynman parameter representation, must have $k_i^2 m_i^2 = 0$ or $x_i = 0$ for every propagator
 - After k integration, all singularities occur as some $x_i \rightarrow 0$
 - Loop integral in Feynman parameter space:

$$\int_0^1 dx_i \delta(1 - \sum x_i) \Delta^{-n - \epsilon}$$

• If IR singularity only when a single x = 0, extract via

$$x^{-1+\epsilon} = \frac{1}{\epsilon}\delta(x) + \left[\frac{1}{x}\right]_{+} + \dots$$

with

$$\int_0^1 dx f(x) \left[\frac{1}{x}\right]_+ = \int_0^1 dx \frac{f(x) - f(0)}{x}$$

• Simple, programmable procedure, numerical treatment possible

Decomposing entangled singularities

- How about when multiple x_i vanish?
 - Consider the simple example

$$I = \int_0^1 dx_1 dx_2 (x_1 + x_2)^{-2-\epsilon}$$

• Divide the integration region by ordering the two variables:

• Singularities factor in each region after the integration region is remapped into [0,1]; consider the $x_2 < x_1$ region, and set $z = x_2/x_1$:

$$I(x_2 < x_1) = \int_0^1 dx_1 dz \, x_1^{-1-\epsilon} (1+z)^{-2-\epsilon}$$

• Extract singular terms as before \Rightarrow again a simple, programmable procedure

Regulating thresholds

- Feynman denominator can vanish in interior of x-space
 - Simple example: 1-loop bubble, with

$$\int_0^1 dx_1 dx_2 \,\delta(1 - x_1 - x_2) \left(m^2 - x_1 x_2 s - i0\right)^{-\epsilon}$$

- Occurs when unitarity cut leads to physical scattering process
- Generic Feynman denominator has form

$$\Delta = Z + Y_i x_i + \frac{1}{2} X_{ij} x_i x_j + \frac{1}{3} W_{ijk} x_i x_j x_k + \dots$$

• Assume W = 0; deform contour by setting $x_i = y_i - i\tau_i$, get

$$-i\tau_i[Y_i + \sum_j X_{ij}y_j]$$

To make sign-definite, choose

$$au_i = \lambda y_i (1 - y_i) [Y_i + \sum_j X_{ij} y_j]$$

- \Rightarrow sign-definite, non-vanishing, easy to automate finding of \Rightarrow a suitable regulator
- Caveat: for $W \neq 0$, must approach as a series in λ

Summary of method

Framework for automated, numerical NLO calculations

- Singularity and threshold issues solved
- Don't reduce tensor integrals; treat as polynomial in Feynman parameters
- \Rightarrow judicious grouping of terms keeps algebraic complexity at bay
- Test on realistic LHC background: $pp \rightarrow ZZZ$

ZZZ at NLO

 QCD corrections to ZZZ using numerical approach (Lazopoulos, Melnikov, FP hep-ph/0703273)

Background to various SUSY tri-lepton signatures

- Large, 50% corrections not seen by LO scale variation! \Rightarrow 15% shift from pdfs, 35% shift from π^2 terms
- Inclusive K-factor approximation works, however

Conclusions

Need more work on QCD tools for LHC physics!

- Need higher order QCD+resummation, fixed-order+MC matching, ...
- Must accurately quantify, reduce uncertainties; test at HERA, Tevatron

Highlights:

- Test of ME+PS merging on Tevatron Z+jets
- $pp \rightarrow WW$ background shows importance of NLO signal, background calculations \Rightarrow also interplay between higher orders and experimental cuts
- $pp \rightarrow Hjj, t\bar{t}j$ show no obvious pattern in NLO corrections, except large
- Theory progress on automated NLO coming! First results: $pp \rightarrow ZZZ$
- ⇒ large corrections badly missed by LO scale variation
- Completely automated, numerical framework for loop calculations