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In d =10 M =1 SYM notations Ay = {A,, Pa}. The action is

2
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S= 2ng//fd < MN — MV + 5 ®Pa >



The gauge-fixed path integral is well defined on S*. No IR
divergencies.



The gauge-fixed path integral is well defined on S*. No IR
divergencies.

Compute it!



N = 4 superconformal symmetry
The action is invariant under the fermionic supersymmetry

(5AM = Er/\//i/)

1 1
dp = EFM,\,r"”"’e + 5rﬂAchv#s



N = 4 superconformal symmetry
The action is invariant under the fermionic supersymmetry
(5AM = Er/\//i/)
1 1
dp = EFM,\,rM"’e + 5rﬂAchws
where ¢ is a conformal Killing spinor on S*

Vue=T,E

VMEN = —ﬁruf
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In some situations the integral is exactly equal to its semiclassical
approximation. Duistermaat-Heckman formula
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where (M,w) is a symplectic manifold, H : M — g* is the moment
map for the Hamiltonian action of a torus G on M (iyw = dH(¢)

for any ¢ € g).
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Atiyah-Bott-Berline-Vergne localization formula

More generally, if Qoo = 0 on a G-manifold M then
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a € QM) ® S(g*) is a differential form on M valued in a
fung:tions ong

F <% M is the fixed point set of G acting on M
e(NEg) is the Euler class of the normal bundle of F in M. The
differential (supersymmetry operator) is

Q=d- ¢aia
It squares to a symmetry transformation
QZ = _d)aEV"

Hence Q% = 0 on G-invariant objects
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Localization argument in a physical language [Witten]

Let QS = 0. Take V such that Q2V = 0.

jt/es—l-tQV _ /{Q, V}es+tQV _ /{Q7 VeS+tQV} -0

The addition of Q-exact term to the action does not change the
result of the integral. As t — oo, the one-loop approximation at
the critical locus of QV becomes exact! Then for a sufficiently nice
V the integral is computed by evaluating S at the critical points of
QV and the corresponding one-loop determinants.
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Choice of Killing spinor ¢

Pick up Killing spinor € such that Q. on S* is like SUSY on R*
> (¢,e) = const on S*

» No conformal transformations in @2, but only isometry
transformations
@*=L,+R

L, is a Lie derivative along the vector field vM = e[M¢
generating rotations of S* and gauge transformation
[VMA, .

R is an SU(2)F C SO(4)-R-symmetry transformation; it acts
nontrivially on four scalars ®s, ... ®g and fermions of N/ = 2
vector multiplet
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Reduction of SO(10) gives

Symmetry: SU(2), x SU(2)r x SU(2)F x SU(2)R x SO(2)
Bosons: A1,...As, ®5,...,dg, Pg, Py

Fermions: W = (4%, x*, 4%, x")*

e W [SUQ) | SUR) | SUR)F | SU2)R | SO(2)
x| ot | 1/2 0 1/2 0 +
0| xR 0 1/2 0 1/2 +

x| PR 0 1/2 1/2 0 -

0 xt 1| 1/2 0 0 1/2 -

> (A1...Aq, &g, g, L R) is N = 2 vector multiplet
> (®5...Pg, xL, xF) is N = 2 hyper multiplet
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Killing spinor

1
€ = ————=(& + x"'T,éc)

V1t %
where &5 = (1,0,...,0) and &c = 2T128,
The North and the South poles are the fixed points of @2 acting
sS4
The transformation Q2 is

> an anti-self-dual Lorentz SU(2), rotation of 12-plane and
34-plane

> gauge transformation by [i®g + Pg cosd]
> an R-symmetry rotation in the SU(2)R group
The action and the operator are Q-invariant.

QRS=0, QW(C)=0



Off-shell closure of Q. for ' =4 SYM on S§*

Add 7 auxiliary scalar field K; as in [Berkovits '93] for d = 10
N =1SYM on R0

The action [ /gd*xL where

1

2
L= 5FM,\,F’V”V —WrMpyw + T2¢A¢A + KiK;

is invariant under

5AM = ErM\U
1
2
OK; = iv,TM Dy

1
oV = FMNrMNE + EFMA¢AVM€ + IK;v;

where {v;} is a set of 7 Mayorana-Weyl fermions satisfying
algebraic equations

efMy; =0, I/,'er/j = 6,-J-€FM€
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Q-exact deformation of the action

S$—->5+tQV
Take V = (1,00), 50 QV|pos = (81, 60).

After integrating out K, at the limit t — oo, only the zero mode of
®q has finite quadratic action!

The path integral is localized to the locus ®g = const, all other
fields vanish.
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The quadratic term

Be careful with integrating out K. The deformed action
1 2 2 2 Loy2
SHQV =5 (- + 5P+ K+ t((K+ -Po)* +...))
28y r r

Then [ DK gives

1 2 1 ¢t t—oo 1 3
S5+tQ 2g\2/l\/l /( +I’2 0+ 2714t Tt 0) 2g\2/M /( +r2 O)

To evaluate the ¢ constant mode ®g = a on 5%, we need to
multiply by the Vol(S*) = 3x2r*
In this way we obtain the Matrix Model action
1 8 3 8m2r?
SMM[(DQ = a] = X 7772r4 X —= 2 = ¢2

285 3 r2° 8%um
Coincides with Erickson-Semenoff-Zarembo/Drukker-Gross matrix
model.




The one-loop determinant
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At t — oo limit we need also to compute the determinant for the
fluctuations of the fields with the action S + tQV near the
dominant configuration ®g = const. Similarly to
Duistermaat-Heckman formula

Jy e = Z

the determinant Z;_jo0p(a) can be computed as a certain product
of weights of @2 acting to the tangents space to all fields at the
locus g = a.

This is a linear problem; it can be treated by the Atiyah-Singer
theorem.

oiH(®)
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Changing notations to TFT like

The SUSY transformation Qe can be conveniently written in the
form of cohomological field theory (even though the theory is
non-twisted)

For M =1...9 we rewrite

5AM = €rM’¢

as
A =V

where we define 9 fermionic fields Wy, = el py1p. The remaining 7
fermionic fields are superpartners of K;. We define x; = (v;, V).
Then we get the transformations

xi = Ki + si(Am)

where S,'(A[\/l) = (I/,', %FMNFMNE + %FMA(DAV“E) are the
“equations”. We further define H; = K; + s;(Am)



The Q-complex

In new notations the transformations look like

6AM = Ym
0oYpm =R -Am
oxi = Hi

OH; =R - xi

where R stands for the Q2 action on fields.
Then
det R|H,.

i toon = ——VHi
17100 ™ et R| 4,



To compute the ratio of determinants of R acting on the set of
fields Aps and x; we use the Atiyah-Singer index theorem to
compute the R-equivariant character
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own. But the difference is well-defined.
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To compute the ratio of determinants of R acting on the set of
fields Aps and x; we use the Atiyah-Singer index theorem to
compute the R-equivariant character

R R

ind =trp, e" —try e

Each term is infinite dimensional and is not well-defined on its
own. But the difference is well-defined. Let the space of Ay be
(&) and the space of H; be '(£1). The usual framework for the
index envolves an elliptic operator D : (&) — I'(&1)
corresponding to the linearized equations s;(Ap) = 0.

In the present problem the equations s;(Ap) are not elliptic, but
they are transversally elliptic with the respect to U(1) rotations of
St

The index is then well defined as a distribution on the group U(1).
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The generating function for the index is

1+ ¢?
(1-q)?

for the N = 2 vector multiplet, and

2q
(1-q)?

for the A/ = 2 hyper multiplet In the N' = 4 case the contributions
to the index precisely cancel, hence the determinant is equal to 1.



In the case of AV = 2 theory with a matter hypermultiplet in
representation R we have

Haeweights(Ad) H(I'Oé ’ 85/8)
Hw€weights(W) H(iW ’ aE/E) ‘

N=2W,.
Zlfloop (IaE) =

Here H(z) is the related to the Barnes G-function
('superfactorial’) as

o] 22 n
H(z) = G(1+2)G(1 - 2) = e [ <1 — ) e

n=1
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Point instanton corrections and conclusion

Gauge theory:
Zss = [ daZi-roop ZiEL (2o )P
OSV:

ZBH — ’Ztop|2

The relation?



