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Motivations

An outstanding puzzle in particle physics is the question of why

MZ/MP ∼ 10−17

is so small. A main benefit of having SUSY is the potential to explain
this hierarchy of scales.

Unlike other symmetries, if SUSY is unbroken classically, it can only
break due to non-perturbative effects. Thus, we may hope for (Witten)

MZ ∼ e−c/g2

MP

This is one of the main reasons for interest in theories that break
SUSY dynamically.
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Motivations

Many dynamical models of SUSY breaking can be described at
low energies by weakly coupled supersymmetric Lagrangians of
chiral superfields. This is mostly achieved due to duality or other
exact and approximate methods.

In many cases these models also have an approximately canonical
Kähler potential.

By the argument of Nelson and Seiberg one should expect an
R-symmetry.

Theories of chiral superfields with canonical Kähler potential are often
referred to as Wess-Zumino models.
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Motivations

The class of dynamical models reducing to Wess-Zumino models at
low energy includes the

ISS model : massive free-magnetic SQCD (Intriligator et al.),

ITIY model : uplifted moduli space (Intriligator et al., Izawa et al.) ,

and many variations of these basic building blocks. In fact, these
models and their relatives cover a major fraction of the model building
work on supersymmetry breaking.

In addition there are the Extraordinary Gauge Mediation models
(Cheung et al.), and it is an interesting open problem to embed them in
Dynamical SUSY Breaking.
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Motivations

One recurring phenomenological problem in these models is the fact
that there usually is an R-symmetry. Unbroken R-symmetry is
problematic since the R-charge of the gaugino is necessarily one and
therefore the mass term

L ⊃ mλλλ

is forbidden (in contradiction with observations). However, we know
quite well the conditions for R-symmetry breaking (Shih) and usually in
practice it is not hard to deform or modify given models so that
R-symmetry is spontaneously broken.
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Motivations

It turns out that there is yet another persistent problem in such models.
“Empirically" it appears that in many models although SUSY and
R-symmetry are broken,

mλ/msparticle ≪ 1

This is a surprising fact. This is a concern because it results in very
heavy scalars and some of the original motivations for SUSY are lost.

This problem plagues models of dynamical SUSY breaking since the
very early history. A recent reincarnation of this phenomenological
obstacle is in the model building attempts based on ISS, which often
turned out to predict unsatisfactorily heavy scalars.
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Goal

Our goal is to study general Wess-Zumino models and understand the
origin of the anomalously light gauginos.

Along the way we will derive interesting and general results on
SUSY-breaking Wess-Zumino models.

Our understandings will shed light on how to think in a different way
about SUSY breaking and outline ways to more natural models.
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An Example

Let us recall the original O’Raifeartaigh model.

WO′R = X(
1

2
φ2

0 − f) +mφ2φ0

V =

∣

∣

∣

∣

1

2
φ2

0 − f

∣

∣

∣

∣

2

+m2 |φ0|
2

+ |Xφ0 +mφ2|
2

It has a unique R-symmetry R(X) = R(φ2) = 2, R(φ0) = 0. For f < m2

the solution X = φ2 = φ0 = 0 breaks SUSY and has no tachyons. ψX

is a massless fermion, the Goldstino. However, the boson X is
massless, m2

X = 0, and moreover

X → X + a, φ0 = φ2 = 0

leaves the vacuum energy fixed. Thus, there is a (pseudo)modulus
space of solutions.
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An Example

The spectrum as a function of X looks like for X ≪ m as
mφ0

∼ mφ2
∼ m. For X ≫ m we have mφ0

∼ X, mφ2
∼ m2

X with small
splitting.

The see-saw like spectrum can be understood from the mass matrix of
the model

det





X m

m 0



 = f(m)

which is X independent. There are never tachyons as a function of X,
even if X is very large. Thus, this pseudomodulus space is

locally stable everywhere
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Basics of WZ

The starting point is a WZ model with chiral superfields φi having a
canonical Kähler potential and a superpotential

W = fiφi +
1

2
mijφiφj +

1

6
λijkφiφjφk + · · ·

The tree-level scalar potential is

V =
∑

i

|Wi|
2

with Wi = ∂W
∂φi

.

Suppose that V has a SUSY-breaking local minimum at some
φi = φ

(0)
i . This imposes a number of constraints on the theory:
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Basics of WZ

At least one Wi 6= 0. (All derivatives of W are evaluated at φ(0)
i )

V has extremum provided that WijW
∗
j = 0. But (MF )ij ≡Wij is

also the fermion mass matrix, so we see the massless Goldstino.
(Pointing in the direction of non-zero F -terms)

The bosonic mass-squared matrix is

M2
B =





M∗
FMF F ∗

F MFM
∗
F





and Fij ≡W ∗
kWijk is the effect of SUSY-breaking.

In a consistent vacuum, M2
B must be positive semi-definite (i.e.

there cannot be any tachyons).
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Properties of WZ

From the formulae for M2
B and M2

F ,

M2
B =





M∗
FMF F ∗

F MFM
∗
F



 , M2
F = M∗

FMF

we see

STr theorem :
∑

bosonsm
2
B = 2

∑

fermionsm
2
F . This is well known

(and trivial to see).

If there is a massless fermion, then its scalar superpartner must be
massless too. This is a new result and it will be very useful for us,
so we prove it :
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Properties of WZ

M2
B =





M∗
FMF F ∗

F MFM
∗
F



 , M2
F = M∗

FMF

Suppose v is a massless fermion, i.e. M2
F v = 0. Then,

(

v† vT
)

M2
B





v

v∗



 = vTFv + c.c.

If this is non-zero it can be made negative by rotating the phase of v.
This contradicts M2

B being positive semi-definite. Thus, vTFv = 0.

However, for positive semi-definite matrices w†Aw = 0 implies Aw = 0

and therefore the boson
(

v v∗
)

is massless. Note that this is the

superpartner of the massless fermion.
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Flat directions

If SUSY is broken there is a massless fermion, the goldstino
vi = 〈W ∗

i 〉. From the result above we conclude that there is a massless
boson, the superpartner of the goldstino (they are degenerate although
SUSY is broken).

Thus, the deformation

φi → φi + αW ∗
i

is massless. In fact it follows that it is an exact flat direction for any
α ∈ C. It has also been shown by S. Ray in a different way. Our
derivation explains why there is a massless particle and why it is the
superpartner of the goldstino.

We conclude that SUSY breaking solutions of WZ models are
always accompanied by complex flat directions.

Aspects of SUSY and R-Symmetry Breaking – p. 14/29



Universal Canonical Form

We can always rotate to a canonical basis where only one field X gets
an F -term VEV and shift the φi to φi = 0. Then, the most general
superpotential is

W = X(f +
1

2
λabφaφb) +

1

2
mabφaφb +

1

6
λabcφaφbφc + · · ·

Terms like, e.g. X2φ and X3 are missing because they can not be
consistent with a flat direction φ = 0 and X ∈ C.

The set of transformations and the canonical form itself need not
respect symmetries of the problem.
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SUSY Breaking at Tree-Level

Given that viable classical solutions are always accompanied by flat
directions we can ask :

What does it mean for SUSY to be broken at tree-level ?

One should always calculate radiative corrections a-la
Coleman-Weinberg

V =
1

64π2
STrM4 log

M2

Λ2

and find where, if at all, the pseudomodulus stabilizes. But, there is a
natural and extremely useful notion of “SUSY breaking at tree-level."
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SUSY Breaking at Tree-Level

Suppose the following two conditions are satisfied :

The pseudomoduli space is locally stable everywhere

The radiative potential on the pseudomoduli space rises at infinity
everywhere.

The first condition means that there are no tachyons at any point of the
pseudomodulus space. (The O’R model is an example)

The second conditions requires some trivial knowledge of the radiative
corrections, e.g. it is always satisfied when the pseudomodulus is
coupled to some other chiral fields via Xφiφj .

When these conditions are satisfied we know that SUSY is broken
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SUSY Breaking at Tree-Level

This notion of SUSY breaking at tree-level is extremely useful, e.g. the
original O’R model satisfies it, as well as the low energy theory of the
ITIY model and massive SQCD (ISS).

In addition, if there is an R-symmetry (or any other global symmetry),
we will say that it is broken if the pseudomoduli space breaks the
symmetry everywhere.

Note that the pseudomoduli space in question need not be the global
minimum of the potential; the theory could have multiple disconnected
pseudomoduli spaces, SUSY vacua, or runaway directions.
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A Determinant Identity

Recall the canonical basis

W = fX +
1

2
(λabX +mab)φaφb +

1

6
gabcφaφbφc

We ask, under what conditions is the pseudomoduli space
spanned by X locally stable for any X?

Since the determinant of λX +m must be a polynomial in X,

det(λX +m) =
∑

ci(λ,m)Xi

unless it is a constant, there must be places in the complex X plane
where it vanishes.
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A Determinant Identity

Consider the theory around some such point X = X0 where
det(λX0 +m) = 0, and let v satisfy

(λX0 +m)v = 0

Since λX +m is the mass matrix of the fermions, this corresponds to a
massless fermion direction.

But from what we proved before, we get that either the corresponding
boson φi = vi must also be massless, or there is a tachyon.

The existence of tachyons contradicts our assumption that the
modulus-space is locally stable. Thus, the boson must be massless.
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A Determinant Identity

Recalling the bosonic mass matrix

M2
B =





(λX +m)∗(λX +m) fλ∗

f∗λ (λX +m)(λX +m)∗





The massless fermion, as we said, is equivalent to (λX0 +m)v = 0,
then, the massless boson implies λv = 0 and therefore mv = 0 too.

Therefore the mode v is completely decoupled to quadratic order in the
canonical form

W = fX +
1

2
(λabX +mab)φaφb + · · ·
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A Determinant Identity

In this case, the vanishing of the determinant is identical for any X. We
remove the decoupled mode and repeat the proof.

We conclude that an existence of a zero of the polynomial at X0 leads
to a contradiction and therefore the determinant must be an X
independent function.

So, if SUSY is broken at the tree-level then

det(λX +m) = det m

Keep in mind that this is only a necessary condition for locally stable
pseudomodulus space, since there could be some light states as
X → ∞. We will not discuss them here.
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Application : Gauge Mediation

Gauge Mediation is a way to transmit the supersymmetry breaking
occurring in the hidden sector to the visible sector.

The “messengers" are particles in the hidden sector charged under the
SM gauge group SU(3) × SU(2) × U(1). We refer to it as “direct gauge
mediation" if these charged particles play an important role in SUSY
breaking. Otherwise, this is a “theory of messengers."

Theories of messengers are in general less aesthetically appealing
and require extra ad-hoc structure.
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Application : Gauge Mediation

The most general renormalizable theory of messengers, say in the 5

and 5̄ representations of SU(5) takes the form

W = fX + (λijX +mij)ψiψ̄j + · · ·

Every calculable model with approximately canonical Kähler potential
reduces to this form at low energies. By integrating out the
messengers ψ, ψ̄ we get the gaugino mass

mg̃ = f†∂X ln det(λX +m) + O(f2/m3)

It is also important to mention that the leading order comes from a
superpotential term :

∫

d2θ ln det(λX +m)W 2
α
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Application : Gauge Mediation

We have seen that the same determinant appears in two different
places. Let us summarize the results so far

The gaugino mass is (to leading order in f )

mg̃ = f†∂X ln det(λX +m)

Around any vacuum which is part of a locally stable modulus space

det(λX +m) = det m

Thus, around vacua belonging to locally stable pseudomoduli spaces

mg̃ = 0
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Application : Gauge Mediation

mg̃ = 0 (at leading order) holds :

For messengers in any representation

For calculable modes based on ITIY, massive SQCD and various
other WZ models, exactly because the work revolved around
finding the lowest-lying state ! This strategy is like “shooting
yourself in the foot" from our perspective.

Since the leading order is holomorphic, corrections to the Kähler
potential can not actually change the low energy contribution to the
gaugino masses. So our main result has relevance beyond WZ
models, and is useful in more general situations.
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Fine Print

To keep in mind :

The gaugino mass we calculated is only the leading term in the
SUSY breaking expansion. The other terms may be important too
for very low scale breaking (such that f/m2 ∼ 1), but these terms
turn out to be numerically small in all the examples, so in fact one
still remains with a numerically large hierarchy of scalars w.r.t.
gauginos.

There may be some heavy thresholds which do not make it to the
calculable model and can affect the gaugino masses. This leads to
a model in which physics at different scale contributes to different
soft masses, remains to see whether can be viable.
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Models of Messengers

If one is willing to give up direct mediation, it is quite easy to
circumvent the obstruction, but still the main line of thought is very
useful. Let us think of Minimal Gauge Mediation

W = Xψψ̄ +Mψψ̄

with

X = θ2f

obtained by some other hidden sector which couples to the
messengers. We see that there are massless messengers at
X = −M .

Thus, the usually studied models of messengers naturally live in such
“excited pseudomoduli spaces."
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Summary and Prospects

Dynamical models which give viable gaugino masses should end up
NOT being in the SUSY-breaking ground states and not even
approximately the SUSY breaking ground states.

We are led to suggest

A new kind of inevitable metastability

The strategy of model building should be revised and one should look
for states which can decay even within the low energy approximation.
Longevity is usually not a problem, as the energy difference can be
small compared to the distance in fields space.
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