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MOTIVATION

The self-dual field theory is the theory of an abelian 2`-form gauge

field, living on a 4`+ 2-dimensional manifold, whose 2`+ 1-form

field strength obey a self-duality condition: F = ∗F.

Examples:

The chiral boson in two dimensions.

The world volume theory of the M-theory and IIA fivebranes.

The chiral two-forms in 6d supergravities.

The RR 4-form gauge field in type IIB supergravity.

The global gravitational anomaly of this theory is still unknown.

Witten made a proposal, in the case when the self-dual field has no

zero modes. How to get a general formula?
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GRAVITATIONAL ANOMALIES

Given an Euclidean QFT, put it on a compact Riemannian manifold

M.

The metric g can be seen as an external parameter, on which the

partition function Z depends.

Under the action of a diffeomorphism φ, Z(g) is not necessarily

invariant. In general

Z((φ−1)∗g) = ξ(φ, g)Z(g) ξ(φ, g) ∈ C

Consistency with the group structure requires

ξ(φ2 ◦ φ1, g) = ξ(φ2, (φ
−1
1 )∗g)ξ(φ1, g)

ξ is a 1-cocycle for the group D of diffeomorphisms of M.



GRAVITATIONAL ANOMALIES

A 1-cocycle such as ξ defines a line bundle A overM/D, the

anomaly bundle.

The anomaly bundle carries a connection∇A .

In general, the partition function is not a well-defined function on

M/D, but rather a section of A .

The local anomaly is the curvature of∇A .

The global anomaly is the set of holonomies of∇A .



GRAVITATIONAL ANOMALIES

Why are we interested in anomalies?

To couple the theory to gravity, we have integrate Z(g) overM/D.

This is possible only if Z(g) is an honest function overM/D.

In other words, this is possible only if the local and global anomalies

vanish.

⇒ Any low energy effective action obtained from a supposedly

consistent quantum gravity theory must have vanishing gravitational

anomalies.

⇒ Strong constraints on low energy effective actions in cases where

anomalies can arise.



GRAVITATIONAL ANOMALIES

Gravitational anomalies occur typically in chiral fermionic theories in

dimension 4`+ 2.

Consider the fibration (M ×M)/D overM/D with fiber M.

A chiral fermionic theory produces a family of chiral Dirac operators

on the fibers.

The functional determinant of a chiral Dirac operator is the section of

a line bundle D with connection∇D overM/D.

The anomaly bundle A of the chiral fermionic theory coincides with

D , as a line bundle with connection.



GRAVITATIONAL ANOMALIES

Using index theory techniques, Bismut and Freed proved general

formulas for the curvature and holonomies of∇D .

They recovered and generalized expressions obtained by

Alvarez-Gaumé and Witten (local anomaly) and Witten (global

anomaly).

Local anomaly:

RD =

[
2πi
∫

M
Â(RTM)ch(RE )

](2)

Â(R) =

√
det

R/4π
sinh R/4π

, ch(R) = Tr exp iR/2π .



GRAVITATIONAL ANOMALIES

For the global anomaly:

1 Pick a cycle c inM/D.

2 Construct the mapping torus M̂c. Fibration over c with fiber M.

3 Pick a metric gc on c and set gε = gc/ε
2 ⊕ gM, a metric on M̂c.

4 Consider the Dirac operator D̂ε on M̂c twisted by E .

5 Let ηε be its eta invariant and hε the dimension of its space of

zero modes.

6 The holonomy is

holD(c) = (−1)indexD lim
ε→0

exp−πi(ηε + hε)



GRAVITATIONAL ANOMALIES

Useless formula, because the eta invariant is impossible to compute

explicitly.

However, if k · M̂c is bounded by a spin manifold W, one can use the

Atiyah-Patodi-Singer theorem to obtain a useful formula, of the form

1
2πi

ln holD(c) =
1
k

(
indexA−

∫
W

Â(RTM)ch(RE )

)
If we know that the local anomaly vanishes, the integral terms cancel.

⇒ One only has to check that a sum of topological invariants is an

integer.



GRAVITATIONAL ANOMALIES

This solves the problem of computing gravitational anomalies for

chiral fermionic theories.

But the self-dual field theory is a chiral theory which does not fall into

this framework.

Its local anomaly can be described with the signature Dirac operator.

What about the global anomaly?

This is a gap in our understanding of effective field theories coming

from quantum gravity.



GRAVITATIONAL ANOMALIES

Applications:

Check the consistency of supergravities containing self-dual
fields:

Type IIB

Six dimensional supergravities with T 6= 1. (Applications to the

six-dimensional landscape.)

Check anomaly cancellation in IIA and M-theory backgrounds

containing five-branes.

Understand better the contribution of five-brane instantons to

four and three dimensional effective actions.
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THE SELF-DUAL FIELD

To compute the global anomaly, we need a global definition (on

M/D) of the quantum self-dual field theory on an arbitrary

Riemannian manifold. → Non-trivial problem.

Known ways of constructing the partition function

Holomorphic factorization of the abelian 2`-form gauge field

partition function.

Geometric quantization of H2`+1(M,U(1)).

None of these techniques give information about the global

gravitational anomaly.

It seems that only path integration of an action can provide a global

definition of the partition function.



THE SELF-DUAL FIELD

There exists many classical actions for the self-dual field. But it is not

clear if the quantum partition function can be constructed from the

naive path integration of a Gaussian action.

Indeed, it is not even clear what the off-shell degrees of freedom of

the self-dual field should be on an arbitrary Riemannian manifold.

Abelian gauge field Self-dual field

On-shell H2`+1(M,R) H2`+1
SD (M,R)

Off-shell Ω2`+1
ex (M) ???



THE SELF-DUAL FIELD

Can we really define the self-dual field theory as a free Gaussian field

theory? How to quantize the existing actions? How to define the

theory on an arbitrary Riemannian manifold?

Fortunately, one can write a Gaussian action principle for a pair of

self-dual fields.

⇒We can construct the square of the partition function.

This provides almost complete information about the global anomaly

of a single self-dual field. Only a mild ambiguity will remain in the

end.



THE SELF-DUAL FIELD

Let M be a manifold of dimension 4`+ 2.

We endow it with a quadratic refinement of the intersection form.

Parameterized by η ∈ 1
2 H2`+1

free (M,Z)/H2`+1
free (M,Z).

We write Dη the group of diffeomorphisms of M preserving the

quadratic refinement.

We want to construct and study the partition function of a pair of

self-dual fields overM/Dη.



THE SELF-DUAL FIELD

For manifolds of dimension 4`+ 2:

The intersection product gives a symplectic structure ω on

Ω2`+1(M).

The Hodge star operator squares to −1 on Ω2`+1(M), hence

defines a complex structure.

Both structures restrict to H2`+1(M,R)

A complex structure on a 2n-dimensional symplectic vector space

such as H2`+1(M,R) can be parameterized by a complex n× n matrix

τ with positive definite imaginary part. Siegel upper-half plane C.



THE SELF-DUAL FIELD

Partition function:

Z(Z, η) = u−1(g0) det(−iτ+)−1/2(θη(Z, τ))2

u(g) =

2∏̀
p=0

((
Vol(Hp)−2det(d†d|Ωp

coex
)
)(−1)p)1/2

Properties:

Holomorphic (self-duality)

Its norm is compatible with results from geometric quantization

and holography.

Compatible with the known local anomaly of the self-dual field

theory.
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THE ANOMALY BUNDLE

We saw that Dirac operators allow to construct line bundles over

M/Dη. Here is another construction.

The action of Dη on M induces an action on H2`+1(M,R).

This action is symplectic with respect to ω, preserves the integral

cohomology and factors through Γη ⊂ Sp(2n,Z).

⇒We have a mapM/Dη → C/Γη.

Bundles over C/Γη:

Theta bundle C η

Determinant bundle K of the Hodge bundle

These bundles can be pulled back toM/Dη.



THE ANOMALY BUNDLE

Call D the determinant bundle of the Dirac operator coupled to chiral

spinors, and Ds the determinant bundle of the signature operator.

Some relations:

Ds = D2.

D ' (K )−1

F η := (C η)2 ⊗ (K )−1 is a flat bundle. Its holonomies can be

computed explicitly from the transformation formula of the

Siegel theta functions. Character χη of Γη.



THE ANOMALY BUNDLE

The partition function of a pair of self-dual fields factorizes:

Z = (θη)2 · (one loop determinant)

The one-loop determinant vanishes nowhere onM/Dη! ⇒ It is the

section of a topologically trivial bundle.

The squared theta function is a section of (C η)2.

⇒ Topologically, the anomaly bundle of a pair of self-dual fields

(A η)2 is (C η)2.



THE ANOMALY BUNDLE

It has been known for a long time that the local anomaly of a pair of

self-dual field is described correctly by D−1.

⇒ The curvatures of the connections on (A η)2 and on D−1 have the

same local form.

⇒ (A η)2 and D−1 coincide up to a flat bundle.

As (A η)2 ' (C η)2 topologically, we have

(A η)2 = D−1 ⊗F η

(
= D−1 ⊗ (K )−1 ⊗ (C η)2)



THE ANOMALY BUNDLE

We determined the anomaly bundle for a pair of self-dual fields and

its connection.

How to compute the global anomaly?

The holonomies of the connection on D−1 are provided by the

Bismut-Freed formula.

The holonomies of F η known from the theta transformation

formula.

⇒ Problem solved?

No! The resulting holonomy formula is practically useless. We need

to reexpress the holonomies in term of topological invariant of a

manifold bounding the mapping torus.
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To relate the eta invariant in the Bismut-Freed formula to data on a

bounding manifold, we have to use the Atiyah-Patodi-Singer theorem.

Impossible with D⇒ Consider Ds instead:

(A η)4 = D−1
s ⊗ (F η)2

hol(A η)4(c) = (χη(γc))
2 expπi(η0 + h)

It turns out that (χη(γc))
2 expπih = exp−πiAη, where Aη is the Arf

invariant of the mapping torus M̂c.



THE GLOBAL ANOMALY FORMULA

hol(A η)4(c) = expπi(η0 − Aη)

APS says η0 =
∫

W L− σW .

For suitable W, Aη =
∫

W λ2 − σW mod 8. λ a Wu class for the

intersection pairing on W.

hol(A η)4(c) = expπi
∫

W
(L− λ2)

We need to take a fourth root of this formula. Non-trivial operation!



THE GLOBAL ANOMALY FORMULA

Most naive way of taking the fourth root:

holA η(c) = exp
2πi
8

∫
W

(L− λ2)

Consistency checks:

Reproduces the correct relative anomaly for A η′ ⊗ (A η)−1

(Lee-Miller-Weintraub).

If the formula above defines the holonomies of a well-defined

bundle, then it is the correct one, by an argument on C/Γη.

This is the case when λ = 0.

The formula appeared in the purely mathematical, but

supposedly related work of Hopkins and Singer.
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TYPE IIB SUPERGRAVITY

The anomaly formula is useful only if we can determine λ. ⇒
Applications still require some work.

In the case of 10-dimensional type IIB supergravity, λ can be taken to

vanish.

“Vanilla” IIB supergravity: the topological sectors of the

Ramond-Ramond fields are labelled by cohomology, not K-theory.



TYPE IIB SUPERGRAVITY

Global anomaly cancellation in Type IIB has been already studied by

Witten in his original paper on global gravitational anomalies.

He used:

holA (c) = exp
2πi
8

(∫
W

L− σW

)
and obtained exp− 2πi

8 σW for the total global anomaly.

Would type IIB suffer from a global anomaly?

Witten showed that it’s not the case in 10d Minkowsky space-time.

He also mentionned that his result should be trusted only when

H2`+1(M,Z) = 0.

Indeed in this case (A)4 = (Ds)
−1.



TYPE IIB SUPERGRAVITY

As λ = 0, our anomaly formula predicts

holA (c) = exp
2πi
8

∫
W

L

⇒ No gravitational anomaly.

This is compatible with Witten’s result, because σW is a multiple of 8

whenever H2`+1(M,Z) = 0.

⇒ In conclusion:

This (slightly naive) check shows that there is no global

gravitational anomaly in type IIB supergravity.

Witten’s formula is valid when H2`+1(M,Z) = 0, but does not

make the anomaly cancellation manifest.



CONCLUSIONS

We derived the global gravitational anomaly of the self-dual field

from first principle (i.e. from an action principle).

There is a lot of work ahead:

Check anomaly cancellation in IIB taking into account K-theory.

Derive an anomaly formula for the five-branes.

Check anomaly cancellation in 6d supergravities.

The main difficulty is to determine the class λ.

Given all we already learned from anomalies about supergravities,

string theory and M-theory, we can hope global anomalies will

provide new insights.
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