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Quantum wires

(Quasi) one-dimensional electron systems, in which quantum physics
plays a role.

Conventionally, 2D semiconductor heterostructures with 1D constriction
formed by gates

At low density, naB � 1,⇐⇒ strong interactions

Wigner crystal correlations (near order)



Conductance peak in quantum wires

G(V ) = dI(V )/dV exhibits a peak near zero bias.

Common feature in experiments

from T.-M. Chen et al., Phys. Rev. B 79, 153303 (2009)



Conductance peak in quantum wires

Possible explanations?

Kondo peak

requires magnetic impurity

should be split in the magnetic field - not necessarily the case

This work

peak arises in a inhomogeneous system of strongly interacting
one-dimensional electrons

No other ingredients required



Model and Hamiltonian

Ĥ = Ĥ0 + Ĥi

Ĥ0 =

∫
dx ψ†σ(x)

[
−∂2

x

2m
+ U(x)− µ

]
ψσ(x)

Ĥ =
1
2

∫
dx dx ′ψ†σ(x)ψ†σ′(x ′)

e2

κ|x − x ′|ψσ
′(x ′)ψσ(x)

U(x) - gate potential

Weak interactions in the leads, rs(x) = n(x)aB � 1

Strong interactions in the wire, rs(x) = n(x)aB � 1⇒ near Wigner
crystal order.



Collective excitations in Wigner crystal regime

Ĥ = Ĥρ + Ĥσ

Charge:

Ĥρ =
uρ
2π

∫
dx
[
Kρ(∂xθρ)2 +

1
Kρ

(∂xϕρ)2
]

Spin: Heisenberg chain

Ĥσ =
∑

l

J(l + 1/2)Sl+1Sl



Strong interactions
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exchange J(x) – exponentially small compared to Coulomb (Fermi)
energy J(0) ∼ 0− 10K

=⇒ One can easily have T , eV & J(0)

Assumption

J(x) varies slowly on lattice scale, J ′(x)� J(x)
⇐⇒ N � 1 – number of sites in Wigner crystal, long wire.



Spin chain

Long (spin) wavelength limit: T , eV � J(0) - bosonization OK

“spin incoherent” regime: T , eV & J(0)



Previous results on spin-dependent transport

I = GV linear transport regime eV � J(0) [K. Matveev PRB (2004)]

G = 2e2

2π~ at T � J(0) (recovers bosonization results)

G = e2

2π~ at T � J(0)

Spin excitations suppress conductance!

– relevant to 0.7-structure physics - common for short wires, shifts to e2/h in
longer wires.

This work: nonlinear transport regime eV & J(0), T = 0

Can we expect similar in dI(V )/dV ?



Transport in the regime of applied current I

Wigner crystal drifting through the wire with “velocity” v = I/e

Calculate energy dissipation W = Wρ + Wσ, W = VI ⇒ V (I) curve.

Charge sector, T , eV � εF

Wρ = RρI2, Rρ = 2π~/(2e2).

Spin sector

Ĥσ =
∑

l

J(l − vt + 1/2)Sl+1Sl
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Jordan-Wigner (JW) transformation

Ĥσ =
1
2

∑
l

J(l−vt+1/2)

[
a†l+1al + a†l al+1 + 2∆

(
a†l+1al+1 +

1
2

)(
a†l al +

1
2

)]

∆ = 1, system of strongly interacting fermions on a lattice

Find dissipation due to nonstationary inhomogeneous J(l − vt + 1/2)

XY model, ∆ = 0, noninteracting JW fermions

Ĥσ =
1
2

∑
l

J(l − vt + 1/2)(a†l+1al + a†l al+1)

Recipe

1 Solve single-particle scattering problem
2 Find distribution functions in the leads⇐⇒ Find dissipation



Classical limit, infinitely smooth J(x)

ẋ = ∂pH(x , t , p), ṗ = −∂x H(x , t , p), H(x , t , p) = J(x − vt) cos p

Galilean transformation y = x − vt , =⇒ stationary problem

H(y , p) = J(y) cos p − pv

x : Wigner crystal frame, constriction J(x − vt) moving

y = x − vt : laboratory frame, constriction J(y) resting, but JW fermions
acquire drift velocity v

Dissipation Wσ may be determined by distribution functions in the leads

Wσ =

∫ 2π

0

dp
2π

(
dε∞(p)

dp
− v

)
ε∞(p)[f+(p)− f−(p)], ε∞(p) = J(∞) cos p

Wσ 6= 0⇐⇒ f+(p) 6= f−(p)



Two qualitatively different regimes, ∂pH(y ,p) = −J(y) sin p − v

v < J(0), −∞→ +∞ and +∞→ −∞
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v > J(0), No −∞→ +∞, only +∞→ −∞
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Turning points ±yv , J(±yv ) = v . In −yv < y < yv , only L-movers (from
y = +∞) exist.



v > J(0), H(y ,p) = J(y) cos p − pv
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Distribution functions and dissipation
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Distribution functions and dissipation
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f+(p) = f−(p) =⇒ in the classical limit the dissipation is absent (H = 0,
T = 0)



Quantum considerations.
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near ±yv the same energy ε trajectories come arbitrarily close
=⇒ enhanced tunneling between trajectories.

H(y ≈ ±yv , p) = −3πv/2± J ′(yv )(y ∓ yv )p

knowledge of vicinity of ±yv suffices to solve scattering problem.



Scattering problem for Ĥ = ε0ŷ p̂

Ĥχ(y) = εχ(y), Ĥ = ε0ŷ p̂ = −ε0i(y∂y + 1/2) = ε0i(p∂p + 1/2)

1

e
2 Π Ε

Ε0 + 1

1 -
1

e
2 Π Ε

Ε0 + 1

0

1

y

p

Rotate by π/4 and the problem

equivalent to H = − ∂
2
x

2 −
1
2ω

2x2,
solution: L & L, vol. III.

χ(y) = cy
±

1
|y |1/2−iε/ε0

, y ≷ 0

χ(p) = cp
±

1
|p|1/2+iε/ε0

, p ≷ 0



Scattering problem for Ĥ = ε0ŷ p̂

Ĥχ(y) = εχ(y), Ĥ = ε0ŷ p̂ = −ε0i(y∂y + 1/2) = ε0i(p∂p + 1/2)

1

e
2 Π Ε

Ε0 + 1

1 -
1

e
2 Π Ε

Ε0 + 1

0

1

y

p

Wave incident from p = −∞:
cp

+ = 0, cp
− = 1

Scattered waves

χ(y) =

∫ +∞

−∞

dp√
2π

eipyχ(p)

Transmission and reflection
coefficients are “Fermi functions”:
T (ε) = |cy

+|2 = 1
exp(2πε/ε0)+1 ,

R(ε) = |cy
−|2 = 1− T (ε)



Distribution functions and dissipation
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Distribution functions and dissipation
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f+(p) 6= f−(p) =⇒ finite dissipation due to quantum scattering !!

Wσ =
ln(2e)

2π
vJ ′(yv )



J(0)>v

f+(p) = f−(p) even for quantum scattering, no dissipation, Wσ = 0



Wσ = 0, v > J(0)

Wσ =
ln(2e)

2π
vJ ′(yv ), v > J(0)

spin excitations appear above threshold value v = J(0) of “projectile” velocity
=⇒
“Cherenkov radiation” of spin excitations (?!)



Conductance peak

V (I) = RρI + Vσ(I), eVσ(I)I = Wσ ∝ J ′(yv )

J(y) = J0[1 + (y/yJ )2]

G(V ) =
dI(V )

dV
=

1
Rρ

1− 1√
1 + V−V0

V0
N2


V0 = RρI0, I0/e = J0- threshold value (for XY ).

V0

V

2 e2

h

GHV L



Conclusions

Spin dynamics plays a key role in transport through quantum wires in
Wigner crystal regime

Experimental behavior well reproduced: conductance peak and
T -dependence of G

note: peak disappears in magnetic field as G(V )→ e2

2π~ for µBH � J(0)

nearest future: understand the role of interactions in XXZ model



THANK YOU
THE END


