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The arrow of time and space-like singularities

While equations of general relativity are time symmetric , one
often finds solutions with an intrinsic time direction , due to the
presence of spacelike singularities , like

FRW cosmologies, gravitational collapse .

Gravitational collapse: the direction of time appears to be ther-
modynamic in nature.

The Big Bang singularity has also long been speculated to be
related to the thermodynamic arrow of time observed in daily
life. Gold, Penrose, ......



Gravitational collapse in AdS spacetime

AdS/CFT:
quantum gravity in AdS & Yang — Mills on S3
classical gravity = large N
a classical mass & excited state of energy O(N?)
gravitational collapse & thermalization

black hole & thermal equilibrium



Large N limit

An SYM theory on S3 is a bounded many-body quantum me-
chanical system. At finite N,

e it has a discrete spectrum
e it iS time reversible

Heuristically, the large N limit for a SYM theory in a (highly)
excited state of energy of O(N?2) is like a thermodynamic limit.

One expects a direction of time to emerge in this limit ( notori-
ously difficult to prove ).



Observables

The simplest observables are (spatial dependence suppressed)

Gy (t) = %Tr (e PHO()0(0))

and its Fourier transform G4 (w).

1. O has dimension of order O(1), corresponding to fundamental
string states in AdS.

2. [ is small enough
3. At finite NNV, oscillatory and recurring.

4. Direction of time emerges if G4.(t) — 0 as t — oo ( mixing ).
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Analytic properties of G4 (w,l) at strong coupling

G. Festuccia, HL
o G4 (w,l) has a continuous spectrum with w € (—oo, +00).

e Simple poles in the complex w-plane (for I not too large)

Imm

Re ®

e Direction of time: The coordinate space G4 (t,l) decays
exponentially with time.



e The black hole singularity is encoded in behavior of
G4 (w,l) at the imaginary infinity of the w-plane.

1. G4 (w,l) decays exponentially as w — +ico.

2. Derivatives of G4 (w,l) over | evaluated at [ = 0O are
divergent as w — +i00.

e At finite N,

Gy(w)=2m ) e BEm 5 nd(w — En + Em)

m,n

IS @ sum of delta functions supported on the real axis.



Spacelike singularities and thermalization?

It would desirable to have a qualitative understanding for:

e underlying physics for the emergence of a direction of time
in the large N limit

e Does thermalization happen at weak coupling? e.g. does
G4 (w,l) has a continuous spectrum at weak coupling?

e connection between spacelike singularities and thermaliza-
tion?

Banks, Fischler
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Plan

. Discrete spectrum (no thermalization) at any finite order in
perturbation theory

. Perturbation theory breaks down in the long time limit (pla-
nar expansion is divergent)

. a statistical approach: direction of time does emerge at any
nonzero A\

. Conclusions



Relevant theories

We consider generic matrix quantum mechanical systems

S = Ntr /dt [Z (%(DtMa)Q — %WC%M(%) ] + Sint[Ma] (1)

1. More than one matrices, U(IN) gauge symmetry
2. the theory has a mass gap and a unique vacuum.

3. S, can be written as a sum of integrals of single-trace
operators and is controlled by a coupling constant \.

N =4 SYM on S3 in an example of (1).



Observables

The simplest observables are (possible spatial dependence sup-
pressed)

Gy(t) = %Tr (¢=10(£)0(0))

and its Fourier transform G4 (w).
1. O gauge invariant operator of dimension of order O(1).

2. When 8~ O(1) is small enough, the free energy F' = —% log Z

is of order O(N?2) (always the case with more than two matrices).



Planar Perturbation theory

1. Free theory correlation functions are always oscillatory, and
have discrete spectral functions. No thermalization .

2. In perturbation theory (planar limit)

Gy (t,\) = ioj AGU ()

n=0

with typical terms in ng’)(t)
g (B)tl et ot

[=0,1,---n, k=n-—-24A,---n+2A, wo=

3|~

No thermalization at weak coupling?
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We will argue that, however, the perturbative expansion has a
zero radius of convergence in A as t — oo and cannot be used
to understand the J/ong time behavior.



Breakdown of planar perturbation theory at finite
temperature

Consider a toy example (to simplify combinatorics):

N
S = _tr / dt |(DiM1)? + (D:Mp)? — wg(MF + M3) + AMy Mo My Mp)|

To illustrate our argument it is enough to look at the propagator
for M7 at finite T (we will also ignore the singlet condition)

Dip(t) = —+—Tr (e~ PHT(My (£) M1 (0)))

Z(B)
= Y AmD{M (1)
n=0

=D 3 e -

n=1
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Breakdown of planar perturbative expansion II

Strategy: to identify a family of diagrams and show that the
sum of them lead to a divergent sum.

We consider the following set of diagrams:
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Breakdown of planar perturbative expansion III
These graphs appear at orders di = 2,d> = 8,d3 = 26,--- of
perturbation theory

di:3di_1+2:3i—1, i =1,2--.

Summing them gives rise to

S r) ~ DO 3 (~1) (;) T
1 =1 C

Barring any unforseen cancellations, this implies that the pertur-
bative expansion has a zero radius of convergence in the large t
limit.

Note h, — o0, as T — 0.
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Breakdown of planar perturbative expansion

T hus we expect:

e T he radius of convergence of X\ at large ¢

1

e Essential singularity at A =0 in momentum space

.4
Dp(w) ~ Y

IV
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Breakdown of planar perturbative expansion V

The argument is very general. Should be applicable to generic
matrix quantum mechanical systems with more than one matri-
ces, including ' =4 SYM on S3.

However, the argument is not foolproof since we have not demon-
strated that cancellation will not happen even though we do not
expect it to happen.

Given that the perturbation theory breaks down we need to de-
velop new non-perturbative methods to understand the /long time
behavior of real time correlation functions in the /large N limit.
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Let us first give a simple argument why the breakdown is ex-
pected .



Features of energy spectrum: free theory

In free theory limit, the spectrum of =4 SYM on S3 has the
following features:

1. The energy levels are equally spaced, with spacing 1/2R.

2. Typical levels are degenerate with degeneracy:
D(E) ~0(1), E~O(1);

D(E) ~ 2N B~ O(N?)
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£ (1)



Features of energy spectrum: weakly coupled
Now turning on a tiny, but nonzero A:

1. A naive application c2)f degenerate perturbation theory sug-
gests that of order eO(N?) states mix under the perturbation.

2. EXxpect:
e degeneracy broken
e level spacing of order e=O(NV?).

3. These effects cannot be captured by Feynmann diagram
type perturbation theory describe earlier at any finite order.
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An alternative approach

Note that

1 _ 1 <~ BB Ai(E—E.
G(t) =Tt (e 7?7 0(t)0(0)) =Y BEi+i(Bi=Et ;.
i

pij = |(3]0(0)|5)|? = |02

17): full set of energy eigenstates of the interacting theory
la): full set of energy eigenstates of the free theory

[2) = ciala)

O;; = (1|0(0)]j) = Zc;kacjb<a|0|b> = Zc;jkacjbOa,b
a,b a,b

18



A statistical approach 1

Suppose we naively apply the degenerate perturbation theory to
an energy level of O(N?2):

1. Write H=Hg+ V.
2. Need to to diagonalize V in a subspace of size eO(NQ).
3. May approximate V by an (extremely) sparse random matrix.

4. The spread of diagonalized energy eigenvalues is of order
O(AN). This implies that one should diagonalize a much larger
matrix of energy spread of order O(N).
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A statistical approach II

Introduce

xi(€) = Icia| 6 (e — €a)

[ dexi(e) =1

x;(€) gives the distribution of free theory states of energy e cou-
pling to an exact eigenstate |i).

General large N scaling argument can be used to show that the
spread of xg(e) is of order O(N), when averaged over states of
similar energy E ~ O(N?).
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A statistical approach III

In the absence of localization effect, ¢;, can be treated as a

random unit vector with support inside an energy shell of width
O(N).

The energy shells of two interacting theory states whose energy
difference w = E; — E; ~ O(1) overlap significantly.

O,, Can be treated as a sparse banded random matrix.

T hen

Oij = (1|0(0)|7) Zcza Cib (a|Ob) = chacjbOab
a,b
is supported for any E; — E; ~ O(1).
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Matrix elements

After averaging over states of similar energies, one finds

1
PELE, = TE)A(W’ E/N?)
with
E1+ E»p
2 Y
A(w, E/N?) is even, smooth function of w.

F =

W:El—EQ

AS w — 00

dlog Q(FE)

Ap(w) o« e 2N gy = S22
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Wightman functions at weak coupling

One finds
Bw
G—F(waﬁ) = €2 A(wmuﬁ)

By 8S(E)
=7
N OF |,

I2%; =p

1. G4(w) has a continuous spectrum with w € (—oo0, +00).

2. The singularities of G4 (w) should be finite distance away
from the real axis in the complex w-plane.

3. G4(t) should decay exponentially with time ( Direction of
time ).
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Unfortunately, our current techniques are not enough for obtain-
ing more precise analytic structure of A(w, E/N?).



Summary

e Perturbation theory is inadequate for understanding the long
time behavior of real-time correlation functions.

e In a statistical approach, we find G4 (w) has a continuous
spectrum and direction of time emerges.
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Speculations

High temperature phase of a weak coupled YM theory is dual
to a stringy black hole in the large N limit.

BH singularities may survive o’ corrections

The behavior of the matrix elements we found have long

been argued to be a signature of quantum chaos.
Peres, Feingold, Prozen, Wilkinson ....

T here could be a connection with BKL behavior near a space-
like singularity.
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Thank You



