Searching for neutral Higgs bosons in non-standard channels

Arjun Menon University of Oregon

April 9, 2013

Searching for neutral Higgs bosons in non-standard channels

Motivation

- A SM-Higgs like resonance has been observed at the LHC
- The Higgs sector may also have extra scalars and pseudo-scalars.
- The *ττ*-channel is the standard mode of searching for such particles.
- Examples of models with suppressed $A/H \rightarrow \tau \tau$ rates:
 - Enhanced bb couplings in 2HDM and MSSM.
 JHEP 1207 (2012) 091 w/ M. Carena, S. Gori, A. Juste, C.
 Wagner & L-T. Wang
 - Enhance ZA couplings in NMSSM like models.

JHEP 1302 (2013) 152 w/ S. Chang

Searching Non-Standard Higgses with enhanced $b\bar{b}$ rates

Searching for neutral Higgs bosons in non-standard channels

Higgs Sector in 2HDMs

- The Neutral components acquire vevs and their ratio is $\tan \beta = v_u/v_d$.
- Neglecting CP violation in the Higgs sector, electroweak breaking leaves:

1 CP odd Higgs A 1 charged Higgs H^{\pm} , and 2 CP even Higgs bosons h, H

- One CP-even (SM-like) Higgs has SM strength couplings to gauge bosons.
- The other CP-even (Non-Standard) Higgs has suppressed couplings to gauge bosons.

(本語)

Couplings to b-quarks and τ -leptons in 2HDMs

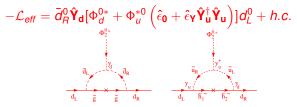
General 2HDM Higgs fermions couplings are

$$\mathcal{L}_{Yuk} = y_u H_u \bar{Q} U + y_d H_d \bar{Q} D + \tilde{y}_u H_d^{\dagger} \bar{Q} U + \tilde{y}_d H_u^{\dagger} \bar{Q} D + y_\ell H_d \bar{L} E + \tilde{y}_\ell H_u^{\dagger} \bar{L} E + h.c.$$

d-type fermion couplings to Non-standard Higgses are:

$$g_{H/Afar{f}} \simeq rac{ar{m}_f}{m{v}} ext{tan} \, eta_{ ext{eff}}^f$$

where for $f = b, \tau$

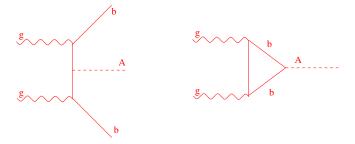

$$\tan \beta_{\text{eff}}^{f} = \frac{\tan \beta}{1 + \epsilon_{f} \tan \beta} \left(1 - \frac{\epsilon_{f}}{\tan \beta} \right)$$
$$\epsilon_{f} = \frac{\tilde{y}_{f}}{y_{f}}$$

Arjun Menon University of Oregon

크 > < 크 >

Fermion couplings in the MSSM

 Including 1-loop effects, both quarks couple to both the Higgs bosons so that:

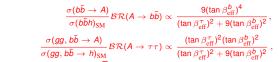


and have the structure:

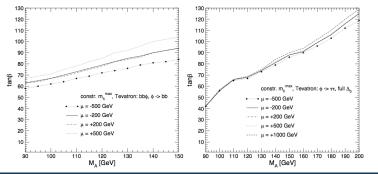
$$\begin{aligned} \epsilon_{0}^{l} &\approx \frac{2\alpha_{s}}{3\pi} M_{3} \mu C_{0}(m_{\tilde{d}_{1}^{l}}^{2}, m_{\tilde{d}_{2}^{l}}^{2}, M_{3}^{2}) \\ \epsilon_{Y} &\approx \frac{1}{16\pi^{2}} A_{t} \mu C_{0}(m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}, \mu^{2}) \\ \epsilon_{\tau} &\approx \frac{3\alpha_{2}}{8\pi} \mu M_{2} C_{0}(M_{\tilde{\tau}_{1}}^{2}, M_{\tilde{\tau}_{2}}^{2}, M_{1}^{2}) \end{aligned}$$

Kolda, Babu, Buras, Roszkowski...

Non-standard Higgs boson production and decay

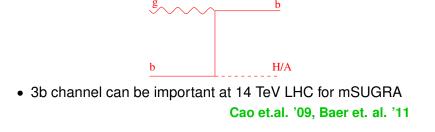

Gunion et.al. '94, Balazs et.al, Diaz-Cruz et.al., & Huang et.al. '98, Campbell et.al. '03, Dawson et.al. '03

General b and τ couplings are


$$g_{Abb} \simeq rac{m_b an eta {
m an} \, eta^b_{
m eff}}{m v}; g_{A au au} \simeq rac{m_ au an eta^ au_{
m eff}}{m v}$$

contd...

Enhanced production and decay modes:


• In the MSSM the $b\bar{b}$ channel has greater model dependence than $\tau\tau$. Carena et.al. '05

Searching for neutral Higgs bosons in non-standard channels

Non-Standard Higgs into 3b: Production and Decay

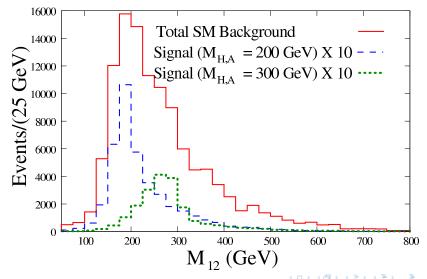
- $\tan \beta_{\text{eff}}^{\tau}$ can be small compared to $\tan \beta_{\text{eff}}^{b} \Rightarrow$ weaker reach in the $\tau \tau$ channel.
- The $H/A \rightarrow b\bar{b}$ can be enhanced enough to make it competitive with the clean $\tau\tau$ channel.
- In addition to the 4b-final state we also have:

Signal and Background Simulation

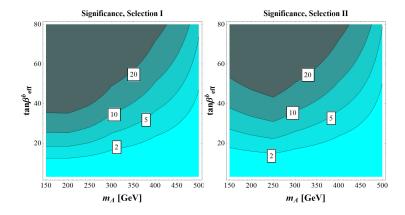
- Simulation used MG5 interfaced with Pythia 6.4.
- QCD background: Separately simulated the 3b+X and 2b+j+X where X= 1,2j
- Used *k*_t matching, with matching scale of 30 GeV.
- Background separation into *bbj* and 3*b* samples does not model *b* jets with *p_T* below ~ 40 GeV very well.
- b-jets are clustered using anti- k_T with $\Delta R = 0.4$.
- Jet energy smearing of $100\%/\sqrt{E/\text{GeV}}$.
- We assume a constant *b*-tagging efficiency of 60%, a *c*-jet mis-tag rate of 10% and a light-jet mis-tag rate of 1%.
- Low mis-tag rate of *c* and light-jets leads to the *bbj* and 3*b* backgrounds being comparable

э.

イロト イポト イヨト イヨト


Selection I vs Selection II

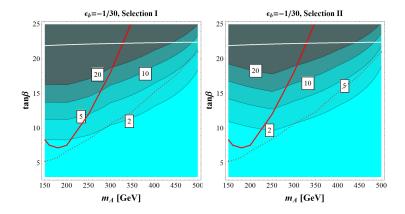
- Selection I: Exactly 3 *b*-tagged jets with $p_T > 60$ GeV and $|\eta| < 2.0$.
- Selection II: Exactly 3 *b*-tagged jets with $p_T^{b_1} > 130$ GeV, $p_T^{b_{2,3}} > 50$ GeV and $|\eta| < 2.0$.
- Require M₁₂, M₁₃ or M₂₃ within 25 GeV window of Higgs mass.


For tan β_{eff}^{b}	s = 30 @	30 fb ⁻¹	¹ 7 TeV LHC
---------------------------	-----------------	---------------------	------------------------

	Selec	tion I	Selection II			
	S/B	S/\sqrt{B}	S/B	S/\sqrt{B}		
$m_A = 150 \text{ GeV}$	0.06	14.1	0.047	6.2		
<i>m</i> _A = 200 GeV	0.057	14.4	0.048	7.9		
<i>m</i> _A = 300 GeV	0.035	7.3	0.038	6.8		
$m_A = 400 \text{ GeV}$	0.027	3.4	0.028	3.3		

Signal and Background Distributions for tan $\beta = 30$

Reach in the general 2HDM Model

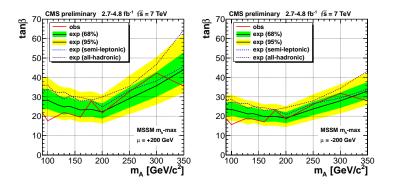


Searching for neutral Higgs bosons in non-standard channels

Arjun Menon University of Oregon

→ < Ξ

The 3b vs $\tau\tau$ in the MSSM



Searching for neutral Higgs bosons in non-standard channels

Arjun Menon University of Oregon

≣ ▶ < ≣ ▶

CMS Analysis

HCP Nov. 2012

A D > A B >

Searching for neutral Higgs bosons in non-standard channels

Conclusions

- The A → ττ LHC search puts weak limits on regions of large tan β^b_{eff} and small tan β^τ_{eff} in 2HDMs.
- The $A/H \rightarrow b\bar{b}$ is a complementary channel that probes parametric scenarios of large tan β_{eff}^{b} .
- The reach of the $A/H \rightarrow b\bar{b}$ channel is limited by low S/B for low to moderate $\tan \beta_{\text{eff}}^{b}$, but can be powerful at large $\tan \beta_{\text{eff}}^{b}$.

Search for Non-Standard Higgs in the $H \rightarrow ZA$ channel

Searching for neutral Higgs bosons in non-standard channels

Arjun Menon University of Oregon

프 🖌 🛪 프 🕨

Image: A matrix

Motivation: excess in the 2ℓ + 0 ,1 and 2 τ_h 's

CMS 2011: 2.1 fb⁻¹ @ 7 TeV CMS-PAS-SUS-11-013

Selection		$N(\tau)=0$	N(τ)=1			$N(\tau)=2$
	obs	expected SM	obs	expected SM	obs	expected SM
≥FOUR Lepton Results						
MET>50, H_T >200,noZ	0	0.003 ± 0.002	0	0.01 ± 0.05	0	0.30 ± 0.22
MET>50, H_T >200, Z	0	0.06 ± 0.04	0	0.13 ± 0.10	0	0.15 ± 0.23
MET>50,H _T <200,noZ	1	0.014 ± 0.005	0	0.22 ± 0.10	0	0.59 ± 0.25
$MET>50, H_T < 200, Z$	0	0.43 ± 0.15	2	0.91 ± 0.28	0	0.34 ± 0.15
$MET < 50, H_T > 200, noZ$	0	0.0013 ± 0.0008	0	0.01 ± 0.05	0	0.18 ± 0.07
$MET < 50, H_T > 200, Z$	1	0.28 ± 0.11	0	0.13 ± 0.10	0	0.52 ± 0.19
MET<50,H _T <200,noZ	0	0.08 ± 0.03	4	0.73 ± 0.20	6	6.9 ± 3.8
MET<50, H_T <200, Z	11	9.5 ± 3.8	14	5.7 ± 1.4	39	21 ± 11

CMS 2012: 4.8 fb⁻¹ @ 7 TeV arXiv:1204.5341

Selection	$N(\tau_h)=0$			$N(\tau_h)=1$	$N(\tau_h)=2$		
	obs	expected	obs	expected	obs	expected	
4 Lepton results							
$4\ell E_T^{miss} > 50, H_T > 200, no Z$	0	0.018 ± 0.005	0	0.09 ± 0.06	0	0.7 ± 0.7	
$4\ell E_{\rm T}^{\rm miss} > 50, H_{\rm T} > 200, Z$	0	0.22 ± 0.05	0	0.27 ± 0.11	0	0.8 ± 1.2	
$4\ell E_{\rm T}^{\rm miss} > 50, H_{\rm T} < 200, \text{ no Z}$	1	0.20 ± 0.07	3	0.59 ± 0.17	1	1.5 ± 0.6	
$4\ell E_T^{miss} > 50, H_T < 200, Z$	1	0.79 ± 0.21	4	2.3 ± 0.7	0	1.1 ± 0.7	
$4\ell E_{T}^{miss} < 50, H_{T} > 200, no Z$	0	0.006 ± 0.001	0	0.14 ± 0.08	0	0.25 ± 0.07	
$4\ell E_T^{miss} < 50, H_T > 200, Z$	1	0.83 ± 0.33	0	0.55 ± 0.21	0	1.14 ± 0.42	
$4\ell E_{\rm T}^{\rm miss}$ <50, $H_{\rm T}$ <200, no Z	1	2.6 ± 1.1	5	3.9 ± 1.2	17	10.6 ± 3.2	
$4\ell E_{\rm T}^{\rm miss}$ <50, $H_{\rm T}$ <200, Z	33	37 ± 15	20	17.0 ± 5.2	62	43 ± 16	

Searching for neutral Higgs bosons in non-standard channels

Theoretical Implications of Signal

The multi-lepton channel is sensitive to SM Higgs decay modes and with 5 fb⁻¹ of data, the region
 120 ≤ m_h ≤ 150 GeV can be probed at 95% C.L.

E. Contreras-Compana, et.al. '12

• The CMS 2012 multi-lepton data puts limits on $\mathcal{BR}(t \rightarrow ch) < 2.7\%$

N. Craig et.al. '12

 It also leads to constraints on 2HDM's when multiple-channels from *h*, *H*, *A* and *H*[±] decay modes.

N. Craig et.al. '13

★ E > < E >

Example: The NMSSM

• The superpotential has the form

$$W = W_{\text{Yuk}} + \lambda \hat{H}_u \hat{H}_d \hat{S} + \frac{\kappa}{3} \hat{S}^3$$

with soft terms

 $V_{
m soft} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \sqrt{2} \left(m_\lambda S H_u H_d - rac{m_\kappa}{3} S^3
ight)$

with $m_{\kappa} \equiv -\kappa A_{\kappa}/\sqrt{2}$ and $m_{\lambda} \equiv \lambda A_{\lambda}/\sqrt{2}$

In the basis where scalar basis (h⁰_v, H⁰_v, h⁰_s) and the pseudo-scalar basis (A⁰_v, A⁰_s)

$$\mathcal{L}_{\mathrm{Higgs}}^{\mathrm{Kin}} \subset -\frac{g_2}{2c_{\theta_W}} Z^{\mu} (c_{\theta_A} A_1^0 - s_{\theta_A} A_2^0) \overleftrightarrow{\partial_{\mu}} \left(s_{2\beta} h_v^0 + c_{2\beta} H_v^0 \right)$$

where the h_v is direction that acquires a VEV.

• $H \rightarrow Z\tau^+\tau^-$ Has been studied in context of explaining LEP anomalies.

Dermisek '08, Dermisek and Gunion '09

Higgs mass of Benchmark points

Model	λ	κ	t_{β}	A_{λ}	A_{κ}	A_t	μ_{eff}	М _ã
				(GeV)	(GeV)	(TeV)	(GeV)	(TeV)
BM1	0.71	1.10	1.5	-11.0	-8.0	0.0	160	0.5
BM2	0.71	1.10	1.5	-9.1	-7.0	0.0	166	0.5
BM3	0.67	0.78	1.5	-4.2	-40.6	0.0	170	0.5

Model	$m_{H_1^0}$	$m_{H_2^0}$	$m_{A_1^0}$	$m_{H^{\pm}}$	$g_{t\bar{t}H_1^0}^{\text{red.}}$	$g_{t\bar{t}H_2^0}^{\text{red.}}$
	(GeV)	(GeV)	(GeV)	(GeV)		2
BM1	125.2	270	8.9	266	0.982	-0.691
BM2	125.1	283	19.7	278	0.984	-0.690
BM3	124.5	252	117	248	0.992	-0.668

Searching for neutral Higgs bosons in non-standard channels

Arjun Menon University of Oregon

(< 2)</p>

Higgs couplings of Benchmark points

\mathcal{BR} of H_1^0	bb	$\gamma\gamma$	WW*	ZZ*	$A_1^0 A_1^0$
BM1	0.63	$2.6 imes 10^{-3}$	0.19	2.1×10^{-2}	$2.9 imes10^{-3}$
BM2	0.61	$2.5 imes10^{-3}$	0.18	$2.0 imes 10^{-2}$	$4.3 imes 10^{-2}$
BM3	0.64	$2.7 imes10^{-3}$	0.18	$2.0 imes10^{-2}$	0.0

 $\mathcal{BR}: \gamma \gamma_{SM} = 2.28 \times 10^{-3}; \ \mathcal{WW}_{SM}^* = 2.15 \times 10^{-1}; \ ZZ_{SM}^* = 2.64 \times 10^{-2}$

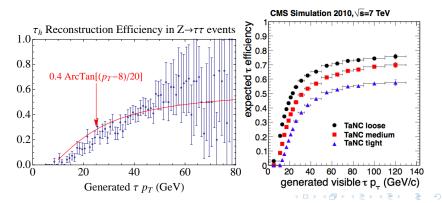
$\mathcal{BR} \text{ of } H_2^0$	bb	$H_1^0 H_1^0$	ZA_1^0	$A_1^0 A_1^0$
BM1	$4.5 imes 10^{-3}$	$5.6 imes 10^{-4}$	0.78	0.17
BM2	$4.3 imes 10^{-3}$	$4.9 imes 10^{-4}$	0.70	0.16
BM3	$1.9 imes 10^{-2}$	$1.7 imes10^{-6}$	0.78	0.19

\mathcal{BR} of A_1^0	au au	bĐ	gg	Signal Rate (μ)		
BM1	0.74	0.0	0.12	0.28		
BM2	$5.9 imes 10^{-2}$	0.92	$1.1 imes 10^{-2}$	$5.7 imes10^{-3}$		
BM3	$9.1 imes 10^{-2}$	0.87	$2.9 imes10^{-2}$	0.01		

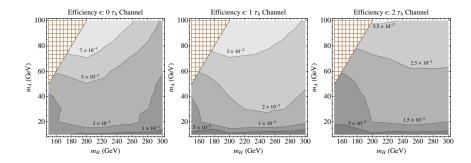
Searching for neutral Higgs bosons in non-standard channels

Event Simulation

- Simulation used Pythia8.170 for pp collisions.
- Include the effects of ISR, FSR, multiple interactions and fragmentation.
- The Z-bosons were allowed to decay only into e, μ, τ .
- No detector simulator was used, but instead implemented an CMS-like *τ_h* reconstruction algorithm.
- Trigger requirements:
 - 1-lepton: muon (electron) has a p_T > 35 (85) GeV
 - 2-lepton: $p_T^1 \ge 20$ GeV and $p_T^2 \ge 10$ GeV.
- Lepton identification: $p_T \ge 8$ GeV and $|\eta| \le 2.1$.
- Lepton isolation: $I_{\text{Rel}} = E_{\text{cone}}/E_{\ell} \le 0.15$, where E_{ℓ} = energy of lepton and


 $E_{\text{cone}} = \text{energy in a } \Delta R = 0.3 (0.4) \text{ for muons (electrons).}$

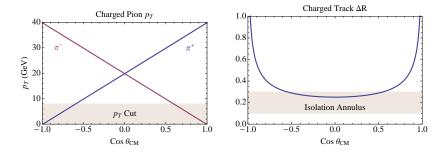
τ_h reconstruction


- τ_h reconstruction: 1-pronged track with $p_T \ge 8.0$ GeV.
- τ_h isolation: $E_{ann}/E_{cone} \leq 0.15$ where,

 $E_{\rm ann} = {\rm energy} \ {\rm in} \ 0.1 < \Delta R \le 0.3$

 $E_{\rm cone} = {\rm energy} \ {\rm in} \ \Delta R \le 0.1.$

$Z\tau\tau$ efficiency in



 $\epsilon = \frac{\text{Number of events to pass cuts}}{\text{Number of events generated}}$

Searching for neutral Higgs bosons in non-standard channels

Toy-Model for τ_h reconstruction

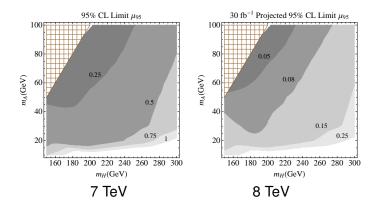
$m_H = 200 \text{ GeV}$ and $m_A = 10 \text{ GeV}$

 $\theta_{CM} =$ Angle of π^+ in rest frame of A when $\tau^+ \to \pi^+ \bar{\nu}_{\tau}$ p_T is measured in the H rest frame $\Delta R =$ the angle between the two charged tracks.

Arjun Menon University of Oregon

⇒ < ⇒ >

Limits of signal due to CMS data


- Due to low statistics we assume a Poisson distribution for the number of events.
- We assume the background errors are gaussian
- The maximum allowed number of signal events at 95%
 C.L. (S^{Max}₉₅) is found by solving

$$\int_{0}^{\infty} dB \frac{\Gamma(N_{\rm obs} + 1, S_{95}^{\rm Max} + B)}{N_{\rm obs}!} \frac{1}{\mathcal{N}_B} \exp\left[-\frac{(B - \mu_B)^2}{2\sigma_B^2}\right] = 0.05$$

• The bounds on σ_{sig} , normalized to σ_{SM} is

$$\mu_{95}^{i} \equiv rac{S_{95}^{i\,\mathrm{Max}}}{\sigma_{\mathrm{H}_{\mathrm{SM}}} imes \mathcal{BR}(Z
ightarrow l^+ l^-) imes \epsilon^{i} imes \mathcal{L}}$$

contd.

1- τ_h constraint is the strongest due to large $\epsilon_{1\tau_h}$ and $N_{obs}^{CMS} \sim N_{bkg}$

H and A Mass reconstruction in the $2\tau_h$ channel

• Transverse Mass:

$$\begin{split} m_{A}^{T} &= \sqrt{p_{V}^{2} + 2(E_{V}E_{+}^{T} - p_{V}^{T} \cdot p_{+}^{T})} \\ m_{H}^{T} &= \sqrt{(p_{V} + p_{Z})^{2} + 2((E_{V} + E_{Z})E_{+}^{T} - (p_{V}^{T} + p_{Z}^{T}) \cdot p_{+}^{T})} \\ \text{where } m_{i}^{T} \leq m_{i} \end{split}$$

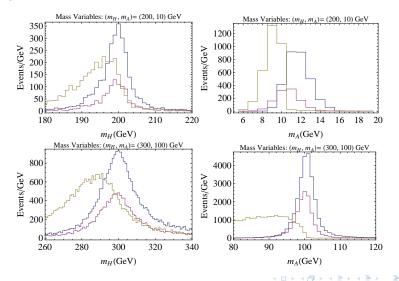
Barr et. al., 2009

Collinear Mass: Solve kinematics under assumption that neutrinos are collinear with the visible momenta

$$\lambda_1 \boldsymbol{p}_{V_1}^T + \lambda_2 \boldsymbol{p}_{V_2}^T = \boldsymbol{p}_+^T.$$

where by assumption λ_i 's are positive.

Ellis et. al., 1987


H and A Trial Mass Reconstruction in the $2\tau_h$ channel

• The 8 kinematic constraint equations are:

$$\begin{aligned} p_{\nu_1}^2 &= 0 = p_{\nu_2}^2 \\ \left(p_{\nu_1} + p_{V_1} \right)^2 &= m_{\tau}^2 = \left(p_{\nu_2} + p_{V_2} \right)^2 \\ m_A^2 &= \left(p_{\nu_1} + p_{V_1} + p_{\nu_2} + p_{V_2} \right)^2 \\ m_H^2 &= \left(p_Z + p_{\nu_1} + p_{V_1} + p_{\nu_2} + p_{V_2} \right)^2 \\ p_{\nu_1}^X + p_{\nu_2}^X &= p_+^X \\ p_{\nu_1}^Y + p_{\nu_2}^Y &= p_+^Y \end{aligned}$$

- However 10 unknowns p_{ν_i} , m_H and m_A .
- Solve for the mean values of m_H and m_A where solutions exist.

Comparison of Mass reconstructions

Searching for neutral Higgs bosons in non-standard channels

Latest CMS analysis

Selection		MET	N(τ)=0, NbJet=0		N(τ)=1, NbJet=0		$N(\tau)=0$, NbJet ≥ 1		$N(\tau)=1$, NbJet ≥ 1	
			obs	expect	obs	expect	obs	expect	obs	expect
4 Lepton Results $H_T > 200$										
OSSF0	NA	(100,∞)	0	0.007 ± 0.01	0	0.001 ± 0.01	0	0 ± 0.01	0	0 ± 0.009
OSSF0	NA	(50, 100)	0	0 ± 0.01	0	0.007 ± 0.01	0	0.01 ± 0.02	0	0.008 ± 0.01
OSSF0	NA	(0,50)	0	$1e-05 \pm 0.009$	0	0.01 ± 0.01	0	0 ± 0.009	0	0 ± 0.009
OSSF1	off-Z	(100,∞)	0	0.0005 ± 0.009	1	0.09 ± 0.03	0	0.06 ± 0.04	0	0.05 ± 0.03
OSSF1	on-Z	(100,∞)	0	0.03 ± 0.02	0	0.27 ± 0.07	0	0.19 ± 0.11	0	0.17 ± 0.09
OSSF1	off-Z	(50,100)	0	0.03 ± 0.03	1	0.13 ± 0.07	0	0.02 ± 0.02	0	0.07 ± 0.04
OSSF1	on-Z	(50, 100)	0	0.08 ± 0.04	1	0.29 ± 0.08	0	0.1 ± 0.06	1	0.12 ± 0.08
OSSF1	off-Z	(0,50)	0	0.007 ± 0.01	0	0.12 ± 0.06	0	0.001 ± 0.01	0	0.04 ± 0.03
OSSF1	on-Z	(0, 50)	0	0.1 ± 0.04	0	0.5 ± 0.12	0	0.02 ± 0.02	0	0.23 ± 0.11
OSSF2	off-Z	(100,∞)	0	0.004 ± 0.01	0	0 ± 0	0	0.008 ± 0.01	0	0 ± 0
OSSF2	on-Z	(100,∞)	0	0.05 ± 0.05	0	0 ± 0	0	0.13 ± 0.08	0	0 ± 0
OSSF2	off-Z	(50, 100)	0	0.01 ± 0.01	0	0 ± 0	0	0.01 ± 0.02	0	0 ± 0
OSSF2	on-Z	(50, 100)	0	0.39 ± 0.1	0	0 ± 0	0	0.16 ± 0.07	0	0 ± 0
OSSF2	off-Z	(0,50)	0	0.11 ± 0.03	0	0 ± 0	0	0.05 ± 0.03	0	0 ± 0
OSSF2	on-Z	(0,50)	2	3.3 ± 0.7	0	0 ± 0	1	0.37 ± 0.09	0	0 ± 0

CMS-PAS-SUS-12-026

A D > <
 A +
 A +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

But visible $p_T^{\tau} \ge 20 \text{ GeV} \Rightarrow \text{reduced efficiencies}$.

Searching for neutral Higgs bosons in non-standard channels

Arjun Menon University of Oregon

★ ∃ > ★ ∃ >

Conclusion

- The possibility of enhanced $H \rightarrow ZA \rightarrow Z\tau^+\tau^-$ decay exists.
- The NMSSM example scenario needs low $\tan \beta$ and large pseudo-scalar mixing.
- The efficiencies for detecting such a scenario are the largest in the $1\tau_h$ and $2\tau_h$ channel.
- The shape of the efficiency curves is due to an interplay between the isolation and min(p_T) cuts.
- For low *m_A* a boosted *τ* strategy similar to Englert et. al.,
 '11 may be needed.

★ E ► < E ►</p>

contd...

- $1-\tau_h$ is the most constraining of the channels.
- The projected reach with 30 fb⁻¹ CMS data could probe a large region interesting parameter space.
- For such decays the trial mass reconstruction method is more efficent than the transverse and collinear approaches.
- The phenomenology of non-Standard Higgs bosons can be quite rich and appear in many channels other than ττ.