Duality walls in 5d gauge theories

Hee-Cheol Kim

Perimeter Institute

Based on arXiv:1506.03871 with Davide Gaiotto (Perimeter Institute)

Introduction

A large class of BPS domain walls has been studied in 4d maximal SUSY gauge theories.

• AdS/CFT, Boundary conditions, S-duality, Branes, ...

[Bak, Gutperle, Hirano 03], [Clark, Freedman, Karch, Schnabl 04], [Clark, Karch 05], [D'Hoker, Estes, Gutperle 07], [Bak, Gutperle, Hirano 07], [Gaiotto, Witten 08], ...

We are interested in the BPS domain walls in 5d N=1 gauge theories.

We focus on Janus-like domain walls (or interfaces)

• Coupling or mass parameter varies as a function of coordinate.

Introduction

We consider certain 5d SUSY theories which have CFT fixed points in UV and have relevant deformations to SYMs in IR.

Introduction

We will propose duality walls, which involve

- boundary conditions
- new 4d degrees of freedom
- 4d superpotentials
- test through explicit partition functions.

We expect to learn

- non-perturvative dynamics at UV fixed point from IR physics.
- close relation between 5d duality and 4d duality.
- new dualities.

Outline

I. Introduction.

- 2. Duality walls in SU(N) gauge theories.
- 3. Test with partition functions.
- 4. Duality walls in SU(N) with flavours.
- 5. Sp(N) \leftrightarrow SU(N+I) duality and domain walls.
- 6. Conclusion

Basics of 5d SUSY gauge theories

- $\mathcal{N}=1$ gauge theories in 5d
 - Vector multiplet $(A_{\mu}, \phi; \lambda)$
 - Hypermultiplet $(q^A; \psi)$
 - Preserve 8 SUSY

There is a topological $U(1)_I$ associated to instanton number symmetry :

$$J_I = * \mathrm{Tr}F \wedge F$$

Thus, full symmetry is

- SO(5) Lorentz symmetry times $SU(2)_R$ R-symmetry.
- G : gauge symmetry.
- $G_F \times U(1)_I$: flavour symmetry.

5d gauge theories are non-renormalizable. However, for certain SUSY theories, we expect non-trivial UV fixed points exist.

- QFT analysis
- Branes and string duality, (p,q) five-brane web
- M-theory on CY3

[Seiberg 96], [Morrison, Seiberg 96], [Douglas, Katz, Vafa 96], [Intriligator, Morrison, Seiberg 97], [Aharony, Hanany 97], [Aharony, Hanany, Kol 97], [DeWolfe, Hanany, Iqbal, Katz 99], ...

Effective gauge coupling is 1-loop exact: $\frac{1}{g_{eff}^2} = \frac{1}{g_0^2} + c|\phi|$

Note that, when c > 0, we can remove a scale by $g_0 \to \infty$ and interacting CFT fixed point can be attained at $\phi \to 0$.

Some UV fixed points enjoy global symmetry enhancement.

(Ex: SU(2), $N_f = 5, 6, 7$ have enhanced E_6, E_7, E_8 symmetries)

Duality walls in SU(N) theories

$\mathcal{N} = 1 \ SU(N)_N$ gauge theory

• SU(N) gauge theory on N D5-branes with classical Chern-Simons coupling $\kappa = N$.

$$L = \frac{1}{g^2} F \wedge *F + \frac{\kappa}{24\pi^2} A \wedge F \wedge F + \cdots$$

• Instanton symmetry $U(1)_I$ is enhanced to SU(2) at UV fixed point, which comes from two parallel NS5-branes.

5d Duality in IR gauge theories

Mass deformation of UV CFT leads to different IR gauge theories.

We propose a 1/2-BPS domain wall connecting IR dual gauge theories.

Boundary condition and boundary d.o.f

Neumann boundary condition at the interface :

- $F_{5i}|_{\partial} = 0$
- Half-BPS
- Gauge symmetry survives at the boundary

We then couple new 4d degrees of freedom

• 4d $\mathcal{N} = 1$ matter content :

	$SU(N)_l$	$SU(N)_r$	$U(1)_R$	$U(1)_B$
q	N	\bar{N}	0	1/N
b	1	1	2	-1

• Superpotential : $W = b \det q$

Consistency requires that boundary gauge anomaly must be cancelled.

Boundary condition and boundary d.o.f

• 4d $\mathcal{N} = 1$ matter content :

	$SU(N)_l$	$SU(N)_r$	$U(1)_R$	$U(1)_B$
q	N	\bar{N}	0	1/N
b	1	1	2	-1

- Strong constraints by anomaly cancellation
 - I. Cubic anomaly (of unit N) from 4d matters is cancelled by bulk classical Chern-Simons term at $\kappa=N$.
 - 2. Boundary $U(1)_R \subset SU(2)_R$ is fixed by mixed 't Hooft anomaly.
 - 3. Anomaly-free $U(1)_{\lambda} \subset U(1)_B \times U(1)_{I_l} \times U(1)_{I_r}$ glues instanton symmetries in both sides.

	$U(1)_{\lambda}$	$U(1)_B$	$U(1)_{I_l}$	$U(1)_{I_r}$
q	1/N	1/N	0	0
$ I_l $	1	0	1	0
I_r	-1	0	0	1

Anomaly-free $U(1)_{\lambda}$ glues together two instanton symmetries on two sides of the wall with opposite signs.

	$U(1)_{\lambda}$	$U(1)_B$	$U(1)_{I_l}$	$U(1)_{I_r}$
q	1/N	1/N	0	0
I_l	1	0	1	0
I_r	-1	0	0	1

Therefore, duality wall exchanges gauge couplings

* Duality wall implements \mathbb{Z}_2 action in SU(2) global symmetry of UV CFT.

Composition of duality walls

Consistency check :

- 4d theory is now SU(N) SQCD with $N_f = N$ and $W = b \det q + \tilde{b} \det \tilde{q}$
- "Seiberg dual" theory consists of a meson $M = \tilde{q}q$ and baryons $B = \det q, \tilde{B} = \det \tilde{q}$ with a constraint $\det M - B\tilde{B} = \Lambda^{2N}$ and superpotential : $W = b B + \tilde{b} \tilde{B}$.

SUSY indices with Duality walls

SUSY index with duality wall

We now see a more non-trivial check with supersymmetric indices in the presence of the duality wall.

• Superconformal index (SCI)

$$I(w_a, \mathfrak{q}; p, q) = \operatorname{Tr}(-1)^F p^{j_1 + R} q^{j_2 + R} \prod_a w_a^{F_a} \mathfrak{q}^k$$

[S.-S Kim, H.-C Kim, K. Lee 12], [Terashima 12]

II

 \overline{II}

- j_1, j_2, R are Cartan generators of $SO(2,5) \times SU(2)_R$.
- F_a are Cartans of flavour symm. and k is instanton number.
- SCI is equivalent to twisted partition function on $S^1 \times S^4$.
- SCI factorizes into two "hemisphere" indices by localization.

$$I(w_a, \mathbf{q}; p, q) = \langle II | II \rangle = \oint d\mu_z \overline{II(z, w_a, \mathbf{q}; p, q)} II(z, w_a, \mathbf{q}; p, q)$$

 $II = Z_{pert} \cdot Z_{inst}$: Hemisphere index = Partition function on $S^1 \times \mathbb{R}^4$ with Omega deformation z : gauge holonomy

SUSY index with duality wall

We can insert a duality wall at the equator (with I/2-SUSY)

The superconformal index with the interface simply becomes

$$I = \langle II(\mathfrak{q}^{-1}) | I^{4d}(\mathfrak{q}) | II(\mathfrak{q}) \rangle = \oint d\mu_z d\mu_{z'} \overline{II(z, \mathfrak{q}^{-1}; p, q)} I^{4d}(z, z', \mathfrak{q}; p, q) II(z', \mathfrak{q}; p, q)$$

where $I^{4d}(z, z', q; p, q)$ is the contribution from 4d d.o.f at the interface (which also depends on the boundary condition).

Contribution from 4d d.o.f at interface

($\Gamma(x)$: Elliptic gamma function)

We can couple this 4d index to hemisphere index :

$$\hat{D}II^{N}(z,\lambda) \equiv \oint \prod_{i=1}^{N-1} \frac{dz'_{i}}{2\pi i z'_{i}} \frac{I^{4d}(z,z',\lambda)}{\prod_{i,j}^{N} \Gamma(z'_{i}/z'_{j})} II^{N}(z'_{i},\lambda)$$

$$4d \text{ SU(N) vectormultip}$$

- 4d SU(N) vectormultiplet
- Here, we identify $U(1)_{\lambda}$ fugacity with instanton number fugacity (or gauge coupling) as $\mathfrak{q} = \lambda$.

Contribution from 4d d.o.f at interface

($\Gamma(x)$: Elliptic gamma function)

We can couple this 4d index to hemisphere index :

$$\hat{D}II^{N}(z,\lambda) \equiv \oint \prod_{i=1}^{N-1} \frac{dz'_{i}}{2\pi i z'_{i}} \frac{I^{4d}(z,z',\lambda)}{\prod_{i,j}^{N} \Gamma(z'_{i}/z'_{j})} II^{N}(z'_{i},\lambda)$$

$$4d \text{ SU(N) vectormult}$$

ultiplet

Duality wall is conjectured to exchange the gauge coupling, therefore, we claim that

$$\hat{D}II^N(z_i,\lambda) = II^N(z_i,\lambda^{-1})$$

- Duality wall : $\hat{D}II^N(z_i,\lambda) = II^N(z_i,\lambda^{-1})$ [Gaiotto, H.-C Kim 15]
- The hemisphere index is actually given by a series expansion in instanton number. Thus, this is a very surprising claim since the index $II^{N}(z,\lambda)$ is expanded by $\lambda^{k\geq 0}$, while the dual index $\hat{D}II^{N}(z,\lambda)$ is expanded by $(\lambda^{-1})^{k\geq 0}$.
- Can be checked in $x \equiv (pq)^{1/2}$ expansion.

- Numerical checks for N = 2, 3, 4 at least up to x^4 order.

• More surprisingly, assuming $II = Z_{pert} \cdot Z_{inst} = Z_{pert} \cdot (1 + O(x))$, the integral equation

$$\oint \prod_{i=1}^{N-1} \frac{dz'_i}{2\pi i z'_i} \frac{I^{4d}(z, z', \lambda)}{\prod_{i,j}^N \Gamma(z'_i/z'_j)} II^N(z'_i, \lambda) = II^N(z, \lambda^{-1})$$

uniquely determines the instanton partition function Z_{inst} in x expansion!!

• Analytic proof of $\hat{D}^2 = I$

SU(N) $SU(N)$ $SU(N)$ $SU(N)$ $SU(N)$	SU(N)	SU(N)	SU(N)	=	SU(N)	SU(N)

• There is an integral formula (elliptic Fourier transform)

[Spiridonov, Warnaar 04]

$$\oint d\mu_{z'} \frac{\prod_{i,j}^{N} \Gamma(\lambda^{1/N} z_i/z'_j)}{\Gamma(\lambda) \prod_{i,j}^{N} \Gamma(z'_i/z'_j)} \oint d\mu_{z''} \frac{\prod_{i,j}^{N} \Gamma(\lambda^{-1/N} z'_i/z''_j)}{\Gamma(\lambda^{-1}) \prod_{i,j}^{N} \Gamma(z''_i/z''_j)} f(z'') \sim f(z)$$

$$(\text{note:} \ I^{4d} = \frac{\prod_{i,j=1}^{N} \Gamma(\lambda^{1/N} z_i/z'_j)}{\Gamma(\lambda)})$$

• This proves $\hat{D}\hat{D}II(z,\lambda) = II(z,\lambda)$.

Duality walls with flavours

SU(N) gauge theory with flavours

- SU(N) gauge theory with CS coupling at $\kappa = N N_f/2$.
- IR gauge coupling is identified as $g^{-2} \sim m + \frac{N_f}{2}m_B$, where m_B is the mass parameter for the overall $U(1)_f \subset U(N_f)$ flavor symmetry.
- UV fixed point has an enhanced SU(2) global symmetry and m is the corresponding mass deformation.

We propose a duality interface which exchanges $m \leftrightarrow -m$.

Boundary conditions and domain wall

Boundary conditions :

- Vector multiplet : Neumann b.c. $F_{5i}|_{\partial} = 0$
- Hypermultiplet $\Phi = (X, Y)$: $X|_{\partial} = 0$, $\partial_5 Y|_{\partial} = 0$

We couple this to the same 4d $\mathcal{N} = 1$ system

• matter content :

	$SU(N)_l$	$SU(N)_r$	$U(1)_R$	$U(1)_B$
q		\bar{N}	0	1/N
b	1	1	2	-1

• Superpotential : $W = b \det q + Y q X'$

Duality wall with flavours

• 4d $\mathcal{N} = 1$ matters :

	$SU(N)_l$	$SU(N)_r$	$U(1)_R$	$U(1)_B$
q	N	\bar{N}	0	1/N
b	1	1	2	-1

• Superpotential : $W = b \det q + Y q X'$

Cubic anomaly $N - N_f/2$ at the interface is cancelled by bulk CS-term.

We find anomaly free U(I) global symmetries as (in terms of fugacities)

	q	I_l	I_r	X	X'
fugacity	$\lambda^{1/N}$	$\lambda w^{-N_f/2}$	$\lambda^{-1}(w')^{-N_f/2}$	w	w'

(with U(I) fugacities
$$w = \lambda^{1/N} w'$$
 and $e^{-\frac{4\pi^2}{g^2}} = \lambda w^{-N_f/2}$,
 $e^{-\frac{4\pi^2}{(g')^2}} = \lambda^{-1} (w')^{-N_f/2}$,)
 $e^{m_B} = w$, $e^{m'_B} = w'$

Hemisphere index of the boundary condition $F_{ij}|_{\partial} = 0$, $X|_{\partial} = 0$, $Y|_{\partial} \neq 0$

$$II^{N,N_f}(z_i, w_a, \mathfrak{q}; p, q) = \frac{(pq; p, q)_{\infty}^{N-1} \prod_{i \neq j}^{N} (pqz_i/z_j; p, q)_{\infty}}{\prod_{i=1}^{N} \prod_{a=1}^{N_f} (\sqrt{pq}z_i/w_a; p, q)_{\infty}} Z_{\text{inst}}^{N,N_f}(z_i, w_a, \mathfrak{q}; p, q)$$
from hypermultiplet
$$(r: p, q)$$

 $(x;p,q)_\infty : \operatorname{q-Pochhammer}$ symbol

Duality wall action on the hemisphere index

$$\hat{D}II^{N,N_f}(z,w,\lambda) \equiv \oint \prod_{i=1}^{N-1} \frac{dz'_i}{2\pi i z'_i} \frac{I^{4d}(z,z',\lambda)}{\prod_{i,j}^N \Gamma(z'_i/z'_j)} II^{N,N_f}(z'_i,w,\lambda)$$

We claim that $\hat{D}II^{N,N_f}(z_i,w,\lambda) = II^{N,N_f}(z_i,w',\lambda^{-1})$ (with $w = \lambda^{1/N}w'$)

-
$$\hat{D}$$
 : $\lambda \to \lambda^{-1}$

- Numerical checks for several small N, N_f

Again, this integral relation of duality wall uniquely determines the full instanton partition function with fund. hypers in $x = (pq)^{1/2}$ expansion.

Symmetry enhancement and 4d duality

- Example : SU(2) gauge theory with $N_f = 2$ flavours which has symmetry enhancement $SO(4) \times U(1)_I \rightarrow SU(2) \times SU(3)$ at the UV fixed point. [Seiberg 96]
- Enhanced SU(3) involves S_3 permutation group which exchanges $U(1)_B \times U(1)_I \subset SU(3)$ charges.
- Combinations of duality walls can realize full S_3 permutation group.

Let's define two different duality walls with two different b.c. for the hypermultiplets $\Phi_{a=1,2} = (Q_a, \tilde{Q}_a)$

Symmetry enhancement and 4d duality

• Concatenation of two domain walls and 4d Seiberg duality shows

Therefore, duality wall actions (with help of 4d Seiberg duality) implement
 Weyl permutations D
₁, D
₂, D
₃ ⊂ S₃ in the SU(3) at the UV fixed
 point.

Sp(N) and SU(N+I) duality

Duality between Sp(N) and SU(N+I) theories

Duality between 1. Sp(N) gauge theory with N_f fundamental hypers.

2. SU(N+1) gauge theory with N_f fundamental hypers at CS-level $\kappa = N + 3 - N_f/2$ $(N_f < 2N + 6)$

[Hayashi, S.-S Kim, K. Lee, Taki, Yagi 15], [Gaiotto, H.-C Kim 15]

Same dimension of Coulomb branch : $\dim \mathcal{M}_{Coulomb} = N$

Same global symmetry at UV fixed point : $SO(2N_f) \times U(1)_I$

- $SU({\cal N})$ gauge theory has enhanced global symmetry as

N_f	$SU(N)_{\pm(N+1-N_f/2)}$	N_f	$SU(N)_{\pm(N+2-N_f/2)}$
$\leq 2N$	$SU(N_f+1) \times U(1)$	$\leq 2N+1$	$SO(2N_f) \times U(1)$
2N+1	$SU(N_f+1) \times SU(2)$	2N+2	$SO(2N_f) \times SU(2)$
2N+2	$SU(N_f+2)$	2N+3	$SO(2N_f+2)$

- Can be seen from I-instanton analysis [Yonekura 15], [Gaiotto, H.-C Kim 15]
- Or from (p,q) 5-Branes [Bergman, Zafrir 14,15], [Hayashi, S.-S Kim, K. Lee, Taki, Yagi 15]

Boundary condition and domain wall

We propose a duality wall :

$$Sp(N)$$
, N_f
 $SU(N+1)_{N+3-N_f/2}$, N_f
 \sim 4d domain wall

We use a similar boundary conditions $F_{5i}|_{\partial} = 0 \ , \ X|_{\partial} = 0 \ , \ Y|_{\partial} \neq 0$

And couple it to 4d degrees of freedom at the interface

• 4d $\mathcal{N} = 1$ matter content

	Sp(N)	SU(N+1)	$U(1)_R$	$U(1)_{\lambda}$
q	N	N+1	0	1/2
M	1	N(N+1)/2	2	-1

• Superpotential $W = \operatorname{Tr} q M q^T w + X q X'$

w : symplectic form of Sp(N)

 $X \ : \ {\rm chiral \ half \ of \ hypermultiplet \ in \ } SU(N+1)$

X' : chiral half of hypermultiplet in Sp(N)

• When N=1, it reduces to duality interface in previous SU(2) theory

We propose that this is the duality wall that interpolates Sp(N) and SU(N+I) gauge theories.

Duality action on the hemisphere index of Sp(N) gauge theory.

$$\hat{D}II_{Sp(N)}^{N_{f}} = \oint d\mu_{z_{i}} \frac{I^{4d}(z, z', \lambda)}{\prod_{i>j}^{N} \Gamma(z_{i}^{\pm} z_{j}^{\pm}) \prod_{i=1}^{N} \Gamma(z_{i}^{\pm 2})} II_{Sp(N)}^{N_{f}}(z_{i}, \mathfrak{q}_{Sp}, w_{a})$$

Contribution from 4d d.o.f : $I^{4d}(z, z', \lambda) = \frac{\prod_{i=1}^{N+1} \prod_{j=1}^{N} \Gamma(\sqrt{\lambda} z'_i z^{\pm}_j)}{\prod_{i>j}^{N+1} \Gamma(\lambda z'_i z'_j)}$

We claim that
$$\hat{D}II_{Sp(N)}^{N_{f}}(z_{i}, w_{a}, \mathfrak{q}_{Sp}; p, q) = II_{SU(N+1)}^{N_{f}}(z_{i}', w_{a}', \mathfrak{q}_{SU}; p, q)$$
(with U(1) fugacities $w_{a} = \lambda^{1/2}w_{a}', \ \mathfrak{q}_{Sp} = \lambda^{(N+1)/2}\prod_{a=1}^{N_{f}}(w_{a})^{-1/2}, \ \mathfrak{q}_{SU} = \lambda^{-1}\prod_{a=1}^{N_{f}}(w_{a}')^{-1/2}$).

Checked this relation for N = 2 at least up to x^5 order.

This integral equation can generate instanton partition functions of $SU(N)_{N+2-N_f/2}$ gauge theories, which we couldn't compute using standard ADHM analysis.

Concatenation of two duality walls must be a trivial interface : $\hat{D}\hat{D} = I$

There are (A,C) and (C,A)-type inversion formulas

[Spiridonov, Warnaar 04]

$$\oint d\mu_{z'} \Delta^{(A)}(z', x, \lambda) \oint d\mu_{z} \Delta^{(C)}(z, z', \lambda) f(z) = f(x) ,$$

$$\oint d\mu_{z} \Delta^{(C)}(z, x, \lambda) \oint d\mu_{z'} \Delta^{(A)}(z', z, \lambda) f(z') = f(x)$$

 $\Delta^{(A)} \text{ and } \Delta^{(C)} \text{ are the index of 4d d.o.f:} \qquad \Delta^{(A)}(z',z,\lambda) \sim \frac{I^{4d}(z,1/z',1/\lambda)}{\prod_{i\neq j}^{N+1} \Gamma(z'_i/z'_j)}, \\ \Delta^{(C)}(z,z',\lambda) \sim \frac{I^{4d}(z,z',\lambda)}{\prod_{i>j}^{N} \Gamma(z_i^{\pm}z_j^{\pm}) \prod_{i=1}^{N} \Gamma(z_i^{\pm 2})}$

- This proves $\hat{D}\hat{D} = I$.
- Duality and domain wall action thus provides a physical interpretation of these elliptic integral identities.

Conclusion

- We have proposed duality domain wall connecting two dual SU(N) gauge theories and carried out various tests.
- Enhanced global symmetry in the UV CFT can be seen even in IR gauge theory through the duality wall action and 4d duality at the interface.
- New duality between Sp(N) and SU(N+1) gauge theories and the duality wall between them have been proposed.

Future directions :

- Study on boundary conditions in 5d gauge theories.
- Other duality walls or other type of domain walls.
- Defects in the presence of domain walls.