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The formula

〈trR Pexp

∮
C

Aµdxµ + iΦds〉1 = 〈trR e2πira〉2

where 〈〉1 is N = 4 SYM in d = 4

Z1 =

∫
[DA DΦDΨ]e

− 1

2g2
YM

( 1
2
F 2+(DΦ)2+... )

and 〈〉2 is Gaussian Matrix Model in d = 0

Z2 =

∫
g
[da]e

− 4π2r2

g2
YM

(a,a)
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Perturbative argument

In Feynman gauge

〈Aµ(x)Aν(x ′)〉 =
1

4π2

gµν
(x − x ′)2

〈Φ(x)Φ(x ′)〉 =
1

4π2

1

(x − x ′)2

Hence

〈Aµ(φ)ẋµ Aν(φ′)ẋν+iΦ(φ)iΦ(φ′)〉 =
1

4π2r2

cos(φ− φ′)− 1

4sin2 φ−φ′

2

= − 1

8π2r2
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The N = 4 SYM on S4

Consider a four sphere S4 with the Wilson loop placed on the
equator

N

S

In d = 10 N = 1 SYM notations AM = {Aµ,ΦA}. The action is

S =
1

2g2
YM

∫ √
gd4x

(
1

2
F 2

MN −ΨΓMDMΨ +
2

r2
ΦAΦA

)
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The gauge-fixed path integral is well defined on S4. No IR
divergencies.

Compute it!
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N = 4 superconformal symmetry

The action is invariant under the fermionic supersymmetry

δAM = εΓMψ

δψ =
1

2
FMNΓMNε+

1

2
ΓµAΦA∇µε

where ε is a conformal Killing spinor on S4

∇µε = Γµε̃

∇µε̃ = − 1

4r2
Γµε
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The idea of localization

In some situations the integral is exactly equal to its semiclassical
approximation.

Duistermaat-Heckman formula

∫
M

ωn

(2π)nn!
e iH(φ) = in

∑
p∈F

e iH(φ)∏
αp

i (φ)

where (M, ω) is a symplectic manifold, H : M → g∗ is the moment
map for the Hamiltonian action of a torus G on M (iφω = dH(φ)
for any φ ∈ g).
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Atiyah-Bott-Berline-Vergne localization formula

More generally, if Qα = 0 on a G -manifold M then∫
M
α =

∫
F

i∗Fα

e(NF )

α ∈ Ω(M)⊗ S(g∗) is a differential form on M valued in a
functions on g

F
i
↪→ M is the fixed point set of G acting on M

e(NF ) is the Euler class of the normal bundle of F in M. The
differential (supersymmetry operator) is

Q = d − φaia

It squares to a symmetry transformation

Q2 = −φaLva

Hence Q2 = 0 on G -invariant objects



Atiyah-Bott-Berline-Vergne localization formula

More generally, if Qα = 0 on a G -manifold M then∫
M
α =

∫
F

i∗Fα

e(NF )

α ∈ Ω(M)⊗ S(g∗) is a differential form on M valued in a
functions on g

F
i
↪→ M is the fixed point set of G acting on M

e(NF ) is the Euler class of the normal bundle of F in M.

The
differential (supersymmetry operator) is

Q = d − φaia

It squares to a symmetry transformation

Q2 = −φaLva

Hence Q2 = 0 on G -invariant objects



Atiyah-Bott-Berline-Vergne localization formula

More generally, if Qα = 0 on a G -manifold M then∫
M
α =

∫
F

i∗Fα

e(NF )

α ∈ Ω(M)⊗ S(g∗) is a differential form on M valued in a
functions on g

F
i
↪→ M is the fixed point set of G acting on M

e(NF ) is the Euler class of the normal bundle of F in M. The
differential (supersymmetry operator) is

Q = d − φaia

It squares to a symmetry transformation

Q2 = −φaLva

Hence Q2 = 0 on G -invariant objects



Atiyah-Bott-Berline-Vergne localization formula

More generally, if Qα = 0 on a G -manifold M then∫
M
α =

∫
F

i∗Fα

e(NF )

α ∈ Ω(M)⊗ S(g∗) is a differential form on M valued in a
functions on g

F
i
↪→ M is the fixed point set of G acting on M

e(NF ) is the Euler class of the normal bundle of F in M. The
differential (supersymmetry operator) is

Q = d − φaia

It squares to a symmetry transformation

Q2 = −φaLva

Hence Q2 = 0 on G -invariant objects



Atiyah-Bott-Berline-Vergne localization formula

More generally, if Qα = 0 on a G -manifold M then∫
M
α =

∫
F

i∗Fα

e(NF )

α ∈ Ω(M)⊗ S(g∗) is a differential form on M valued in a
functions on g

F
i
↪→ M is the fixed point set of G acting on M

e(NF ) is the Euler class of the normal bundle of F in M. The
differential (supersymmetry operator) is

Q = d − φaia

It squares to a symmetry transformation

Q2 = −φaLva

Hence Q2 = 0 on G -invariant objects



Localization argument in a physical language [Witten]

Let QS = 0.

Take V such that Q2V = 0.

d

dt

∫
eS+tQV =

∫
{Q,V }eS+tQV =

∫
{Q,VeS+tQV } = 0

The addition of Q-exact term to the action does not change the
result of the integral. As t →∞, the one-loop approximation at
the critical locus of QV becomes exact! Then for a sufficiently nice
V the integral is computed by evaluating S at the critical points of
QV and the corresponding one-loop determinants.
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Choice of Killing spinor ε

Pick up Killing spinor ε such that Qε on S4 is like SUSY on R4

I (ε, ε) = const on S4

I No conformal transformations in Q2
ε , but only isometry

transformations
Q2 = Lv + R

Lv is a Lie derivative along the vector field vM = εΓMε
generating rotations of S4 and gauge transformation
[V MAM , ·].
R is an SU(2)R

L ⊂ SO(4)-R-symmetry transformation; it acts
nontrivially on four scalars Φ5, . . .Φ8 and fermions of N = 2
vector multiplet
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Fields and charges under the global symmetry

Reduction of SO(10) gives

Symmetry: SU(2)L × SU(2)R × SU(2)R
L × SU(2)R

R × SO(2)
Bosons: A1, . . .A4, Φ5, . . . ,Φ8, Φ9,Φ0

Fermions: Ψ = (ψL, χR , ψR , χL)t

ε Ψ SU(2)L SU(2)R SU(2)R
L SU(2)R

R SO(2)
∗ ψL 1/2 0 1/2 0 +
0 χR 0 1/2 0 1/2 +
∗ ψR 0 1/2 1/2 0 -
0 χL 1/2 0 0 1/2 -

I (A1 . . .A4,Φ9,Φ0, ψ
L, ψR) is N = 2 vector multiplet

I (Φ5 . . .Φ8, χ
L, χR) is N = 2 hyper multiplet
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Killing spinor

ε =
1√

1 + x2

4r2

(ε̂s + xµΓµε̂c)

where ε̂s = (1, 0, . . . , 0) and ε̂c = 1
2r Γ12ε̂s

The North and the South poles are the fixed points of Q2 acting
S4.
The transformation Q2 is

I an anti-self-dual Lorentz SU(2)L rotation of 12-plane and
34-plane

I gauge transformation by [iΦ0 + Φ9 cos θ]

I an R-symmetry rotation in the SU(2)R
L group

The action and the operator are Q-invariant.

QS = 0, QW (C ) = 0
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Off-shell closure of Qε for N = 4 SYM on S4

Add 7 auxiliary scalar field Ki as in [Berkovits ’93] for d = 10
N = 1 SYM on R10

The action
∫ √

gd4xL where

L =
1

2
FMNFMN −ΨΓMDMΨ +

2

r2
ΦAΦA + KiKi

is invariant under

δAM = εΓMΨ

δΨ =
1

2
FMNΓMNε+

1

2
ΓµAΦA∇µε+ iKiνi

δKi = iνiΓ
MDMΨ

where {νi} is a set of 7 Mayorana-Weyl fermions satisfying
algebraic equations

εΓMνi = 0, νiΓ
Mνj = δijεΓMε



Q-exact deformation of the action

S → S + tQV

Take V = (ψ, δψ), so QV |bos = (δψ, δψ).

After integrating out K , at the limit t →∞, only the zero mode of
Φ0 has finite quadratic action!
The path integral is localized to the locus Φ0 = const, all other
fields vanish.
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The quadratic term

Be careful with integrating out K. The deformed action

S + tQV =
1

2g2
YM

∫
(· · ·+ 2

r2
Φ2

0 + K 2 + t((K +
1

r
Φ0)2 + . . . ))

Then
∫

DK gives

S+tQV =
1

2g2
YM

∫
(· · ·+ 2

r2
Φ2

0+
1

r2

t

1 + t
Φ2

0)
t→∞

=
1

2g2
YM

∫
(· · ·+ 3

r2
Φ2

0)

To evaluate the Φ0 constant mode Φ0 = a on S4, we need to
multiply by the Vol(S4) = 8

3π
2r4

In this way we obtain the Matrix Model action

SMM [Φ0 = a] =
1

2g2
YM

× 8

3
π2r4 × 3

r2
a2 =

8π2r2

g2
YM

Φ2
0

Coincides with Erickson-Semenoff-Zarembo/Drukker-Gross matrix
model.
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The one-loop determinant

At t →∞ limit we need also to compute the determinant for the
fluctuations of the fields with the action S + tQV near the
dominant configuration Φ0 = const. Similarly to
Duistermaat-Heckman formula∫

M

ωn

(2π)nn!
e iH(φ) = in

∑
p∈F

e iH(φ)∏
αp

i (φ)

the determinant Z1−loop(a) can be computed as a certain product
of weights of Q2 acting to the tangents space to all fields at the
locus Φ0 = a.

This is a linear problem; it can be treated by the Atiyah-Singer
theorem.
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Changing notations to TFT like

The SUSY transformation Qε can be conveniently written in the
form of cohomological field theory (even though the theory is
non-twisted)

For M = 1 . . . 9 we rewrite

δAM = εΓMψ

as
δAM = ΨM

where we define 9 fermionic fields ΨM ≡ εΓMψ. The remaining 7
fermionic fields are superpartners of Ki . We define χi ≡ (νi ,Ψ).
Then we get the transformations

δχi = Ki + si (AM)

where si (AM) = (νi ,
1
2FMNΓMNε+ 1

2 ΓµAΦA∇µε) are the
“equations”. We further define Hi = Ki + si (AM)
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The Q-complex

In new notations the transformations look like

δAM = ψM

δψM = R · AM

δχi = Hi

δHi = R · χi

where R stands for the Q2 action on fields.
Then

Z1−loop =
detR|Hi

detR|AM



To compute the ratio of determinants of R acting on the set of
fields AM and χi we use the Atiyah-Singer index theorem to
compute the R-equivariant character

ind = trAM
eR − trHi

eR

Each term is infinite dimensional and is not well-defined on its
own. But the difference is well-defined.

Let the space of AM be
Γ(E0) and the space of Hi be Γ(E1). The usual framework for the
index envolves an elliptic operator D : Γ(E0)→ Γ(E1)
corresponding to the linearized equations si (AM) = 0.
In the present problem the equations si (AM) are not elliptic, but
they are transversally elliptic with the respect to U(1) rotations of
S4.
The index is then well defined as a distribution on the group U(1).
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The generating function for the index is

− 1 + q2

(1− q)2

for the N = 2 vector multiplet, and

2q

(1− q)2

for the N = 2 hyper multiplet

In the N = 4 case the contributions
to the index precisely cancel, hence the determinant is equal to 1.
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In the case of N = 2 theory with a matter hypermultiplet in
representation R we have

ZN=2,W
1−loop (iaE ) =

∏
α∈weights(Ad) H(iα · aE/ε)∏
w∈weights(W ) H(iw · aE/ε)

.

Here H(z) is the related to the Barnes G -function
(’superfactorial’) as

H(z) = G (1 + z)G (1− z) = e−(1+γ)z2
∞∏

n=1

(
1− z2

n2

)n

e
z2

n .



Point instanton corrections and conclusion

Gauge theory:

ZS4 =

∫
daZ1−loop|Z inst

Nekr (r−1, r−1, a)|2

OSV:

ZBH = |Ztop|2

The relation?
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