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Reminder: How to compute differential cross 
sections in perturbation theory

d�

dO =
X

n

Z
d⇧n |Mn|2 �

⇣
O � Ô(⇧n)

⌘

n = number of external particles

Infrared and Collinear Safety

O = observable
Mn = M0

n +M1
n +M2

n + · · ·
tree-level one-loop two-loop

Real Virtual

gngn�1gn�2
The phase space constraints imposed 
by the observable are smooth through 

real and virtual contributions

⌧ ⌘ 1

Q

X

i

Ei sin ✓i tan
✓i
2

Poster Child: Thrust

Collinear safety Infrared safety

Linear in energy Weighted by positive 
power of energyWeighted by positive 

powers of angles
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Reminder: How to compute differential cross 
sections in perturbation theory
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Reminder: How to compute differential cross 
sections in perturbation theory

⌧

d�

d⌧

Fixed-Order 
Distribution is Accurate

No large logarithms

Dominant emissions are away 
from soft/collinear region 

Fixed-Order Distribution 
breaks down

Logarithms become large

Dominant energy flow is 
along momentum axis

Must resum logarithms for 
reliable predictions

Soft-Collinear Effective Theory:
Resummation by RG evolution

Explicit summation of singular 
approximation to matrix element
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Reminder: How to compute differential cross 
sections in perturbation theory
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Reminder: How to compute differential cross 
sections in perturbation theory
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Match distributions in 
different phase space regions
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Reminder: How to compute differential cross 
sections in perturbation theory
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s log

n ⌧ + · · ·
�
#

Leading Logarithms
Next-to-Leading Logarithms↵s log ⌧ ⇠ 1

⌧ ⇠ 1

⌧ ⇠ ⇤QCD

Q
⌧ � ⇤QCD

Q
Non-perturbative effects are 

power corrections (OPE)Non-perturbative 
effects dominate

Match distributions in 
different phase space regions
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Ratio Observables in Perturbation Theory

A, B: IRC safe observables

B

A

Singular region of phase space

r =
 A/B

Real contribution: 
divergent for all r

Virtual contribution: 
divergent, proportional to δ(r)
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Ratio Observables in Perturbation Theory

A, B: IRC safe observables

B

A

Singular region of phase space

r =
 A/B

Real contribution: 
divergent for all r

Virtual contribution: 
divergent, proportional to δ(r)

IRC Unsafe!?

Standard computation methods are useless for these observables

A, B can be measured separately; why can’t their ratio?

This is a major practical issue

Soyez, Salam, Kim, Dutta, Cacciari 2012
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Ratio Observables in Perturbation Theory

⌧ (�)N =
X

i2J

pTi min{R�
i1, R

�
i2, . . . , R

�
iN}

Example: N-subjettiness

Powerful boosted W tagger

Selects for 2-subjet structures

Powerful boosted t tagger

Selects for 3-subjet structures

Thaler, van Tilburg 2010

Other ratio observables used 
for jet substructure analysis:

Energy correlation functions

Angular correlation functions

Planar flow

AJL, Salam, Thaler 2013

Jankowiak, AJL 2011

Almeida, Lee, Perez, et al. 2008
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Figure 6. Distributions for ⌧21 (left) and ⌧32 (right) of jets with |y| < 2.0 in the 300–400 GeVpT
bin for anti-kt (top) and Cambridge-Aachen jets (bottom).
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Why does Monte Carlo 
model data so well?

⌧ (�)3,2 =
⌧ (�)3

⌧ (�)2

⌧ (�)2,1 =
⌧ (�)2

⌧ (�)1

ATLAS 1203.4606



11

Ratio Observables in Perturbation Theory

B

A

Singular region
of phase space

r =
 A/B

Assume A ≤ B

0 ≤ r ≤ 1

Need to regulate the 
singular region of phase 
space for calculability
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Ratio Observables in Perturbation Theory

B

A

r =
 A/B

Assume A ≤ B

0 ≤ r ≤ 1

Need to regulate the 
singular region of phase 
space for calculability

1) Explicit cut on denominator observable B

Singular region
of phase space

Bcut

May introduce undesired logarithmic sensitivity to Bcut
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Ratio Observables in Perturbation Theory

B

A

r =
 A/B

Assume A ≤ B

0 ≤ r ≤ 1

Need to regulate the 
singular region of phase 
space for calculability

1) Explicit cut on denominator observable B

Singular region
of phase space

May introduce undesired logarithmic sensitivity to Bcut

2) Include emissions to all-orders in perturbation theory

Exponentially suppresses singular region organically

Sudakov 
suppression
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Ratio Observables in Perturbation Theory

d�

dr
=

Z
dAdB

d2�

dAdB
�

✓
r � A

B

◆
Definition:

d2�

dAdB
is the fundamental object

Well-defined order-by-order in perturbation theory

To all-orders, singular region is exponentially suppressed by 
perturbative Sudakov factor

Follows from IRC safety of A and B

Marginalization is well-defined

Ratio observable is “Sudakov safe”
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Example: Ratio of Angularities
IRC Unsafety at fixed order
Sudakov Safety at all-orders

Controlled non-perturbative sensitivity

Outline

Looking Forward
Higher-order effects

Other examples of Sudakov Safe observables

Conclusions



Ex: Ratio of Angularities

16

AJL, J. Thaler 1307.1699
AJL, I. Moult, D. Neill 1401.4458
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Angularities Measured on Jets

e↵ =
1

Ejet

X

i2jet

Ei

✓
✓i
R0

◆↵

R0

Jet Axis

angle measured wrt jet axisRecoil-free jet axis 
(broadening, winner-take-all)

AJL, Neill, Thaler 2014 Familiar angularities:
α = 2, thrust

α = 1, broadening/width/girth

d�

dr
=

Z
de↵ de�

d2�

de↵ de�
�

✓
r � e↵

e�

◆
Want to measure:

We take α > β so eα < eβ

0 ≤ r ≤ 1

Compute double differential cross section to different accuracies
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Fixed-Order Distribution

~1
z << 1

𝜃
broadening axis

e↵ = z

✓
✓

R0

◆↵

e� = z

✓
✓

R0

◆�

z = e
� �

↵��
↵ e

↵
↵��

�Phase space constraints:

Energy conservation:

✓

R0
= e

1
↵��
↵ e

� 1
↵��

�

Emission within jet:

z < 1 ! e↵� < e�↵

✓ < R0 ! e↵ < e�

1

�

d2�
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= 2

↵s

⇡

CF

↵� �

1

e↵ e�
⇥
�
e�↵ � e↵�

�
⇥ (e� � e↵)

Double Differential Cross Section:

Singular matrix element:

S(z, ✓)dz d✓ = 2
↵s

⇡
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✓

dz

z
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Figure 2: The allowed phase space of the double di↵erential cross section of angularities e↵
and e� . The angular exponent ↵ is fixed to be 2 and � is varied. For a given value of �, the

phase space consists of the respective shaded region and all shaded regions above.

from the full QCD matrix element at O(↵s) by non-singular terms. To the accuracy that we

consider, the (normalized) cumulative distribution of two angularities can be computed from

⌃(e↵, e�) = 1 +
↵s

⇡

Z R0

0

d✓

✓

Z

1

0

dz Pq(z)

"

⇥

✓

e↵ � z
✓↵

R↵
0

◆

⇥

 

e� � z
✓�

R�
0

!

� 1

#

= 1 � ↵s

⇡

Z

1

0

d✓

✓

Z

1

0

dz Pq(z)
h

⇥
⇣

z✓� � e�

⌘

+ ⇥ (z✓↵ � e↵) ⇥
⇣

e� � z✓�
⌘i

, (3.1)

where Pq(z) is the quark splitting function given by

Pq(z) = CF
1 + (1 � z)2

z
. (3.2)

The �1 in the first line is the subtraction of the virtual contribution which, by unitarity,

we can assume is defined on the same phase space as the real contribution. On the physical

phase space defined by e� > e↵ and e�↵ > e↵� , we find12

⌃(e↵, e�) = 1 +
↵s

⇡
CF⇥ (e� � e↵) ⇥

⇣

e�↵ � e↵�

⌘

⇢

� 7

4�
� 3

2

log e�
�

� log2 e�
�

+
2

↵
e↵ � e2↵

4↵
+

2(↵ � �)

↵�
e
� �

↵��
↵ e

↵
↵��

� � ↵ � �

4↵�
e
� 2�

↵��
↵ e

2↵
↵��

� �
log2 e↵

e�

↵ � �

)

.

(3.3)

12Note that we have ignored contributions to the cumulative cross section that a↵ect the total cross section

at O(↵s).

– 9 –
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Fixed-Order Distribution
1
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d2�

de↵ de�
= 2

↵s

⇡

CF

↵� �

1

e↵ e�
⇥
�
e�↵ � e↵�

�
⇥ (e� � e↵)

r =
e↵
e� e↵ < e� ! r < 1

e↵� < e�↵ ! e� < r
�

↵��

Measuring r does not 
regulate eβ singularity!

1

�

d�

dr
= 2

↵s

⇡

CF

↵� �

1

r

Z r
�

↵��

0

de�
e�

Logarithmic sensitivity to any lower bound

Ratio observable cross section undefined at fixed order: 
IRC unsafe
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Double-Logarithmic Distribution

log

1

z
soft

collinear

soft-collinear

log

R0

✓

Probability for an emission:

Emissions are uniformly 
distributed in the plane

2

↵s

⇡
CF

d✓

✓

dz

z
= 2

↵s

⇡
CF d log

1

✓
d log

1

z
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Double-Logarithmic Distribution

log

1

z
soft

collinear

soft-collinear

log

R0

✓

Probability for an emission:

Emissions are uniformly 
distributed in the plane

2
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⇡
CF

d✓

✓

dz
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⇡
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1

✓
d log

1
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1
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= log

1
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+ ↵ log
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log

1

e↵

1

↵
log

1

e↵

P (x < e↵) = e

�2↵s
⇡ CF

⌃(e↵) = e�
↵s
⇡

CF
↵ log

2 e↵

1

�

d�

de↵
=

@

@e↵
⌃(e↵)
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Double-Logarithmic Distribution
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✓

Probability for an emission:

Emissions are uniformly 
distributed in the plane
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Double-Logarithmic Distribution

⌃(e↵, e�) = e
�↵s

⇡ CF

 
log

2 e�
� +

log

2

e↵
e�

↵��

!

1

�

d�

dr
=

Z
de↵ de�

@2

@e↵ @e�
⌃(e↵, e�) �

✓
r � e↵

e�

◆

Given this phase space, we can easily determine the Sudakov factor in the strongly-ordered

limit. The Sudakov factor is just the probability that there were no emissions between two

given scales. The observation of e

↵

and e

�

introduces explicit scales and defines the area of

phase space in which emissions are forbidden. The area of the gray forbidden region under

the solid black line happens to be the same for both cases considered in Fig. 4:

Area =
1

2

✓

1

�

log2 e

�

+
1

↵ � �

log2
e

�

e

↵

◆

. (3.2)

Restoring the quark color factor and strong coupling constant and then exponentiating, the

Sudakov factor at LL is

�(e
↵

, e

�

) = e

�↵s
⇡ CF

✓
1

� log2 e�+
1

↵�� log2 e↵
e�

◆

. (3.3)

From the Sudakov factor, we can determine the resummed double di↵erential cross section

by di↵erentiating with respect to e

↵

and e

�

:

d

2
�

LL

de

↵

de

�

=
@

@e

↵

@

@e

�

�(e
↵

, e

�

)

=

 

2↵

s

⇡

C

F

↵ � �

1

e

↵

e

�

+
4↵

2
s

⇡

2

C

2
F

�(↵ � �)2
1

e

↵

e

�

log
e

�

e

↵

log
e

�

↵

e

↵

�

!

�(e
↵

, e

�

). (3.4)

The double di↵erential cross section is defined on the physical phase space region from

Eq. (2.5) with e

�

> e

↵

, e

�

↵

> e

↵

�

. Note that the Sudakov factor suppresses the singular

region of phase space at e

↵

! 0, e

�

! 0. As a cross check of this calculation, we can inte-

grate over one of the angularities (making sure to impose the proper phase space constraints)

to reproduce the LL cross section for the other angularity:

d�

LL

de

↵

=

Z

e

�/↵
↵

e↵

de

�

d

2
�
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↵
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⇡
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↵
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↵
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↵
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�↵s
⇡

CF
↵ log2 e↵

,

d�
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=
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e�
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↵/�
�
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↵

d

2
�
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de

↵
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�

= �2
↵

s

⇡

C

F

�

log e

�

e

�

e

�↵s
⇡

CF
� log2 e�

, (3.5)

which is indeed correct.8

Finally, from the resummed double di↵erential cross section, we can determine the dif-

ferential cross section for the ratio observable r

↵,�

= e

↵

/e

�

using Eq. (1.3). Dropping the

subscripts r

↵,�

! r for clarity,

d�

LL

dr

=

p
↵

s

C

F

�

↵ � �

1

r

✓

1 � 2
↵

s

⇡

C

F

↵ � �

log2 r

◆✓

erf



p
↵

s

C

F

�p
⇡(↵ � �)

log r

�

+ 1

◆

e

�↵s
⇡

CF
↵�� log2 r

� 2
↵
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⇡

C
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log r

r

e
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⇡ CF

↵
(↵��)2
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, (3.6)

8The area under a curve of constant e↵ is 1

2↵ log2 e↵, so the Sudakov factor is �(e↵) = e�
↵s
⇡

CF
↵ log

2 e↵ .

Eq. (3.5) comes from di↵erentiating �(e↵).
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Given this phase space, we can easily determine the Sudakov factor in the strongly-ordered

limit. The Sudakov factor is just the probability that there were no emissions between two

given scales. The observation of e

↵

and e

�

introduces explicit scales and defines the area of

phase space in which emissions are forbidden. The area of the gray forbidden region under

the solid black line happens to be the same for both cases considered in Fig. 4:
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Restoring the quark color factor and strong coupling constant and then exponentiating, the

Sudakov factor at LL is
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The double di↵erential cross section is defined on the physical phase space region from

Eq. (2.5) with e
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> e
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. Note that the Sudakov factor suppresses the singular

region of phase space at e

↵

! 0, e

�

! 0. As a cross check of this calculation, we can inte-

grate over one of the angularities (making sure to impose the proper phase space constraints)

to reproduce the LL cross section for the other angularity:
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which is indeed correct.8

Finally, from the resummed double di↵erential cross section, we can determine the dif-

ferential cross section for the ratio observable r
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using Eq. (1.3). Dropping the

subscripts r
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! r for clarity,
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8The area under a curve of constant e↵ is 1

2↵ log2 e↵, so the Sudakov factor is �(e↵) = e�
↵s
⇡

CF
↵ log

2 e↵ .

Eq. (3.5) comes from di↵erentiating �(e↵).
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Double-Logarithmic Distribution

Consequences:

1
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d�
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=

p
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CF�
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r
+O

⇣
(
p
↵s)
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⌘

IRC unsafe ⇔ No Taylor series about αs = 0

“Sudakov safe”: finite cross section with all-orders included

Observations:

Taylor series expansion about αs ≠ 0

Can this cross section be computed with CFT techniques?

Connections:

Anomalous dimension of fragmentation function moments
QCD “Pink Book”

ask how the cross section for the ratio behaves in the small ↵

s

limit. Expanding Eq. (3.6),

we find
d�

LL

dr

=
p

↵

s

p
C

F

�

↵ � �

1

r

+ O(↵
s

) . (3.9)

Because the expansion starts at O(
p

↵

s

), there is not a proper Taylor expansion in ↵

s

. This

is not surprising as the fixed-order cross section for the ratio observable does not exist.9

This then raises the question as to the formal accuracy of Eq. (3.6) and the meaning

of “LL” for an IRC-unsafe observable. For an ordinary IRC-safe observable, LL order is

defined through the logarithms that appear in the cumulative distribution. Given the double

cumulative distribution ⌃(e
↵

, e

�

), its logarithm has the expansion

log ⌃(e
↵

, e

�

) = ↵

s

L

2 + ↵

s

L + ↵

s

+ O(↵2
s

) , (3.12)

where L is the logarithm of e

↵

or e

�

. Here, LL order includes all terms in log ⌃ at order ↵

s

L

2 ⇠
1, all of which are captured in the strongly-ordered limit.10 Because the ratio observable is

IRC-unsafe, though, all values of r 2 [0, 1] are sensitive to the singular region, and there is no

simple correspondence between the singular region of phase space and the existence of large

logarithms as there is with IRC-safe observables.

To figure out which logarithms have been resummed in Eq. (3.6), we first find the cumu-

lative distribution ⌃(r) for the ratio observable:

⌃(r) =

Z

r

0
dr

d�

dr

=
p

↵

s

p
C

F

�

↵ � �

log r

✓

1 + erf
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�↵s
⇡
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↵
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log2 r
. (3.13)

The expansion of the logarithm of the cumulative distribution in ↵

s

is

log ⌃(r) =
p

↵

s

p
C

F

�

↵ � �

log r � ↵

s

2⇡

C

F

2↵ � (4 � ⇡)�

(↵ � �)2
log2 r + O(↵3/2

s

) . (3.14)

Every term in this expansion is of the form (↵
s

log2 r)n/2, where n is a positive integer. So just

as for ordinary IRC-safe observables, LL resummation means that we capture leading terms

9The fact that the di↵erential cross section is proportional to
p
↵s is reminiscent of the anomalous dimension

of fragmentation functions for Mellin moment j ! 1 [27, 41–45], corresponding to the hadron multiplicity. In

that case, for j 6= 1, there is a sensible Taylor expansion in ↵s of the anomalous dimension:

� (j,↵s) =
↵sCA

⇡
1

j � 1
+O(↵2

s) , (3.10)

which, however, does not exist at j = 1. The entire series must be resummed and the Taylor expansion which

is valid for j 6= 1 must be analytically continued outside of its radius of convergence. It follows that the

anomalous dimension at j = 1 is

� (j = 1,↵s) =

r
↵sCA

2⇡
, (3.11)

which is not reproduced by any finite-order expansion of Eq. (3.10).
10An alternative definition of LL includes the leading terms with the scaling ↵sL ⇠ 1. These are captured

in the MLL procedure of App. B which includes running ↵s.
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j ≠ 1:

ask how the cross section for the ratio behaves in the small ↵

s

limit. Expanding Eq. (3.6),

we find
d�

LL

dr

=
p

↵

s

p
C

F

�

↵ � �

1

r

+ O(↵
s

) . (3.9)

Because the expansion starts at O(
p

↵

s

), there is not a proper Taylor expansion in ↵

s

. This

is not surprising as the fixed-order cross section for the ratio observable does not exist.9

This then raises the question as to the formal accuracy of Eq. (3.6) and the meaning

of “LL” for an IRC-unsafe observable. For an ordinary IRC-safe observable, LL order is

defined through the logarithms that appear in the cumulative distribution. Given the double

cumulative distribution ⌃(e
↵

, e

�

), its logarithm has the expansion

log ⌃(e
↵

, e

�

) = ↵

s

L

2 + ↵

s

L + ↵

s

+ O(↵2
s

) , (3.12)

where L is the logarithm of e

↵

or e

�

. Here, LL order includes all terms in log ⌃ at order ↵

s

L

2 ⇠
1, all of which are captured in the strongly-ordered limit.10 Because the ratio observable is

IRC-unsafe, though, all values of r 2 [0, 1] are sensitive to the singular region, and there is no

simple correspondence between the singular region of phase space and the existence of large

logarithms as there is with IRC-safe observables.

To figure out which logarithms have been resummed in Eq. (3.6), we first find the cumu-

lative distribution ⌃(r) for the ratio observable:

⌃(r) =

Z

r

0
dr

d�

dr

=
p

↵

s

p
C

F

�

↵ � �

log r

✓

1 + erf



p
↵

s

C

F

�p
⇡(↵ � �)

log r

�◆

e

�↵s
⇡

CF
↵�� log2 r

+ e

�↵s
⇡ CF

↵
(↵��)2

log2 r
. (3.13)

The expansion of the logarithm of the cumulative distribution in ↵

s

is

log ⌃(r) =
p

↵

s

p
C

F

�

↵ � �

log r � ↵

s

2⇡

C

F

2↵ � (4 � ⇡)�

(↵ � �)2
log2 r + O(↵3/2

s

) . (3.14)

Every term in this expansion is of the form (↵
s

log2 r)n/2, where n is a positive integer. So just

as for ordinary IRC-safe observables, LL resummation means that we capture leading terms

9The fact that the di↵erential cross section is proportional to
p
↵s is reminiscent of the anomalous dimension

of fragmentation functions for Mellin moment j ! 1 [27, 41–45], corresponding to the hadron multiplicity. In

that case, for j 6= 1, there is a sensible Taylor expansion in ↵s of the anomalous dimension:

� (j,↵s) =
↵sCA

⇡
1

j � 1
+O(↵2

s) , (3.10)

which, however, does not exist at j = 1. The entire series must be resummed and the Taylor expansion which

is valid for j 6= 1 must be analytically continued outside of its radius of convergence. It follows that the

anomalous dimension at j = 1 is

� (j = 1,↵s) =

r
↵sCA
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, (3.11)

which is not reproduced by any finite-order expansion of Eq. (3.10).
10An alternative definition of LL includes the leading terms with the scaling ↵sL ⇠ 1. These are captured

in the MLL procedure of App. B which includes running ↵s.
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j = 1:
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Figure 10: Comparing the distribution of the ratio r

↵,�

⌘ e

↵

/e

�

between the analytic LL

formula in Eq. (3.6) (dashed) and the LL+MC shower with fixed ↵

s

(solid). Shown are ↵ = 2

(left) and ↵ = 1 (right), sweeping over �. At small values of r

↵,�

there is good agreement be-

tween the two methods, but LL+MC includes multiple emissions which dramatically changes

the shape of the distribution near r

↵,�

= 1.

is zero probability for there to be no emissions after the first one. Thus, the fact that the

ratio observable distribution vanishes at r

↵,�

= 1 is physical. As discussed earlier, multiple

emissions e↵ects arise strictly beyond LL order. An emission which results in r

↵,�

= 1 is

necessarily a wide-angle emission, implying that the multiple emissions e↵ect is at least one

collinear logarithm down from LL order.13 That said, accounting for multiple emissions is

crucial for obtaining the qualitatively correct distributions.

Another qualitatively important e↵ect is running ↵

s

, already seen in the di↵erence be-

tween the LL and MLL curves in Fig. 7. In our MLL+MC shower, we include both running

↵

s

and subleading terms in the splitting function. We compare the LL+MC and MLL+MC

showers in Fig. 11, where the additional Sudakov suppression from the running coupling is

apparent. While not fully accurate to NLL level, the MLL+MC shower does include three

key e↵ects that show up at this order—running ↵

s

, subleading terms in the splitting function,

and multiple emissions—and should give a good description of the qualitiative behavior of

the ratio observable. We stress that most publicly-available Monte Carlo programs include

all of these e↵ects by default. Fig. 11 illustrates the necessity of higher-order resummation

for the accuracy of the distributions.

13Also, instead of being a log r e↵ect, this is a log(1� r) e↵ect.
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Practical Consequences of Calculability:
Monte Carlos and the ratio observable
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(left) and ↵ = 1 (right), sweeping over �. At small values of r
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there is good agreement be-

tween the two methods, but LL+MC includes multiple emissions which dramatically changes

the shape of the distribution near r
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= 1.

is zero probability for there to be no emissions after the first one. Thus, the fact that the

ratio observable distribution vanishes at r

↵,�

= 1 is physical. As discussed earlier, multiple

emissions e↵ects arise strictly beyond LL order. An emission which results in r

↵,�

= 1 is

necessarily a wide-angle emission, implying that the multiple emissions e↵ect is at least one

collinear logarithm down from LL order.13 That said, accounting for multiple emissions is

crucial for obtaining the qualitatively correct distributions.

Another qualitatively important e↵ect is running ↵

s

, already seen in the di↵erence be-

tween the LL and MLL curves in Fig. 7. In our MLL+MC shower, we include both running

↵

s

and subleading terms in the splitting function. We compare the LL+MC and MLL+MC

showers in Fig. 11, where the additional Sudakov suppression from the running coupling is

apparent. While not fully accurate to NLL level, the MLL+MC shower does include three

key e↵ects that show up at this order—running ↵

s

, subleading terms in the splitting function,

and multiple emissions—and should give a good description of the qualitiative behavior of

the ratio observable. We stress that most publicly-available Monte Carlo programs include

all of these e↵ects by default. Fig. 11 illustrates the necessity of higher-order resummation

for the accuracy of the distributions.

13Also, instead of being a log r e↵ect, this is a log(1� r) e↵ect.
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Monte Carlos approximate all-
orders exclusive cross sections

Should accurately reproduce the 
cross section for the ratio near r = 0

Deviation for r ~ 1 where multiple 
emissions become important
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Practical Consequences of Calculability:
Non-perturbative Corrections

Standard lore: IRC safe observables have controlled 
sensitivity to non-perturbative physics

⌧

d�

d⌧

⌧ ⇠ ⇤QCD

Q

Ex: Thrust ⌧ ⌘ 1

Q

X

i

Ei sin ✓i tan
✓i
2

OPE region:

Dominated by non-perturbative physics

d�

d⌧
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Practical Consequences of Calculability:
Non-perturbative Corrections
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Practical Consequences of Calculability:
Non-perturbative Corrections
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Figure 13: E↵ect of hadronization on the ratio r

↵,�

as simulated in Pythia 8.165. The

sample consists of the hardest jet from e

+
e

� ! qq̄ events found by the anti-k
T

algorithm,

keeping all particles that lie within a radius R0 = 1.0 of the broadening axis. Shown are jets

that lie in the energy range Q = [450, 550] GeV (top row) and Q = [4500, 5500] GeV (bottom

row), with either ↵ = 2 (left column) or ↵ = 1 (right column), sweeping �. The dashed

(solid) curves are the distribution at parton (hadron) level. These results qualitatively agree

with the MLL+MC analysis in Fig. 12.

To do this, we compare moments of the distribution of the ratio observable with and without

the inclusion of a shape function. The moments of the ratio observable are defined as

hrni =
1

�

Z 1

0
dr r

n

d�

dr

. (6.13)

In our analysis, we will focus on the mean µ = hri and the variance �

2 = hr2i � hri2. These

combinations of moments provide a probe into power corrections at di↵erent orders in ⇤/Q.
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500 GeV

5000 GeV

Power-suppressed 
non-perturbative 

corrections! 
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Review

Ratio observables are IRC unsafe but calculable: “Sudakov safe”

Monte Carlo should describe these observables accurately

Cross section series in αs½ 

Includes all-orders approximation to matrix element

Non-perturbative corrections are power-suppressed

Similar behavior as with IRC safe observables
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Going Further

Calculating double differential cross section to higher accuracy
Fixed-Order Corrections
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Figure 6: Cross section for the ratio observable r

↵,�

= e

↵

/e

�

at LL+LO using the Log-R

matching procedure in App. A. Shown are ↵ = 2 (left) and ↵ = 1 (right), sweeping over

�. Because the ratio distribution is dominated by the Sudakov peak, there are only small

changes in going from LL to LL+LO.

in the limit ↵

s

L

2 ⇠ 1 where L = log r, albeit starting at O(
p

↵

s

). Note that LL resummation

captures logarithms of r in the r ! 0 region. While finite values of r are also sensitive to the

singular region of phase space, those e↵ects are subleading in the logarithmic power counting.

We will see in Sec. 5 that there are also logarithms of (1 � r) which show up beyond LL.

4 Higher-Order Corrections

To increase the accuracy of our LL calculation in Eq. (3.6), we would like to include both

fixed-order corrections and higher-order resummation. Because the fixed-order cross section

for the ratio observable does not exist, though, we cannot use standard matching methods.

That said, in the same way as the LL resummation proceeded in Sec. 3.1, we can perform the

matching procedure on the double di↵erential cross section d

2
�/de

↵

de

�

and then marginalize

using Eq. (1.3) to define the ratio cross section d�/dr

↵,�

. Because the Sudakov factor provides

a natural cut-o↵ of the singular region of phase space, the ratio observable will still have a

finite cross section as higher-order e↵ects are included, as long as the matching procedure

does not a↵ect the Sudakov-suppressed region of phase space.

As discussed in Sec. 3.2, it is not entirely straightforward to define the accuracy of a

non-IRC-safe distribution. For this reason, we will subsequently refer to the accuracy of

a calculation for d�/dr

↵,�

in terms of the accuracy of the double di↵erential distribution

d

2
�/de

↵

de

�

. For illustrative purposes, we show how to include LO fixed-order information

and some e↵ects beyond LL, leaving more accurate calculations to future work. Throughout

this paper, LO means O(↵
s

) fixed-order corrections.
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Schematic form:
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Going Further

Calculating double differential cross section to higher accuracy
Higher-order Resummation AL, Moult, Neill 2014

Factorization theorem:

Q

Q τ½  
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' H(µ)⇥ J(⌧, µ)⌦ S(⌧, µ)
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Going Further

Calculating double differential cross section to higher accuracy
Higher-order Resummation AL, Moult, Neill 2014

Factorization theorem:

Q
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d�

d⌧
' H(µ)⇥ J(⌧, µ)⌦ S(⌧, µ)

(a) (b)

Figure 3: Illustration of the double cumulative distribution evaluated on the boundaries of

phase space. Left: Evaluated on the boundary e�↵ = e↵� which reduces the double cumulative

distribution to ⌃(e↵). Right: Evaluated on the boundary e↵ = e� which reduces the double

cumulative distribution to ⌃(e�).

which holds for all values of e
�/↵
↵ > 0. For this relationship to be true at this boundary, the

double di↵erential cross section should be expressable as13

d2�

de↵de�

�

�

�

�

e�⇠e
�/↵
↵

=
d�

de↵
�(e�) + f

+

(e↵, e�) , (4.5)

where the f
+

function integrates to zero on e� 2 [0, e
�/↵
↵ ]. A similar relationship holds for

the other boundary, where e↵ = e� .

Then, the statement of the boundary factorization theorem is: the double di↵erential

cross section simplifies at the boundaries:

d2�

de↵de�

�

�

�

�

e�⇠e
�/↵
↵

' d�

de↵
�(e�) +

1

e
1+

�
↵

↵

f↵
+

 

e�

e
�/↵
↵

!

,

d2�

de↵de�

�

�

�

�

e↵⇠e�

' d�

de�
�(e↵) +

1

e2�
f�
+

 

e↵
e�

!

. (4.6)

13All that is necessary is that the function that multiplies the di↵erential cross section of e↵ integrates to

1 and the remainder function integrates to 0. Using distributions, a function that integrates to 1 can always

be expressed as an appropriate �-function plus a distribution that integrates to 0. Therefore, the expression

in Eq. (4.5) is not unique, but will be justisfied with the factorization theorem in the following sections.
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function integrates to zero on e� 2 [0, e
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↵ ]. A similar relationship holds for

the other boundary, where e↵ = e� .

Then, the statement of the boundary factorization theorem is: the double di↵erential
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13All that is necessary is that the function that multiplies the di↵erential cross section of e↵ integrates to

1 and the remainder function integrates to 0. Using distributions, a function that integrates to 1 can always

be expressed as an appropriate �-function plus a distribution that integrates to 0. Therefore, the expression

in Eq. (4.5) is not unique, but will be justisfied with the factorization theorem in the following sections.
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On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable

(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed

groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)

singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.

This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the

way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution

of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform

and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize

that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling

energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is
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where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative

distribution of the energy drop at fixed groomed jet radius is
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Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-

bution of the groomed energy drop to be

⌃energy-drop(�E) =
log zcut � Bi
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(5.7)

for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.

The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find

⌃energy-drop(�E) = 1 � ↵s
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zcut
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+ O
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. (5.8)
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Figure 7: Phase space for emissions relevant for groomed jet energy loss �E in the

(log 1
z , log R0

✓ ) plane. The soft dropped region is gray/pink and the first emission satisfy-

ing the soft drop criteria is illustrated by the red dot, located at the groomed jet radius,

Rg. The blue dot represents the leading contribution to �E , with subleading contributions

above it. The location in angle of all soft dropped emissions is larger than Rg. The forbidden

emission region for a given value of Rg (the Sudakov exponent) is shaded in pink. The left

(right) plot shows �E larger (smaller) than zcut(Rg/R0)� .

5 Jet Energy Drop

Our final analytic calculation is for the groomed jet energy. Unlike for many other grooming

procedures, the energy of a soft-drop jet (� > 0) is an IRC safe observable and so can be

computed in pQCD. In particular, we will study the fractional energy drop due to grooming

�E defined as

�E ⌘ E0 � Eg

E0
, (5.1)

where E0 is the energy of the jet before grooming and Eg is the energy of the groomed jet.

�E can be interpreted as a measure of the fraction of the original jet’s energy contained in

soft wide-angle emissions. In the small R0 limit, �E is the same as the fractional pT loss,

which is the more relevant quantity for non-central (y 6= 0) jets in hadronic collisions.

5.1 Modified Leading Logarithmic Approximation

At MLL order, the calculation of the �E distribution is more subtle than for C
(↵)
1 or Rg. In the

case of C
(↵)
1 and Rg, the Sudakov veto region was e↵ectively determined by a single emission,

and the multiple emissions e↵ect for C
(↵)
1 could be included as a higher-order correction (see

Sec. 3.3).
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On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable

(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed

groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)

singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.

This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the

way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution

of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform

and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize

that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling

energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is
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where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative

distribution of the energy drop at fixed groomed jet radius is
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Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-

bution of the groomed energy drop to be
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for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.

The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find

⌃energy-drop(�E) = 1 � ↵s
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On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable

(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed

groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)

singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.

This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the

way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution

of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform

and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize

that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling

energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.
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where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative

distribution of the energy drop at fixed groomed jet radius is
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Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-

bution of the groomed energy drop to be
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for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.

The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find
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αs expansion:

β = 0:

Thus, the expansion in powers of the strong coupling is actually an expansion in ↵s/�, which

diverges order-by-order in perturbation theory for � ! 0. Thus, as advertised, the energy

drop distribution is not IRC safe for � = 0. However, the � ! 0 limit of Eq. (5.7) can be

taken before expanding in ↵s. The � ! 0 limit yields the simple and surprising result

⌃energy-drop(�E)�=0 =
log zcut � Bi

log �E � Bi
, (5.9)

which is completely independent of ↵s! So while the strong coupling constant ↵s was necessary

to calculate �E , the leading behavior is independent of the value of ↵s.

We can attribute this behavior to the fact that �E is a Sudakov safe observable for � = 0.

The singular region of phase space at Rg ! 0 is exponentially suppressed by the Sudakov

factor in ⌃radius(Rg). This exponential suppression balances the exponential increase in the

number of groomed emissions in such a way that �E is independent of ↵s. In fact, �E is

independent of the total color of the jet at fixed coupling, and only depends on the flavor

of the jet through the subleading terms in the splitting functions Bi. When the running

coupling is included, we will see that the dominant contribution to the �E distribution is still

independent of ↵s, with only weak dependence controlled by the QCD �-function.

5.3 Non-Global Logarithms

The ungroomed jet energy E0 is clearly a↵ected by non-global contributions, since emissions

outside of the jet can radiate energy into the jet. Because the soft drop procedure removes

soft wide-angle radiation, we expect that the groomed jet energy Eg should have no non-

global contributions. In principle, we could calculate the Eg distribution directly to show the

absence of non-global logarithms. In practice, though, it is hard to interpret the meaning of

Eg without invoking some reference energy scale. Here, we are using E0 as a reference, which

is not ideal since E0 has non-global contributions. That said, we will find that the E0 and �E

distributions have exactly the same non-global logarithms, implying that the Eg distribution

is wholly absent of them.

Analogous to Sec. 3.4, we can do a simple calculation of the non-global contribution to

�E . At lowest order for a narrow jet of radius R0, the non-global logarithms can be computed

from
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This shows that non-global logarithms are not power-suppressed for the energy loss distribu-

tion regardless of �. Moreover, the coe�cient of the non-global logarithms are the same for

the ungroomed distribution (� ! 1) as for the groomed distribution (finite �). This implies

that the groomed jet energy Eg cannot contain any non-global logarithms.
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independent of αs!?



34

Conclusions

Can these techniques be applied to observables like N-subjettiness?

Can techniques from CFTs help in understanding these observables?

Is QCD better approximated by a free theory, a weakly coupled CFT or 
something else?

Do we need a new definition of IRC safety/calculability in perturbation theory?

What other examples of Sudakov safe observables are there?


