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Introduction
The AdS description of a CFT is useful if it is

• Weakly coupled               “large N” factorization

• Local - effective field theory in AdS with small 
number of fields valid up to some UV cutoff      
much smaller than the AdS radius        

� ∼ 1

mass
∼ R

∆

∆ � 1Large gap in spectrum of dimensions

�
R

�O1 . . .On�connected ∼ κn−2 , κ2 ∼ GR1−d � 1
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Unitary bound

Few single-trace primaries    spin  ≤ 2}

} Multi-trace primaries

Other single-trace∆ � 1

O(1)

0

dim (O1∂
n
O2) = ∆1 +∆2 + n+O

�
1/N2

�

AdS coupling 
constant

[Heemskerk, JP, Polchinski, Sully ‘09]
[Fitzpatrick, Katz, Poland, Simmons-Duffin ‘10]

Spectrum of Effective CFT

[El-Showk, Papadodimas ’11]
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A Conjecture

Any CFT that has a large-N expansion, and in which all 
single-trace operators of spin greater than two have 
parametrically large dimensions, has a local bulk dual.

         Large-N expansion              Weakly coupled bulk dual               
      Single-trace operator              Single-particle state     

lP
R
� 1

[Heemskerk, JP, Polchinski, Sully ‘09]

Large-N vector models have weakly coupled 
non-local bulk duals (AdS higher spin theories).

[Klebanov, Polyakov 02]

[Fradkin,Vasiliev 87, ...]

[Sezgin, Sundell 02]
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Energy-momentum tensor  

} “Multi-trace” primaries

Other “single-trace”∆ � 1

0

Gravitational 
coupling

Is there a CFT dual of GR?

d

2d

Weak coupling ⇔ |Λ| � M2
P

dim (T∂nT ) = 2d+ n+O
�
GR1−d

�

dim (T∂nT∂mT ) = 3d+ n+m+O
�
GR1−d

�
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Bulk Locality

[Polchinski 99]
[Susskind 99]

Main difficulty: local bulk physics is encoded in CFT 
correlation functions in a non-trivial way.

Idea: prepare wave-packets that 
scatter in small region of AdS

How to extract the bulk S-matrix?

Best language: Mellin amplitudes

[Gary, Giddings, JP ‘09]
[Okuda, JP ’10]
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Outline

• Introduction

•Mellin amplitudes

• Flat space limit of AdS

• Testing the conjecture

•Open questions
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Mellin Amplitudes
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A(xi) = N
i∞�

−i∞

[dδ]M(δij)
n�

i<j

Γ(δij)
�
x2
ij

�−δij

1 Introduction

Scattering amplitudes are transition amplitudes between states that describe non-interacting

and uncorrelated particles in the infinite past (in states) and states that describe non-

interacting and uncorrelated particles in the infinite future (out states). This definition

makes sense in Minkowski spacetime, where particles become infinitely distant from each

other in the infinite past and future. Anti-de Sitter (AdS) spacetime has a timelike confor-

mal boundary and does not admit in and out states. Pictorically, one can say that particles

in AdS live in an box and interact forever. Thus, in AdS, we can not use the standard

definition of scattering amplitudes. However, we can create and anihilate particles in AdS

by changing the boundary conditions at the timelike boundary. By the AdS/CFT corre-

spondence [1, 2, 3], the transition amplitudes between this type of states are equal to the

correlation functions of the dual conformal field theory (CFT). This suggests that we should

interpret the CFT correlation functions as AdS scattering amplitudes [4, 5, 6, 7]. In this

paper, we support this view using a representation of the conformal correlation functions

that makes their scattering amplitude nature more transparent.

We shall use the Mellin representation recently proposed by Mack in [8, 9].
1

The

Euclidean correlator of primary scalar operators

A(xi) = �O1(x1) . . .On(xn)� , (1)

can be written as

A(xi) =
N

(2πi)n(n−3)/2

�
dδij M(δij)

n�

i<j

Γ(δij)
�
x2
ij

�−δij
(2)

where the integration contour runs parallel to the imaginary axis with Re δij > 0. Moreover,

the integration variables are constrained by

n�

j �=i

δij = ∆i , (3)

so that the integrand is conformally covariant with scaling dimension ∆i at the point xi.

This gives n(n − 3)/2 independent integration variables. We give the precise definition of

the integration measure in appendix A. Notice that n(n − 3)/2 is also the number of inde-

pendent conformal invariant cross-ratios that one can make using n points and the number

of independent Mandelstam invariants of a n-particle scattering process. The normalization

1The Mellin representation was used before, for example in [10, 11, 12], but its analogy with scattering
amplitudes was not emphasized.

1

Mellin Amplitudes [Mack ‘09]

Correlation function of scalar primary operators

Constraint
n�

j �=i

δij = ∆i = dim[Oi]

n(n− 3)

2# integration variables = # ind. cross-ratios = 

M(δij)
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constant N will be fixed in the next section. It is instructive to solve the constraints (3)

using n Lorentzian vectors ki subject to
�n

i=1 ki = 0 and −k2
i = ∆i. Then

δij = ki · kj =
∆i +∆j − sij

2
, (4)

with sij = −(ki + kj)2, automatically solves the constraints (3).

Mack realized that there is a strong similarity between the Mellin amplitude M(sij) and

n-particle flat space scattering amplitudes as functions of the Mandelstam invariants. In

particular, by studying the Mellin representation (2) of the conformal partial wave decom-

position of the four point function, Mack showed that M(sij) is crossing symmetric and

meromorphic with simple poles at

s13 = ∆k − lk + 2m , m = 0, 1, 2, . . . . (5)

Here, ∆k and lk are the scaling dimension and spin of an operator Ok present in the operator

product expansions O1O3 ∼ C13kOk and O2O4 ∼ C24kOk. Moreover, the residue of the

leading pole (m = 0) is given by the product of the two three point couplings C13kC24k times

a known polynomial of degree lk in the variable γ13 = (s12 − s14)/2. The satellite poles

(m > 0) are determined by the leading one. In other words, the Mellin amplitude M(sij)

obeys exact duality.

In this paper we propose that the Mellin amplitude M(sij) should be taken as the AdS

scattering amplitude. We motivate this proposal with two observations. Firstly, we compute

the Mellin amplitudes M(sij) for several Witten diagrams and obtain expressions resembling

scattering amplitudes in flat space. For example, we find that contact interactions give rise

to polynomial Mellin amplitudes in perfect analogy with flat space scattering amplitudes

(section 2). Notice that the OPE analysis of these Witten diagrams contains primary double-

trace operators with spin l and conformal dimension

∆i +∆j + l + 2p+O(1/N2) , p = 0, 1, 2, . . . , (6)

where 1/N2 denotes the coupling constant in AdS [12, 13, 14]. Interestingly, these do not give

rise to poles in M(sij). From (5), at large N , one would expect poles at δij = 0,−1,−2, . . . ,

but these are already produced by the Γ-functions in (2). This suggests that the Mellin

representation is particularly useful for CFT’s with a weakly coupled bulk dual. 2 We also

compute Mellin amplitudes associated with tree level exchange diagrams in AdS and verify

that all poles are associated to single-trace operators dual to fields exchanged in AdS. In

2Usually this corresponds to a large-N expansion of the CFT.

2
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γ13 =
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(s12 − s14)

m = 0, 1, 2, . . .

The Mellin amplitude is crossing symmetric and 
meromorphic with simple poles at (        )n = 4

M(sij) ≈
C13kC24k Pm

lk
(γ13)

s13 − (∆k − lk + 2m)
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section 2.3, we determine the Mellin amplitude of a one-loop diagram in AdS. In this case,

we find that the two particle state exchanged in the loop gives rise to poles of the Mellin

amplitude. These examples suggest that we should think of the Mellin amplitude as an

amputated amplitude.

A particular example, that illustrates the remarkable simplicity of the Mellin amplitudes

is the graviton exchange between minimally coupled massless scalars in AdS5 (∆i = d = 4).

This Witten diagram was computed in [15] in terms of D-functions,

A(xi) ∝ 9D4444(xi)−
4

3x6
13

D1414(xi)−
20

9x4
13

D2424(xi)−
23

9x2
13

D3434(xi)

+
16(x2

14x
2
23 + x2

12x
2
34)

3x6
13

D2525(xi) +
64(x2

14x
2
23 + x2

12x
2
34)

9x4
13

D3535(xi) (7)

+
8(x2

14x
2
23 + x2

12x
2
34 − x2

24x
2
13)

x2
13

D4545(xi) .

We shall give the precise definition of the D-functions in the next section, but for now it is

enough to know that they are given by a non-trivial integral representation. The result (7)

looks quite cumbersome but the associated Mellin amplitude is a simple rational function,

M(sij) ∝
6γ2

13 + 2

s13 − 2
+

8γ2
13

s13 − 4
+

γ2
13 − 1

s13 − 6
− 15

4
s13 +

55

2
. (8)

This function only has poles at s13 = 2, 4, 6 contrary to the general expectation (5) of an

infinite series of poles at s13 = 2 + 2m with m = 0, 1, 2, . . . , associated with the energy-

momentum tensor. In this particular case, there is an extra simplification and the residues

vanish for m ≥ 3. Furthermore, notice that the residues of the poles are quadratic polyno-

mials in γ13 as predicted by Mack for spin 2 exchanges.

Secondly, we conjecture that the bulk flat space scattering amplitude T is encoded in the

large sij limit of the Mellin amplitude M(sij) by the simple formula

M(sij) ≈
Rn(1−d)/2+d+1

Γ
�
1
2

�
i ∆i − d

2

�
∞�

0

dβ β
1
2

�
i ∆i− d

2−1e−β T

�
Sij =

2β

R2
sij

�
, sij � 1 , (9)

where Sij = −(Ki +Kj)2 are the Mandelstam invariants of the flat space scattering process

and R is the AdS radius. This formula assumes that all external particles become massless

under the flat space limit. In section 3, we check that this conjecture is consistent with

previous studies [4, 5, 16, 17, 18] of the flat space limit of AdS/CFT. In particular, we

rederive the results of [17] starting from (9). We conclude in section 4 by discussing possible

future applications of the Mellin representation of CFT correlation functions.
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3

Example: Graviton exchange in AdS5
Chapter 4. Eikonal Approximation in AdS/CFT

1 2

3 4

j,!

Figure 4.6: Witten diagram representing the T–channel exchange of an AdS particle with spin
j and dimension ∆.

4.7 T–channel Decomposition

We have found that the eikonal approximation in AdS determines the small z and z̄ behavior

of the reduced Lorentzian amplitude Â. In the previous sections we have explored this result

using the S–channel partial wave expansion. We shall now study the T–channel partial wave

decomposition of the tree–level diagram in figure 4.6. The corresponding Euclidean amplitude

A1 can be expanded in T–channel partial waves,

A1 =
∑

µh,h̄ Th,h̄ . (4.23)

On the other hand, from the term of order g2 in (4.14), we have

A!
1 ! i g2 22j−3 N∆1N∆2

(

−p2
)∆1

(

−p̄2
)∆2

∫

M

dy dȳ e−2p·y−2p̄·ȳ

|y|d−2∆1+1−j |ȳ|d−2∆2+1−j
Π⊥

(

y

|y| ,
ȳ

|ȳ|

)

,

where we recall the expressions zz̄ ! p2p̄2 and z + z̄ ! 2p · p̄ relating the cross ratios to the

points p and p̄ in the past Milne wedge −M. Performing the radial integrals over |y| and |ȳ|
one obtains

A!
1 ! i g2 K (zz̄)(1−j)/2

∫

Hd−1

dw dw̄
Π⊥ (w, w̄)

(−2e ·w)2∆1−1+j (−2ē · w̄)2∆2−1+j
, (4.24)

with the constant K given by

K = 22j−3 N∆1N∆2 Γ(2∆1 − 1 + j)Γ(2∆2 − 1 + j) (4.25)

and e, ē ∈ Hd−1 defined by

e = − p

|p| , ē = − p̄

|p̄| ,

so that

−2e · ē =

√

z

z̄
+

√

z̄

z
.

84

Minimally coupled massless scalars
∆i = d = 4

[D’Hoker, Freedman, Mathur, Mathusis, Rastelli ’99]

D-function
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Double-trace operators

Chapter 4. Eikonal Approximation in AdS/CFT

1 2

3 4

j,!

Figure 4.6: Witten diagram representing the T–channel exchange of an AdS particle with spin
j and dimension ∆.
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A!
1 ! i g2 22j−3 N∆1N∆2

(

−p2
)∆1

(

−p̄2
)∆2

∫

M

dy dȳ e−2p·y−2p̄·ȳ

|y|d−2∆1+1−j |ȳ|d−2∆2+1−j
Π⊥

(

y

|y| ,
ȳ

|ȳ|

)

,

where we recall the expressions zz̄ ! p2p̄2 and z + z̄ ! 2p · p̄ relating the cross ratios to the

points p and p̄ in the past Milne wedge −M. Performing the radial integrals over |y| and |ȳ|
one obtains

A!
1 ! i g2 K (zz̄)(1−j)/2

∫

Hd−1

dw dw̄
Π⊥ (w, w̄)

(−2e ·w)2∆1−1+j (−2ē · w̄)2∆2−1+j
, (4.24)

with the constant K given by

K = 22j−3 N∆1N∆2 Γ(2∆1 − 1 + j)Γ(2∆2 − 1 + j) (4.25)

and e, ē ∈ Hd−1 defined by

e = − p

|p| , ē = − p̄

|p̄| ,

so that

−2e · ē =

√

z

z̄
+

√

z̄

z
.
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The double-trace operators               (normal ordered 
product of external operators) do not give rise to poles 
in the Mellin amplitude.
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n
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All poles are associated with on-shell internal states.
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Figure 4: One-loop Witten diagram contributing to the 4-point correlation function.

2.3 One-loop Witten diagram

It is important to test our main formula (9) beyond tree level diagrams. To this end, we

shall study the 1-loop diagram of figure 4. The associated Mellin amplitude is computed in

appendix D. The result reads

M(sij) =
g2R6−2d

Γ
��

i ∆i

2 − h
�
Γ
�
∆1+∆3−s13

2

�
Γ
�
∆2+∆4−s13

2

�

i∞�

−i∞

dc

2πi
l(c)l(−c)q(c) , (53)

where l(c) is given by the same expression (39) as in the tree level exchange and

q(c) =
Γ(c)Γ(−c)

8πhΓ(h)Γ(h+ c)Γ(h− c)

i∞�

−i∞

dc1dc2
(2πi)2

Θ(c, c1, c2)

((∆− h)2 − c21) ((∆
� − h)2 − c22)

, (54)

with

Θ(c1, c2, c3) =

�
{σi=±} Γ

�
h+σ1c1+σ2c2+σ3c3

2

�
�3

i=1 Γ(ci)Γ(−ci)
. (55)

Here,
�

{σi=±} denotes the product over the 23 = 8 possible values of (σ1, σ2, σ3). This

one-loop Mellin amplitude is rather long but the fact that it is possible to write it down in

such a closed form is remarkable. Our goal with this example is simply to understand the

singularity structure and the flat space limit of one-loop Mellin amplitudes.

The singularities of M(sij) are simple poles as for the tree level diagrams. This is a

consequence of the discrete spectrum of a field theory in AdS. As before all poles are due

to pinching of the integration contour between two colliding poles of the integrand. Let us

start by finding the singularity structure of q(c). Firstly, we consider the integral over c2

with fixed c1. The integrand has poles at

±c2 = ∆� − h , ±c2 = h± c± c1 + 2m , m = 0, 1, 2, . . . (56)
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Mellin amplitudes are specially nice in planar CFT’s 
(dual to tree level string theory in AdS).

Contact diagrams in AdS give polynomial Mellin amplitudes
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Figure 1: Witten diagram for a tree level n-point contact interaction in AdS.

One can also describe tensor fields in AdS using this language. A tensor field in AdS can

be represented by a transverse tensor field in Md+2,

XAiTA1...Al
(X) = 0 . (17)

Covariant derivatives in AdS can be easily obtained from simple partial derivatives in the

flat embedding space. The rule is to take partial derivatives of transverse tensors and then

project into the tangent space of AdS using the projector

UA
B = δBA +

XAXB

R2
. (18)

For example

∇A3∇A2TA1(X) = UB3
A3

UB2
A2

UB1
A1

∂B3

�
UC2
B2
UC1
B1

∂C2TC1(X)
�
. (19)

2.1 Contact interaction

Let us start by considering the simple Witten diagram in figure 1,

A(Pi) = g

�

AdS

dX
n�

i=1

GB∂(X,Pi) , (20)

where g is a coupling constant. Using the representation (14), we obtain the following

expression for the n-point function

A(Pi) = gRn(1−d)/2+d+1

�
n�

i=1

C∆i

�
D∆1...∆n(Pi) , (21)
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section 2.3, we determine the Mellin amplitude of a one-loop diagram in AdS. In this case,

we find that the two particle state exchanged in the loop gives rise to poles of the Mellin

amplitude. These examples suggest that we should think of the Mellin amplitude as an

amputated amplitude.

A particular example, that illustrates the remarkable simplicity of the Mellin amplitudes

is the graviton exchange between minimally coupled massless scalars in AdS5 (∆i = d = 4).

This Witten diagram was computed in [15] in terms of D-functions,

A(xi) ∝ 9D4444(xi)−
4

3x6
13

D1414(xi)−
20

9x4
13

D2424(xi)−
23

9x2
13

D3434(xi)

+
16(x2

14x
2
23 + x2

12x
2
34)

3x6
13

D2525(xi) +
64(x2

14x
2
23 + x2

12x
2
34)

9x4
13

D3535(xi) (7)

+
8(x2

14x
2
23 + x2

12x
2
34 − x2

24x
2
13)

x2
13

D4545(xi) .

We shall give the precise definition of the D-functions in the next section, but for now it is

enough to know that they are given by a non-trivial integral representation. The result (7)

looks quite cumbersome but the associated Mellin amplitude is a simple rational function,

M(sij) ∝
6γ2

13 + 2

s13 − 2
+

8γ2
13

s13 − 4
+

γ2
13 − 1

s13 − 6
− 15

4
s13 +

55

2
. (8)

This function only has poles at s13 = 2, 4, 6 contrary to the general expectation (5) of an

infinite series of poles at s13 = 2 + 2m with m = 0, 1, 2, . . . , associated with the energy-

momentum tensor. In this particular case, there is an extra simplification and the residues

vanish for m ≥ 3. Furthermore, notice that the residues of the poles are quadratic polyno-

mials in γ13 as predicted by Mack for spin 2 exchanges.

Secondly, we conjecture that the bulk flat space scattering amplitude T is encoded in the

large sij limit of the Mellin amplitude M(sij) by the simple formula

M(sij) ≈
Rn(1−d)/2+d+1

Γ
�
1
2

�
i ∆i − d

2

�
∞�

0

dβ β
1
2

�
i ∆i− d

2−1e−β T

�
Sij =

2β

R2
sij

�
, sij � 1 , (9)

where Sij = −(Ki +Kj)2 are the Mandelstam invariants of the flat space scattering process

and R is the AdS radius. This formula assumes that all external particles become massless

under the flat space limit. In section 3, we check that this conjecture is consistent with

previous studies [4, 5, 16, 17, 18] of the flat space limit of AdS/CFT. In particular, we

rederive the results of [17] starting from (9). We conclude in section 4 by discussing possible

future applications of the Mellin representation of CFT correlation functions.
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Figure 1: Witten diagram for a tree level n-point contact interaction in AdS.

One can also describe tensor fields in AdS using this language. A tensor field in AdS can

be represented by a transverse tensor field in Md+2,

XAiTA1...Al
(X) = 0 . (17)

Covariant derivatives in AdS can be easily obtained from simple partial derivatives in the

flat embedding space. The rule is to take partial derivatives of transverse tensors and then

project into the tangent space of AdS using the projector

UA
B = δBA +

XAXB

R2
. (18)

For example

∇A3∇A2TA1(X) = UB3
A3

UB2
A2

UB1
A1

∂B3

�
UC2
B2
UC1
B1

∂C2TC1(X)
�
. (19)

2.1 Contact interaction

Let us start by considering the simple Witten diagram in figure 1,

A(Pi) = g

�

AdS

dX
n�

i=1

GB∂(X,Pi) , (20)

where g is a coupling constant. Using the representation (14), we obtain the following

expression for the n-point function

A(Pi) = gRn(1−d)/2+d+1

�
n�

i=1

C∆i

�
D∆1...∆n(Pi) , (21)

5

T (Sij) = g
n�

i<j

�
Sij

2

�αij

g∇ . . .∇φ1∇ . . .∇φ2 . . .∇ . . .∇φn

M(sij) ≈ gRn(1−d)/2+d+1−2N

� �� �
Γ
�
1
2

�
i ∆i − d

2 +N
�

Γ
�
1
2

�
i ∆i − d

2

�
n�

i<j

(sij)
αij

dimensionless

Evidence for M ≈
�

. . . T

1) Works for an infinite set of interactions

α12 contractions

# derivatives = 2
n�

i<j

αij = 2N
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Figure 3: A tree level scalar exchange in AdS contributing to a n-point correlation function.

This shows that the only poles of the Mellin amplitude are at

�

i∈L

�

j∈R

δij = ∆+ 2m , m = 0, 1, 2, . . . . (48)

Let us introduce ”momentum” ki associated with operator Oi, such that −k2
i = ∆i and

�
i ki = 0. Then, if we write δij = ki · kj as in (4), the pole condition reads

�

i∈L

�

j∈R

δij =
�

i∈L

�

j∈R

ki · kj = −
��

i∈L

ki
�2

= ∆+ 2m , m = 0, 1, 2, . . . . (49)

This has the suggestive interpretation of the total exchanged ”momentum going on-shell”.

Finally, let us now return to the graviton exchange process discussed in the introduction.

With our conventions, the Mellin amplitude associated with graviton exchange between

minimally coupled massless scalars in AdS5 (∆i = d = 4), is given by

M(sij) = −32πG5R−3

5

�
6γ2

13 + 2

s13 − 2
+

8γ2
13

s13 − 4
+

γ2
13 − 1

s13 − 6
− 15

4
s13 +

55

2

�
, (50)

where G5 is the Newton’s constant in AdS5 and γ13 = (s12− s14)/2. The large sij limit gives

M(sij) ≈ 96πG5R
−3 s12s14

s13
, (51)

in agreement with the result of formula (9) using the scattering amplitude

T (Sij) = 8πG5
S12S14

S13
, (52)

for graviton exchange between minimally coupled massless scalars in flat space [23, 24].
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Figure 4: One-loop Witten diagram contributing to the 4-point correlation function.

2.3 One-loop Witten diagram

It is important to test our main formula (9) beyond tree level diagrams. To this end, we

shall study the 1-loop diagram of figure 4. The associated Mellin amplitude is computed in

appendix D. The result reads

M(sij) =
g2R6−2d

Γ
��

i ∆i

2 − h
�
Γ
�
∆1+∆3−s13

2

�
Γ
�
∆2+∆4−s13

2

�

i∞�

−i∞

dc

2πi
l(c)l(−c)q(c) , (53)

where l(c) is given by the same expression (39) as in the tree level exchange and

q(c) =
Γ(c)Γ(−c)

8πhΓ(h)Γ(h+ c)Γ(h− c)

i∞�

−i∞

dc1dc2
(2πi)2

Θ(c, c1, c2)

((∆− h)2 − c21) ((∆
� − h)2 − c22)

, (54)

with

Θ(c1, c2, c3) =

�
{σi=±} Γ

�
h+σ1c1+σ2c2+σ3c3

2

�
�3

i=1 Γ(ci)Γ(−ci)
. (55)

Here,
�

{σi=±} denotes the product over the 23 = 8 possible values of (σ1, σ2, σ3). This

one-loop Mellin amplitude is rather long but the fact that it is possible to write it down in

such a closed form is remarkable. Our goal with this example is simply to understand the

singularity structure and the flat space limit of one-loop Mellin amplitudes.

The singularities of M(sij) are simple poles as for the tree level diagrams. This is a

consequence of the discrete spectrum of a field theory in AdS. As before all poles are due

to pinching of the integration contour between two colliding poles of the integrand. Let us

start by finding the singularity structure of q(c). Firstly, we consider the integral over c2

with fixed c1. The integrand has poles at

±c2 = ∆� − h , ±c2 = h± c± c1 + 2m , m = 0, 1, 2, . . . (56)
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Figure 4: One-loop Witten diagram contributing to the 4-point correlation function.

2.3 One-loop Witten diagram

It is important to test our main formula (9) beyond tree level diagrams. To this end, we

shall study the 1-loop diagram of figure 4. The associated Mellin amplitude is computed in

appendix D. The result reads

M(sij) =
g2R6−2d

Γ
��

i ∆i

2 − h
�
Γ
�
∆1+∆3−s13

2

�
Γ
�
∆2+∆4−s13

2

�

i∞�

−i∞
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2πi
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where l(c) is given by the same expression (39) as in the tree level exchange and

q(c) =
Γ(c)Γ(−c)

8πhΓ(h)Γ(h+ c)Γ(h− c)

i∞�

−i∞

dc1dc2
(2πi)2

Θ(c, c1, c2)

((∆− h)2 − c21) ((∆
� − h)2 − c22)

, (54)

with

Θ(c1, c2, c3) =

�
{σi=±} Γ

�
h+σ1c1+σ2c2+σ3c3

2

�
�3

i=1 Γ(ci)Γ(−ci)
. (55)

Here,
�

{σi=±} denotes the product over the 23 = 8 possible values of (σ1, σ2, σ3). This

one-loop Mellin amplitude is rather long but the fact that it is possible to write it down in

such a closed form is remarkable. Our goal with this example is simply to understand the

singularity structure and the flat space limit of one-loop Mellin amplitudes.

The singularities of M(sij) are simple poles as for the tree level diagrams. This is a

consequence of the discrete spectrum of a field theory in AdS. As before all poles are due

to pinching of the integration contour between two colliding poles of the integrand. Let us

start by finding the singularity structure of q(c). Firstly, we consider the integral over c2

with fixed c1. The integrand has poles at

±c2 = ∆� − h , ±c2 = h± c± c1 + 2m , m = 0, 1, 2, . . . (56)
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UV and IR divergences

UV divergences are the same in AdS and in flat space.

IR divergences are absent in AdS.

The Mellin amplitudes can be thought as IR regulated 
scattering amplitudes.
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Application: from SYM to IIB strings 
N = 4 SYM

g2YM = 4πgs
g2YMN = λ = (R/�s)

4

Lagrangian densityO(x) = φ = Dilaton

�O(x1)O(x2)O(x3)O(x4)�
4pt function 2     2 scattering 

amplitude

type IIB strings

R → ∞

Mellin amplitude

lim
λ→∞

λ
3
2M(g2YM,λ, sij =

√
λαij) =

1

120π3�6s

∞�

0

dββ5e−βT10

�
gs, �s, Sij =

2β

�2s
αij

�
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Testing the Conjecture

Any CFT that has a large-N expansion, and in which all 
single-trace operators of spin greater than two have 
parametrically large dimensions, has a local bulk dual.
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Scalar Toy Model
Consider a “CFT” in which the only low dimension 
single-trace operator is a scalar     of dimension       O ∆

only a finite number of irreducible representations. In our case, the additional assumption

is a restricted set of low-dimension operators.

In the simplest CFT, the only low dimension single-trace operator would be the energy-

momentum tensor, so that the corresponding bulk dual would involve only gravity.13 How-

ever, we will take an even simpler model, in which the only low dimension single-trace

operator is a scalar O of dimension ∆. After a thorough study of the crossing constraint in

this system, it will be quite simple to include also the energy-momentum tensor in the OPE,

and so constrain the scalar correlator in a full-fledged CFT.

As an aside, a CFT without an energy-momentum tensor would seem to be an oxymoron.

What it is missing is an operator that could evolve the CFT state from one time to the next;

it is a set of correlators without a notion of causality. We must measure the boundary state

at every time in order to reconstruct the bulk state at a single time, and so there is no

holography, as should be expected for a theory without gravity in the bulk. This does not

affect its use as warmup for us, as the form of the crossing condition is very similar to that

in a full CFT. This model could actually arise as a sector of an AdS compactification in

which there is a light scalar with self-interaction much stronger than gravity, working in the

approximation that gravity decouples.

We will further assume a Z2 symmetry O → −O, so that the operator O does not itself

appear in the OO OPE. The lowest dimension operator in the OPE, aside from the unit

operator, is then the double trace O2, with dimension 2∆+O(1/N2). All other double-trace

operators are obtained by differentiating one or the other of the O in O2. Total derivatives

generate conformal descendant operators, whose contribution is determined by symmetry in

terms of those of the primary operators. To list all primary operators we need consider only

the difference
↔
∂ =

→
∂−

←
∂ acting between the two O’s. A complete set of primary double-trace

operators is

On,l ≡ O
↔
∂µ1 . . .

↔
∂µl

(
↔
∂ν

↔
∂ν)nO − traces , (3.3)

such as to be traceless on the µ’s. This has spin l and dimension ∆n,l = 2∆+2n+l+O(1/N2).

The contribution of higher-trace operators in the OPE is absent at the order in 1/N2 in

which we work. We normalize O to be 1/N times a trace of adjoint variables, so that the

two-point function and disconnected four-point function are of order N0. The connected four-

13Note that our focus is orthogonal to that in Ref. [21]. That paper is largely concerned with high-
dimension black hole states, which we have decoupled, while the 2+1 dimensional bulk has no light propa-
gating fields. Correspondingly all correlators of the energy-momentum tensor in that work are immediately
determined by holomorphy. However, there may be an interesting story that includes both directions.

10

Z2 symmetry

OPE

Double-trace primary operators

OO ∼ I +O +
�

n,l

On,l + . . .

CFT        Four point Mellin amplitude is analytic⇒

Bulk quartic vertices generate all possible 
polynomial Mellin amplitudes

AdS ⇒

[Heemskerk, JP, Polchinski, Sully ‘09]
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Inclusion of  Tµν

Z2First drop the       symmetry OO ∼ I +O +
�

n,l

On,l + . . .

Gives rise to poles in the Mellin amplitude, whose positions are 
fixed by      and residues are fixed by 

We can also consider other operators (like      ) in the 
OPE and the same reasoning applies.  

Tµν OO

Any two solutions differ by an 
analytic Mellin amplitude 
already  studied 

Only one new 
parameter: c2

OOO

Counting of solutions agrees with bulk expectations.

cOOO∆
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Open Questions
• Generalize to external massive particles (work in progress) 
           3pt-functions of SYM at strong coupling 

• Mellin amplitudes for external operators with spin (helicity)

• Build n-pt functions by “gluing” 3pt functions of single-trace 
   operators (analogous to BCFW)
 
• Feynman rules for Mellin amplitudes?

• Unitarity for Mellin amplitudes?  
   Renormalizable vs non-renormalizable bulk interactions

• Bootstrap for CFT in higher dimensions (d>2)

• Mellin amplitudes without conformal invariance?

[Fitzpatrick, Katz, Poland, Simmons-Duffin ‘10]

[Raju ‘10]
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Thank you!
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−π

2

π

2

0

τ

�O(x1)O(x2)O(x3)O(x4)� =
A(z, z̄)
x2∆

12 x2∆
34

zz̄ =
x2

13x
2
24

x2
12x

2
34

(1− z)(1− z̄) =
x2

14x
2
23

x2
12x

2
34

Cross ratios

Conformal invariance gives

Sharp Locality in the 4pt-function

Sharp locality in the bulk implies a 
singularity in     for          .          z = z̄A

z = σeρ

z̄ = σe−ρ

x1 x2

x3

x4

θ

σ = sin2 θ

2
= − t

s

A(z, z̄) ∼ F(σ)
ρ4∆+2k−3
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Flat Space S-matrix from AdS/CFT
The strength of the singularity is fixed 
by dimensional analysis

x1 x2

x3

x4

g2

Witten diagram     
    in     AdSd+1

A(z, z̄) ∼ g2R3−d−2k F(σ)
ρ4∆+2k−3

z = σeρ z̄ = σe−ρ

Example: LI = g2 φ2(∇2)kφ2

σ = sin2 θ

2
= − t

s

The bulk flat space S-matrix determines the residue of the 
singularity of the CFT 4pt-function.

T (s, t) = g2sk F(σ)
σ1−2∆−k(1− σ)2∆−2+k
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CFT Constraints

• Conformal invariance

• Operator product expansion (OPE)

• Crossing

• Unitarity

• Generalized modular invariance

�

k

ck
13ck24 =

�

k

ck
12ck34

1
1 2

2

3
3

4
4

kk

[El-Showk, Papadodimas ’11]

Tuesday, March 22, 2011



Scalar Toy Model
Consider a “CFT” in which the only low dimension 
single-trace operator is a scalar     of dimension       O ∆

only a finite number of irreducible representations. In our case, the additional assumption

is a restricted set of low-dimension operators.

In the simplest CFT, the only low dimension single-trace operator would be the energy-

momentum tensor, so that the corresponding bulk dual would involve only gravity.13 How-

ever, we will take an even simpler model, in which the only low dimension single-trace

operator is a scalar O of dimension ∆. After a thorough study of the crossing constraint in

this system, it will be quite simple to include also the energy-momentum tensor in the OPE,

and so constrain the scalar correlator in a full-fledged CFT.

As an aside, a CFT without an energy-momentum tensor would seem to be an oxymoron.

What it is missing is an operator that could evolve the CFT state from one time to the next;

it is a set of correlators without a notion of causality. We must measure the boundary state

at every time in order to reconstruct the bulk state at a single time, and so there is no

holography, as should be expected for a theory without gravity in the bulk. This does not

affect its use as warmup for us, as the form of the crossing condition is very similar to that

in a full CFT. This model could actually arise as a sector of an AdS compactification in

which there is a light scalar with self-interaction much stronger than gravity, working in the

approximation that gravity decouples.

We will further assume a Z2 symmetry O → −O, so that the operator O does not itself

appear in the OO OPE. The lowest dimension operator in the OPE, aside from the unit

operator, is then the double trace O2, with dimension 2∆+O(1/N2). All other double-trace

operators are obtained by differentiating one or the other of the O in O2. Total derivatives

generate conformal descendant operators, whose contribution is determined by symmetry in

terms of those of the primary operators. To list all primary operators we need consider only

the difference
↔
∂ =

→
∂−

←
∂ acting between the two O’s. A complete set of primary double-trace

operators is

On,l ≡ O
↔
∂µ1 . . .

↔
∂µl

(
↔
∂ν

↔
∂ν)nO − traces , (3.3)

such as to be traceless on the µ’s. This has spin l and dimension ∆n,l = 2∆+2n+l+O(1/N2).

The contribution of higher-trace operators in the OPE is absent at the order in 1/N2 in

which we work. We normalize O to be 1/N times a trace of adjoint variables, so that the

two-point function and disconnected four-point function are of order N0. The connected four-

13Note that our focus is orthogonal to that in Ref. [21]. That paper is largely concerned with high-
dimension black hole states, which we have decoupled, while the 2+1 dimensional bulk has no light propa-
gating fields. Correspondingly all correlators of the energy-momentum tensor in that work are immediately
determined by holomorphy. However, there may be an interesting story that includes both directions.

10

Z2 symmetry

OPE

Double-trace primary operators

OO ∼ I +O +
�

n,l

On,l + . . .

�O(0)O(z, z̄)O(1)O(∞)� ≡ A(z, z̄) = A(1− z, 1− z̄)

Conformal partial wave expansion

(zz̄)∆A(z, z̄) = 1 +
∞�

n=0

∞�

l=0

p(n, l) g∆(n,l),l(z, z̄)
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Conformal Partial Waves

= gE,l(z, z̄)
(E, l)

d = 2

d = 4

Only SO(1,3)
Not Virasoro

Explicit expressions in even dimension [Dolan, Osborn 01]

gE,l(z, z̄) =
(zz̄)E/2

1 + δl,0

��z

z̄

�l/2
FE+l(z) FE−l(z̄) + (z ↔ z̄)

�

gE,l(z, z̄) =
(zz̄)1+E/2

z − z̄

��z

z̄

�l/2
FE+l(z) FE−l−2(z̄)− (z ↔ z̄)

�

Fa(z) = 2F1

�a

2
,
a

2
, a, z

�
where
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1/N Expansion 

(zz̄)∆A(z, z̄) = 1 +
∞�

n=0

∞�

l=0

p(n, l) g∆(n,l),l(z, z̄) = (zz̄)∆A(1− z, 1− z̄)

A1(z, z̄) =
�

n,l

�
p1(n, l) + p0(n, l)γ(n, l)

1
2

∂

∂n

�
g2∆+2n+l,l(z, z̄)

(zz̄)∆
= A1(1− z, 1− z̄)

unknowns

A(z, z̄) = A0(z, z̄) + N−2A1(z, z̄) + . . .

∆(n, l) = 2∆ + 2n + l + N−2γ(n, l) + . . .

p(n, l) = p0(n, l) + N−2p1(n, l) + . . .

Solve in the 1/N expansion

anomalous 
dimensions
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Counting bulk interactions
Any bulk quartic interaction gives a solution to crossing

φ4 , φ2(∇µ∇νφ)2 , φ2(∇µ∇ν∇σφ)2 , . . .

0
1
2
3
4
5
6
7
8
9
10
11
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 k

l

(# of derivatives)/2

Spin

(L + 2)(L + 4)
8

Interactions

l ≤ LSpin
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Counting solutions to crossing

A1(z, z̄) =
�

l≤L, n

�
p1(n, l) + p0(n, l)γ(n, l)

1
2

∂

∂n

�
g2∆+2n+l,l(z, z̄)

(zz̄)∆
= A1(1− z, 1− z̄)

Eliminate             by expanding around          and          and 
considering the terms with                         .     
Project onto a complete set to get recursion relation

p1(n, l) z = 0 z̄ = 1
log z log(1− z̄)

L�

l=0
even

γ(p, l)J(p + l, q) +
L�

l=2
even

γ(p− l, l)J(p− l, q) = (p↔ q)

known 
function

There are more equations than unknowns...
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Counting solutions to crossing
L�

l=0
even

γ(p, l)J(p + l, q) +
L�

l=2
even

γ(p− l, l)J(p− l, q) = (p↔ q)

(L + 2)(L + 4)
8

Solutions

l/2

n

L/2

· · ·· · ·· · ·· · ·

fixed by the equationsfree parameters

p1(n, l) =
1
2

∂

∂n

�
p0(n, l)γ(n, l)

�
Crossing also determines
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S-matrix Theory in AdS

The boundary correlators for any weakly coupled unitary quantum 
field theory on AdS with a “small” number of fields should be 
produced by a local Lagrangian.

S-matrix elements CFT correlators

Lorentz invariance Conformal invariance

Unitarity Reflection Positivity

Analiticity OPE, Crossing

[Giddings 99]

[Mack 09]�O(x1)O(x2)O(x3)O(x4)� =
�

d2δ M(δij)
4�

i<j

Γ(δij)
�
x2

ij

�δij

has very similar analytic properties to a flat space S-matrix.M(δij)
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Analytic Continuation

0 1

z z!

Euclidean regime

z̄ = z�

collinear 
points

z = z̄ ⇔

Singularity only appears 
after analytic continuation to the Lorentzian regime.
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