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MOTIVATIONS

Give a Boundary = Holographic theory of flat
spacetime and the S-Matrix (the only
observable), defining it non-perturbatively

think of Hawking evaporation as a scattering
process, and compute it holographically

(also: Recast CFT to make physics transparent
and greatly simplify AdS/CFT computations)



WHAT’S LEFT TO UNDERSTAND ABOUT
BLACK HOLES?

e Large (R_s>R_AdS) BHs in AdS ~ a Hot CFT, but...
e Small (R_s << R_AdS) BHs evaporate, leading to

= 2 M2l 2
<nout> ~ Ry <Eout> ~ [ —t
M 51 p S

Only gravity has scattering amplitudes like this;
reproducing it with AdS/CFT is a sharp question
that should have a generic solution!

Planck scale should emerge as a dimension in the CFT.
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OUTLINE

* Mellin Space as Momentum Space’ for CFTs,
or how to think of CFT Correlators as
Scattering Amplitudes

e Mellin Amplitude as Holographic S-Matrix

e Analyticity (locality!?) from Meromorphy,
some loop level examples

e Unitarity as a consequence of the OPE

e S-Matrix program as the Bootstrap program,
and a peak at black holes
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ADS/CFT PRELIMINARY
AdS CFT

With AdS in Global Coordinates

1
et = : (dis “dot T sins gdde
cos? p

the Dilatation Operator generates time translations.
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LET’S TRY TO THINK
OF CFT
CORRELATORS AS
SCATTERING
AMPLITUDES.




CFT ANALOG OF “FREE
PARTICLES”’?

Scattering amplitudes involve states composed
of particles that are asymptotically free.

The CFT analog is the large N expansion,
because given operators O; and O, there must exist

6601 0277

with dimension ~ A; + A,



HoOow SHOULD WE COMPUTE
CORRELATORS?

Previous computations in AdS used position space.
Analogous to computing Feynman diagrams as...

/dd:I;DF(xl —2)Dp(xo —x)Dp(x3 — ) Dp(x4 — x)

Even the 4-pt function is a box integral!!

In AdS, computations have been even worse,
with very few results beyond 4-pt.

(We will see how to compute at n-pt, easily.)
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THE ADVANTAGES OF
MOMENTUM SPACE

In flat space we go to momentum space,
which has several familiar advantages.

Eqg. of Motion become algebraic
vQ s _pQ

because the Laplacian acts very simply
on the momentum space representation.

We find a similar simplification in Mellin space,
because the Conformal Casimir acts nicely.



FACTORIZATION AND
MOMENTUM SPACE

Also, flat space scattering amplitudes Factorize
1

M(pz) i ML(piL,PL)ﬁMR(—PLapz‘R)
L

Involves analyticity and unitarity,
since factorization poles follow from the exchange
of single-particle states.

Also, there are purely algebraic Feynman Rules.

So position space obscures a lot of physics!



THE CFT ANALOG OF
FACTORIZATION

Factorization also occurs in CFTs, but this is
obscure in position space.

L =2

By the operator-state correspondence, the OPE
decomposition is just a sum over intermediate states:

(010, (Z a><a> 030,)

Mellin space will display this as a sum
over factorization channels.



SO WHAT IS THE MELLIN
AMPLITUDE?

A CFT Correlator written in Mellin Space (Mack):
An(e) = [ 1881, (6) [ (o: - )T (63

Roughly speaking, the d;; variables are a space
of relative scaling dimensions between operators.

The Mellin Amplitude for scalar operators
is Conformally Invariant.



MELLIN SPACE ~ SPACE OF
MANDELSTAM INVARIANTS

0;; are symmetric, and with §;; = 0
You can always think of §;; = “p; - p;” with
En:pi =0 and p;=A;
=1
(fake) momentum conservation and on-shell conditions

We will often see combinations in propagators such as

2513— p1‘|_ —I-Z?K)

=il



HOW DOES THE
MELLIN AMPLITUDE
MIMIC
SCATTERING
AMPLITUDES?




IN MELLIN SPACE:
THE FUNCTIONAL EQUATION

Find a finite difference equation for Mellin amp:
(012 — @1)(012 — a2)M(d12) = (612 — a3) (012 — aa) M (012 — 1) — My
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OPE FACTORIZATION

The Operator Product Expansion lets us factorize:

Ap(T;) ~ Z/ddy <H O; (%)Op(y)> <6p(y) 1] o (fl%')>

1=14+k

We want to use variables where there is a pole here,
with a residue that is the product of lower correlators.

Each O, in the sum has a definite dimension,
so each term scales as a definite power law.

Mellin space = the space of these powers.
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OPE FACTORIZATION
FORMULA FOR ADS/CFT

An explicit AdS/CFT factorization formula:

o

Res(m)
M S
ﬂ;} 5LR — A —2m

Hes(m) o< (L (0:5) Rm(0if)] 6. n=At 208
where

= Z (S@'j — “(pl e —|—pk)2”
1,J <k



MELLIN AMPLITUDES ARE
MEROMORPHIC

In general, expect Mellin amplitudes must always
be meromorphic functions to get an OPE.

In fact, expect only simple poles, and that all
poles will lie on the real axis for a unitarity CFT.

Provides a hint of analyticity for later...



DIAGRAMMATIC RULES?

We have a factorization formula, and we can
factorize on any propagator, and reason to believe
that Mellin amplitudes are basically just rational
functions, so it would be surprising if there wasn’t a
constructive method for generating Mellin Amps.



DIAGRAMMATIC RULES

a C
b
\]/Vabc <ma’ mb’ mc)

S,(m,)

a

a
a a

Conserve fictitious
“momentum’”’
at all vertices.

Propagators and vertices determined and proven

via the finite difference equation

(very nice forms found by Paulos, 1107.1504).
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THE SIMPLEST EXAMPLE

ue® theory at tree level with d =2

R332 1 1 1
( ]) 2(47’(’)3 (512 — 1 513 — 1 514 =g 1)

The pole prescription for the contour is

512 A 513 A
F(2 — 019 — (513) F(? — 010 — 513)
< > < mx Guird SRED . SHED G <
: , X X X X X X
1
1—4610—96
12 — 013 1 — 612 — 013
e S TS oS oS oS AT G S >€ e R R G [
- 1
F(512) — F((513) R
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SO WE CAN COMPUTE!

AdS/CFT Witten
Diagrams such as this
can be computed
straightforwardly.

Previously, very few computations beyond 4-pt!!



RELATION TO
FLAT SPACE
S-MATRIX?




THE FLAT SPACE LIMIT

e Recall Bulk Energy = CFT Dimension

e Flat Space Limit requires

i inGE = ©9

e This means that we must study CFT
states of very large dimension, while

N? o« (Mgi1Raq8)¥ ! = o0



THE FLAT SPACE LIMIT

But we know that §;; ~ dimension.

Natural to guess (and Penedones did) that

R— o0

And it works! Checked explicitly for theories of
scalars at tree level for any number of particles,
and some 1-loop examples. More precisely...



THE FLAT SPACE LIMIT

The exact relation for massless external states:

e RZSi]‘

T(SZ]) B (AE T h) lim do Ga()éh_AzM (570 == T

R—o0

7Aa o Rma)

—100

A one-dimensional contour integral applied
to the (meromorphic) Mellin Amplitude.

Note that as one might expect,
single trace <--> single particle.

Now let’s derive it...
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DERIVING

THE FLAT SPACE LIMIT
AdS CFT

TR <=

TR

out

Create in and out states by CFT operator smearing:

TR
M ED T

) — / dte™*O(t, —1)|0)

TR
5 Ir

Single-trace Operator = Single Particle
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DERIVING
THE FLAT SPACE LIMIT

Point-source at the boundary = plane wave
in the center of AdS, energy set by frequency:

.
L / dte“ O(t, —)|0)
feen it

Yy
2

(an example of a wave packet state)




DERIVING
THE FLAT SPACE LIMIT

Integrating CFT Correlator against plane waves:

Ty . e —045
T(Sij) —elim [d5] / dtiez(wi_Ai)tiM((sij) H (COS (t R ]) X ]32 : ]%) F(ézj)

R R
= 7T=70C9 i ] 7

il differences small: |t — ;] < i
leading to approximately Gaussian time integrals.

0;; integrals can be evaluated via stationary phase
in the flat space limit of Gamma functions:

/ [de] M (6:5) exp | Y R®s;; (é + ez-j) log [32 (é - e3>]

0y
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MELLIN DIAGRAMS TO
FEYNMAN DIAGRAMS

d;; variables align with s;j, leaving us with:

e ) =T (Ay — h) lim do et 22 M (5@- —

RZSZ']'
2c

7Aa e Rma)

ie prescription comes from CFT prescription.

We showed that our factorization formula
for the Mellin amplitude reduces to factorization
of the tree-level scattering amplitudes, and that our
Feynman rules reduce to the flat space rules.



ANALYTICITY
AND THE
HOLOGRAPHIC
S-MATRIX



ANALYTICITY IN THE
FLAT SPACE LIMIT

100

: o, h—Ax stij
;e (> h) lim do e® o W0 —

20

R— o0

' 7Aa i3 Rma)
For finite R, just contour integral of meromorphic
function, so obviously analytic.

Flat Space Limit just expands near infinity.
We get branch cuts and imaginary parts
from the coalescence of poles.



LOCALITY = ANALYTICITY?

Only precise notion of locality (I'm aware of)
is via analyticity and boundedness of 5-Matrix.

The Scattering Amplitudes are given by a simple
integral transform of the Mellin Amp.

The Mellin Amplitude is a meromorphic function
with only simple poles, in any CFT.

[s this how we should think of locality
emerging from a CFT!?



FLAT SPACE LIMIT
OF A BULK EXCHANGE

Let’s see how familiar properties obtain.

In the flat space limit, a bulk propagator is simply:
R(A,m) -
;5—(A—I—m) s+ A2

The Mellin amplitude is dominated

by poles where m ~ A7
when we take the flat space limit.

Loops?



COMPUTING LOOP
DIAGRAMS

We can also compute AdS loop diagrams

Ao e x 9¢°
Using an AdS version of Kallen-Lehman,
which makes it possible to write 2-point

functions of local operators as a positive
integral over free propagators.



1-LOOP COMPUTATIONS
A LA KALLEN-LEHMAN

At 1-loop, can write bubble diagram using:

>®< ZNA )>2A+2n<

ZNA )Gantan(X,Y)

We use an inner product obeyed by
the propagators to compute this decomposition.



LOOP LEVEL MELLIN
AMPLITUDE

This gives a Kallen-Lehman-esq Mellin Amplitude:

R(2A + 2n,m
M(é):ZN(n)Zé—((QA:QnJan)

This comes from the exchange of double-trace primary
states of dimension 2A + 2n!



BRANCH CUTS

In the flat space limit, we find the integral:

i N(n)
£ /0 GbySrTy e

Circling in the complex plane gives a branch cut.

LE LE

//’ \\\ /// \\\
// > //
>< // >< >< Va X\
/
/ / \

7 / \
/ / \
! | \
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t > ] > f
| \ I
\ \ /
\ \ /
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BRANCH CUTS FROM
MELLIN AMPLITUDES

M©) ~ [Can— 2 with N(n) o 3

for A¢* theory. Gives branch cut! Discontinuity:

N(v/s) d—3
T

Correct for theory in d+1 dimensions.




RESONANCES

To see how this loop diagram gives Breit-Wigner

1P x

we need to perform the resummation:

Gt G =




RESONANCES

With a discrete spectrum, can view as mixing

AZ . RD.s(0) R2e(l) B2
R (0)  (244)° 0 0 g
e R () 0 (204, F 2)8 0
R* Mg (2) 0 0 (2A L
with
Naa, ()
Aet (1) = A 325—1

This is a mixing between x particle
and the various 2¢ states.
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RESONANCES

By diagonalizing, one can compute the Mellin amp:
M(6;) = ZSM (0rr)ST,

O — Z 5LR & —22m)

We find that roughly 7l

Ty

2-particle states contribute

an eigenvalue proportional to A¢syr, giving
1

o mi +iA%?m

D—4
X

near the pole at weak coupling, as expected.
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UNITARITY
(OF THE
HOLOGRAPHIC
S-MATRIX



S-MATRIX UNITARITY
FROM CFT UNITARITY

The standard optical theorem with S=1 +iT
LT T
looks reminiscent of the Conformal Block decomp:

S == od

|Follows from using conformal symmetry to organize
(0,0 (Z |a><a) 0304)

since operators = states in the CFT.]



CONFORMAL BLOCKS
AND THE OPE

We can apply the Operator Product Expansion

O1(21)O2(z2) = » cROn e(x)
AL

to a 4-pt correlation function to find

Z /01 \ | O1 \
>ﬁob]n,e i W< Bm /

n,t | O A 0, |

This is a formula for the conformal block coefficients.



SOMETHING LIKE THE
OPTICAL THEOREM...

O ox O1
>< Q : [anb]n,ﬁ
02 Ob OQ

v
z /01 \ [ O1 \ B
[0008]n.¢
i \02>_ I ¢ it

We can get info about next order in perturbation theory.



CONGLOMERATING
OPERATORS

To compute need to conglomerate single trace
operators into one multi-trace:

O, O, Oq
E - o
O &,
2 b o5
Can differentiate, but extremely cumbersome.

Easy in Mellin space, convolve with wavefunction.



BOOTSTRAP PROGRAM
=> S-MATRIX PROGRAM

What is the flat space limit of a conformal block?
B NS ) (S . Ai)

“Obvious”, since blocks have definite angular
momentum and definite dimension = energy.

My(8i5) = Y Np(As)Ba,(6:5)

becomes (wWhen we take the flat space limit)

AMis it = Nplsi



S-MATRIX UNITARITY
FROM CFT UNITARITY

Conformal Block Decomposition

- ) c.Baln]
A
Cuts through diagram vs. cuts at edge:

O1 : @ Ol>:<:01
02>E<02 02 E OQ

Internal operators Double-trace operators
O’ 010,



S-MATRIX UNITARITY
FROM CFT UNITARITY

A
Flat-space limit of a conformal block is a delta function
BA 57 NA5(S e AQ)
OPE coefficients are just factorized Ot O
amplitudes times phase space! >:<(7
02 : 2
ca ~ Miz2a

“Internal cuts” are just RHS of usual optical theorem!

QIm(M) ~ ZQIT)’L(NA)‘CA‘Q ~ /dLIPS|M12_;A‘2
A
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WHAT ABOUT
DOUBLE-TRACE CUTS?

Cuts through edge of diagram are “double-traces”,
which contribute a total derivative

Adt £E'L Z 8% x’b))

Imaginary part 1s smooth so in flat-space this becomes
the integral of a total derivative!



A 1-LoOooP EXAMPLE

o 9, o 9, Oy O
>ow‘i% —0< j >£X—OX] —o< : >owio“ -o< :
10404 0,04 1040y
Oy 1 Oplyg Og \ Oplg  \Og g Oyl



A 1-LoOooP EXAMPLE

5 >0 oo >

2

One can check directly that the sum over
all multi-trace CFT operators at a given
dimension reproduces a phase space
integral in the flat space limit.



A PEAK AT BLACK HOLES

S(S, t) - NB(S, t)
But on very general grounds, expect that

E : ol D3\ =1
S(s) ~ exp —§SBH(5) =exp |y (GDST>

This gives a concrete prediction for the OPE

and the conformal block decomposition
of any CFT with a gravity dual
where effective field theory applies!




SOME FUTURE DIRECTIONS
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Mellin diagrammatic rules for loops, higher spin
particles, twistors/spinor-helicity, SUSY,
compactifications, dS/CFT, beloved theories...

bolster recent progress on CFT Bootstrap?

broken conformal invariance (eg QCD), flows
between CFTs??

sharpen criterion for analyticity = bulk locality?
do all Gravitational S-Matrices come from CFTs??

Find a CFT description of Hawking Evaporation, or
at least see its simple and robust features!?



CONCLUSION

Mellin Space = "Momentum Space for
CFTs”, conceptually and computationally

Mellin Amplitude -> Holographic S-Matrix
Analyticity follows from Meromorphy
the OPE implies Unitarity, Cutting Rules

Expect scattering through BHs is a robust
ingredient in CFT dynamics, so we should
attempt to understand it!



The End
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LET’S CHECK IT AT 1-LOOP

We need to compute both sides from the CFT.

in| > O | =3 ><<f

out
states

The goal is to see that both are determined by
a specific conformal block coefficient in A¢*

First let’s compute the left side, using the
1-loop result we discussed.



BRANCH CUT
DISCONTINUITY

Recall that at 1-loop, branch cuts came from:

N
%/ dn W —— CdisSE = W(\/g)
s+ ( 2A+2n N

where we had defined (a la Kellan-Lehman)

ZNW 1Gop o, (6 1

But the Contnbutlon of bulk exchange implies
the exchange of a primary operator in the
conformal block decomposition.



CONFORMAL BLOCKS AND
THE IMAGINARY PIECE

In other words, we see that the conformal
block decomposition determines the left side of

in| > | =2 ><sf

out
states

Now we will compute the right side.



CONGLOMERATING
OPERATORS

To compute need to conglomerate single trace
operators into one multi-trace:

O4 Oq Ol
E - o =
O &,
2 b 05
Easy in Mellin space, convolve with wavefunction.

By operator-state correspondence, this picks a state
in the CFT (the state appearing in cutting rules!).
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UNITARITY RELATION
DETERMINED BY BLOCKS

Oq 0,
>&0b]n,g <
[anb]n,ﬂ
0y

0

My(6:5) = )

Qo

Ba, (9i5)

Coeff of Block at a given Dimension/Energy
is the square of 2 --> X amp, summed over states!

in| > | =32 ><sf

out
states

Sum on CFT states = phase space integral in Flat Limit.

Both sides compute the same Conformal Block Coeff!
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UNITARITY RELATION
DETERMINED BY BLOCKS

My(6:5) = ),

0

BA 00

O 1 O 1
>ﬂ0b]n,£ i
[anb]n,é

02 02

As with dispersion relations, one order in
perturbation theory gives info about the next.

1L,005) = > Ne(AL)Ba (6

Gives a distinct way to compute coetficients
in the conformal block expansion.



CONFORMAL BLOCKS
FROM 3-PT CORRELATORS

My(6i5) = Y Np(As)Ba, (6:;5)

Coefficients of each block come from 3-pt correlators

03(17 27 O‘)CS (047 37 4)
02(a7 Oé)

NB(Aa) o

Where the coefficients multiply universal functions

63(17 27 Ck)

AR TA I AT
L2  dog Lai

<Ol 020a> =




CONGLOMERATING
OPERATORS

To compute need to conglomerate single trace
operators into one multi-trace:

O4 Oq Ol
E - o =
O &,
2 b 05
Easy in Mellin space, convolve with wavefunction.

By operator-state correspondence, this picks a state
in the CFT (the state appearing in cutting rules!).
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BULK EXCHANGE LEADS TO
OPERATOR EXCHANGE

ZNW )GoA+2n (X, Y)

implies that we must have terms
in the conformal block decomposition:

NB(QA -+ 2%) = Nw(n>

where the decomposition is defined by

= 3" N5(8a)Ba, (6;)



