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The arrow of time and space-like singularities

While equations of general relativity are time symmetric , one

often finds solutions with an intrinsic time direction , due to the

presence of spacelike singularities , like

FRW cosmologies, gravitational collapse .

Gravitational collapse: the direction of time appears to be ther-

modynamic in nature.

The Big Bang singularity has also long been speculated to be

related to the thermodynamic arrow of time observed in daily

life. Gold, Penrose, ......
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Gravitational collapse in AdS spacetime

AdS/CFT:

quantum gravity in AdS ⇔ Yang − Mills on S3

classical gravity ⇔ large N

a classical mass ⇔ excited state of energy O(N2)

gravitational collapse ⇔ thermalization

black hole ⇔ thermal equilibrium
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Large N limit

An SYM theory on S3 is a bounded many-body quantum me-

chanical system. At finite N ,

• it has a discrete spectrum

• it is time reversible

Heuristically, the large N limit for a SYM theory in a (highly)

excited state of energy of O(N2) is like a thermodynamic limit.

One expects a direction of time to emerge in this limit ( notori-

ously difficult to prove ).
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Observables

The simplest observables are (spatial dependence suppressed)

G+(t) =
1

Z
Tr

(

e−βHO(t)O(0)
)

and its Fourier transform G+(ω).

1. O has dimension of order O(1), corresponding to fundamental

string states in AdS.

2. β is small enough

3. At finite N , oscillatory and recurring.

4. Direction of time emerges if G+(t) → 0 as t → ∞ ( mixing ).
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Analytic properties of G+(ω, l) at strong coupling

G. Festuccia, HL

• G+(ω, l) has a continuous spectrum with ω ∈ (−∞,+∞).

• Simple poles in the complex ω-plane (for l not too large)

Re ω

Ιm ω

• Direction of time: The coordinate space G+(t, l) decays

exponentially with time.
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• The black hole singularity is encoded in behavior of

G+(ω, l) at the imaginary infinity of the ω-plane.

1. G+(ω, l) decays exponentially as ω → ±i∞.

2. Derivatives of G+(ω, l) over l evaluated at l = 0 are

divergent as ω → ±i∞.

• At finite N ,

G+(ω) = 2π
∑

m,n
e−βEmρmnδ(ω − En + Em)

is a sum of delta functions supported on the real axis.



Spacelike singularities and thermalization?

It would desirable to have a qualitative understanding for:

• underlying physics for the emergence of a direction of time

in the large N limit

• Does thermalization happen at weak coupling? e.g. does

G+(ω, l) has a continuous spectrum at weak coupling?

• connection between spacelike singularities and thermaliza-

tion?

Banks, Fischler
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Plan

1. Discrete spectrum (no thermalization) at any finite order in

perturbation theory

2. Perturbation theory breaks down in the long time limit (pla-

nar expansion is divergent)

3. a statistical approach: direction of time does emerge at any

nonzero λ

4. Conclusions
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Relevant theories

We consider generic matrix quantum mechanical systems

S = Ntr
∫

dt

[

∑

α

(

1

2
(DtMα)2 −

1

2
ω2

αM2
α

)

]

+ Sint[Mα] (1)

1. More than one matrices, U(N) gauge symmetry

2. the theory has a mass gap and a unique vacuum.

3. Sint can be written as a sum of integrals of single-trace

operators and is controlled by a coupling constant λ.

N = 4 SYM on S3 in an example of (1).
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Observables

The simplest observables are (possible spatial dependence sup-

pressed)

G+(t) =
1

Z
Tr

(

e−βHO(t)O(0)
)

and its Fourier transform G+(ω).

1. O gauge invariant operator of dimension of order O(1).

2. When β ∼ O(1) is small enough, the free energy F = −1
β logZ

is of order O(N2) (always the case with more than two matrices).
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Planar Perturbation theory

1. Free theory correlation functions are always oscillatory, and

have discrete spectral functions. No thermalization .

2. In perturbation theory (planar limit)

G+(t, λ) =
∞
∑

n=0

λnG
(n)
+ (t)

with typical terms in G
(n)
+ (t)

gkl(β)tleikω0t,

l = 0,1, · · ·n, k = n − 2∆, · · ·n + 2∆, ω0 =
1

R

No thermalization at weak coupling?
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We will argue that, however, the perturbative expansion has a

zero radius of convergence in λ as t → ∞ and cannot be used

to understand the long time behavior.



Breakdown of planar perturbation theory at finite
temperature

Consider a toy example (to simplify combinatorics):

S =
N

2
tr

∫

dt
[

(DtM1)
2 + (DtM2)

2 − ω2
0(M

2
1 + M2

2) + λM1M2M1M2

]

To illustrate our argument it is enough to look at the propagator

for M1 at finite T (we will also ignore the singlet condition)

DF (t) =
1

Z(β)
Tr

(

e−βHT (M1(t)M1(0))
)

=
∞
∑

n=0

λnD
(n)
F (t)

= D
(0)
F (t)

∞
∑

n=1

cnλntn + · · ·

11



Breakdown of planar perturbative expansion II

Strategy: to identify a family of diagrams and show that the

sum of them lead to a divergent sum.

We consider the following set of diagrams:

=

n

Γ2Γ1

n−1
Γ

n−1
Γ

n−1
Γ

=

=

Γ

12



Breakdown of planar perturbative expansion III

These graphs appear at orders d1 = 2, d2 = 8, d3 = 26, · · · of

perturbation theory

di = 3di−1 + 2 = 3i − 1, i = 1,2 · · ·

Summing them gives rise to

∑

i

Γi(t) ≈ D
(0)
F (t)

∞
∑

i=1

(−1)i
(

λt

hc

)di

+ · · ·

Barring any unforseen cancellations, this implies that the pertur-

bative expansion has a zero radius of convergence in the large t

limit.

Note hc → ∞, as T → 0.
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Breakdown of planar perturbative expansion IV

Thus we expect:

• The radius of convergence of λ at large t

λc(t) ∼
1

t

• Essential singularity at λ = 0 in momentum space

DF (ω) ∼ eiωqc
λ
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Breakdown of planar perturbative expansion V

The argument is very general. Should be applicable to generic

matrix quantum mechanical systems with more than one matri-

ces, including N = 4 SYM on S3.

However, the argument is not foolproof since we have not demon-

strated that cancellation will not happen even though we do not

expect it to happen.

Given that the perturbation theory breaks down we need to de-

velop new non-perturbative methods to understand the long time

behavior of real time correlation functions in the large N limit.
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Let us first give a simple argument why the breakdown is ex-

pected .



Features of energy spectrum: free theory

In free theory limit, the spectrum of N = 4 SYM on S3 has the

following features:

1. The energy levels are equally spaced, with spacing 1/2R.

2. Typical levels are degenerate with degeneracy:

D(E) ∼ O(1), E ∼ O(1);

D(E) ∼ eO(N2), E ∼ O(N2)
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ε ( )2ΝO∼

ε ∼Ο(1)



Features of energy spectrum: weakly coupled

Now turning on a tiny, but nonzero λ:

1. A naive application of degenerate perturbation theory sug-

gests that of order eO(N2) states mix under the perturbation.

2. Expect:

• degeneracy broken

• level spacing of order e−O(N2).

3. These effects cannot be captured by Feynmann diagram

type perturbation theory describe earlier at any finite order.
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An alternative approach

Note that

G+(t) =
1

Z
Tr

(

e−βHO(t)O(0)
)

=
1

Z

∑

i,j

e−βEi+i(Ei−Ej)tρij

ρij = |〈i|O(0)|j〉|2 = |Oij|
2

|i〉: full set of energy eigenstates of the interacting theory

|a〉: full set of energy eigenstates of the free theory

|i〉 = cia|a〉

Oij = 〈i|O(0)|j〉 =
∑

a,b

c∗iacjb〈a|O|b〉 =
∑

a,b

c∗iacjbOab
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A statistical approach I

Suppose we naively apply the degenerate perturbation theory to

an energy level of O(N2):

1. Write H = H0 + V .

2. Need to to diagonalize V in a subspace of size eO(N2).

3. May approximate V by an (extremely) sparse random matrix.

4. The spread of diagonalized energy eigenvalues is of order

O(λN). This implies that one should diagonalize a much larger

matrix of energy spread of order O(N).
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A statistical approach II

Introduce

χi(ǫ) =
∑

a
|cia|

2δ(ǫ − ǫa)

∫

dǫ χi(ǫ) = 1

χi(ǫ) gives the distribution of free theory states of energy ǫ cou-

pling to an exact eigenstate |i〉.

General large N scaling argument can be used to show that the

spread of χE(ǫ) is of order O(N), when averaged over states of

similar energy E ∼ O(N2).

20



E

2ε(  )
Ε1ε(  )

Ε2Ε1

ε

Ε



A statistical approach III

In the absence of localization effect, cia can be treated as a

random unit vector with support inside an energy shell of width

O(N).

The energy shells of two interacting theory states whose energy

difference ω = Ei − Ej ∼ O(1) overlap significantly.

Oab can be treated as a sparse banded random matrix.

Then

Oij = 〈i|O(0)|j〉 =
∑

a,b

c∗iacjb〈a|O|b〉 =
∑

a,b

c∗iacjbOab

is supported for any Ei − Ej ∼ O(1).
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Matrix elements

After averaging over states of similar energies, one finds

ρE1E2
=

1

Ω(E)
A(ω, E/N2)

with

E =
E1 + E2

2
, ω = E1 − E2

A(ω, E/N2) is even, smooth function of ω.

As ω → ±∞

AE(ω) ∝ e−
1
2β(E)|ω|, β(E) =

∂ logΩ(E)

∂E
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Wightman functions at weak coupling

One finds

G+(ω, β) = e
βω
2 A(ω, µβ)

µβ =
Eβ

N2
,

∂S(E)

∂E

∣

∣

∣

∣

∣

Eβ

= β

1. G+(ω) has a continuous spectrum with ω ∈ (−∞,+∞).

2. The singularities of G+(ω) should be finite distance away

from the real axis in the complex ω-plane.

3. G+(t) should decay exponentially with time ( Direction of

time ).
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Unfortunately, our current techniques are not enough for obtain-

ing more precise analytic structure of A(ω, E/N2).



Summary

• Perturbation theory is inadequate for understanding the long

time behavior of real-time correlation functions.

• In a statistical approach, we find G+(ω) has a continuous

spectrum and direction of time emerges.
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Speculations

• High temperature phase of a weak coupled YM theory is dual

to a stringy black hole in the large N limit.

• BH singularities may survive α′ corrections

• The behavior of the matrix elements we found have long

been argued to be a signature of quantum chaos.
Peres, Feingold, Prozen, Wilkinson ....

• There could be a connection with BKL behavior near a space-

like singularity.
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Thank You


