
Non-relativistic AdS/CFT

Christopher Herzog

Princeton

October 2008



References

D. T. Son, “Toward an AdS/cold atoms correspondence: a
geometric realization of the Schroedinger symmetry,” Phys. Rev. D
78, 046003 (2008) [arXiv:0804.3972 [hep-th]].

K. Balasubramanian and J. McGreevy, “Gravity duals for
non-relativistic CFTs,” Phys. Rev. Lett. 101, 061601 (2008)
[arXiv:0804.4053 [hep-th]].

C. P. Herzog, M. Rangamani and S. F. Ross, “Heating up Galilean
holography,” arXiv:0807.1099 [hep-th].

J. Maldacena, D. Martelli and Y. Tachikawa, “Comments on string
theory backgrounds with non-relativistic conformal symmetry,”
arXiv:0807.1100 [hep-th].

A. Adams, K. Balasubramanian and J. McGreevy, “Hot Spacetimes
for Cold Atoms,” arXiv:0807.1111 [hep-th].



Applications and Motivation



Fermionic Gases

Cold, dilute gases of 6Li and 40K atoms are controlled by three
length scales:

I thermal de Broglie wavelength:

λ =
h

p
=

√
2π~2

mT

I interparticle spacing: ` ∼ n−1/3

I scattering length: a



Quantum Regime

When the de Broglie wavelength becomes of the order of the
interparticle spacing, quantum effects become important.

I For bosons, we find Bose-Einstein condensation and
superfluidity at these temperatures

TBEC ∼
~2

m
n2/3 ≈ 3 K for liquid Helium

I For fermions, such as electrons in metals, we get the Fermi
sea. One reason the TF � TBEC is that me � mHe .



Interactions

For these dilute fermionic gases, the interaction potential is van
der Waals attraction at long distances and a hard core repulsion at
short distances.

I The potential has some effective range reff .

I In our parameter regime, λ, `� reff ⇒ kreff � 1.

I s-wave scattering dominates over all other partial waves.

ψ(r) ∼ e ik·r + f (k)
e ikr

r

where

f (k) =
1

−1
a + reff

k2

2 − ik

I The entire scattering process can be described by a single
number, the scattering length a.



The three regimes

I 1/ka→ −∞: In this limit, the fermions experience a weak
attractive interaction. We find a BCS state.

I 1/k |a| → 0: The unitarity limit. The fermions become very
strongly interacting.

I 1/ka→∞: A two-body bound state is available in the
potential. The fermions form molecules.





Feshbach resonance

I One cannot tune the interaction strength in neutron stars,
nuclear matter, superconductors, or liquid 3He.

I However, for 6Li and 40K, one can by tuning the magnetic
field to a Feshbach resonance.



Can we learn anything about high-Tc superconductors from these
systems?



What is the viscosity of fermions at unitarity?

arxiv:0707.2574, Turlapov, Kinast, Clancy, Luo, Joseph, Thomas



The Connection to String Theory



Symmetries

Fermions at unitarity depend on only two scales, the interparticle
spacing ` and thermal de Broglie wavelength λ or equivalently the
density n and the temperature T .

When T = 0 and n = 0, the theory in d spatial dimensions has an
unbroken Schrödinger symmetry, Sch(d):

[M ij , Mkl ] = i(δikM jl + δjlM ik − δilM jk − δjkM il ),

[M ij , Pk ] = i(δikP j − δjkP i ), [M ij , K k ] = i(δikK j − δjkK i ),

[D, P i ] = −iP i , [D, K i ] = iK i , [P i , K j ] = −iδijM,

[D, H] = −2iH, [D, C ] = 2iC , [H, C ] = iD.

M ij rotations, P i spatial translations, K i Galilean boosts, H time
translation, D dilation (x → λx , t → λ2t), C special conformal
transformation, M mass operator.



Conformal Symmetries

The group Sch(d) embeds into the conformal group O(d + 2, 2).
Time becomes light-like.

M = P̃+ = (P̃0 + P̃d+1)/
√

2 ; H = P̃− ; D = D̃ + M̃+−

We have a strongly interacting theory with a symmetry group that
is a subgroup of the conformal group. Can we use AdS/CFT?

The embedding suggests that to describe this field theory in d
spatial dimensions holographically, we will need something like
AdSd+3. Two extra dimensions.



The BMS proposal

Balasubramanian, McGreevy and Son noticed the metric

ds2 = r2
(
−2du dv − r2du2 + d~x2

)
+

dr2

r2

has the isometries of the full Sch(d) group.

For example

I H : u → u + a

I D : x i → ax i , r → r/a, u → a2u, v → v

I M : v → v + a

I K i : x i → x i − aiu, v → v − aix i

The mass M is mapped onto the lightcone momentum Pv . To
make this spectrum discrete, we could compactify v . Introduces
some problems . . . .



A Phenomenological Action

This metric is a solution to the gravitational action with a massive
vector field

S =

∫
dd+2x dz

√
−g

(
R − 2Λ− 1

4
FµνF

µν − 1

2
m2AµAµ

)
with F = dA, Av = 1,

m2 = 2(d + 2) and − 2Λ = (d + 1)(d + 2) .



Embedding in string theory



Three claims

I Using a supergravity solution generating technique called the
Null Melvin Twist, we can generate the BMS metric starting
from AdS5 × S5 in type IIB supergravity.

I We can generalize the BMS metric to nonzero temperature
solutions by starting instead with the translationally invariant
black D3-brane metric in type IIB supergravity.

I These new supergravity solutions can be reduced to 5d where
they are also solutions to an effective 5d action similar to the
action with massive gauge field above.



Starting with vanilla blackholes

Consider the planar Schwarzschild-AdS black hole (times S5), a
solution to the type IIB supergravity equations of motion:

ds2 = r2(−f (r)dt2 + dy2 + d~x2) +
dr2

r2f (r)
+ (dψ + A)2 + dΣ2

4

with
F5 = 2(1 + ?)dψ ∧ J ∧ J = 4(1 + ?)vol(S5)

and f (r) = 1− r4
+/r

4.

We are thinking of S5 as a U(1) fibration over CP2 where J is the
Kähler form and dA = 2J.



The Null Melvin Twist

1. Pick a translationally invariant direction (say y) and boost by
amount γ along y .

2. T-dualize along y .

3. Twist some one-form (say dψ + A)

σ : σ → σ + α dy .

4. T-dualize along y again.

5. Boost by −γ along y .

6. Scale the boost and twist: γ →∞ and α→ 0 keeping

β =
1

2
αeγ = fixed .



The BMS solution in string theory

ds2
str = r2

(
−β

2 r2 f (r)

k(r)
(dt + dy)2 − f (r)

k(r)
dt2 +

dy2

k(r)
+ dx2

)
+

dr2

r2 f (r)
+

(dψ + A)2

k(r)
+ dΣ2

4,

eϕ =
1√
k(r)

,

F(5) = dC(4) = 2 (1 + ?) dψ ∧ J ∧ J,

B(2) =
r2 β

k(r)
(f (r) dt + dy) ∧ (dψ + A),

with

f (r) = 1−
r4
+

r4
, k(r) = 1 + β2 r2 (1− f (r)) = 1 +

β2 r4
+

r2
.



A 5d reduction

ds2
E = r2 k(r)−

2
3

([1− f (r)

4β2
− r2 f (r)

]
du2 +

β2r4
+

r4
dv2

− [1 + f (r)] du dv
)

+ k(r)
1
3

(
r2dx2 +

dr2

r2 f (r)

)
,

A =
r2β

k(r)
(f (r) dt + dy) =

r2

k(r)

(
1 + f (r)

2
du −

β2r4
+

r4
dv

)
,

eφ =
1√
k(r)

,

Claim: This solution approaches the BMS solution as r+/r → 0.
Worries: As r+/r → 0, the size of the v circle gets smaller and
smaller.



A 5d effective action

S =
1

16π G5

∫
d5x
√
−g
(
R − 4

3
(∂µφ)(∂µφ)− 1

4
e−8φ/3FµνF

µν

−4 AµA
µ − V (φ)

)
,

where the scalar potential is

V (φ) = 4 e2φ/3(e2φ − 4) .

Claim: The 5d metric, gauge field, and dilaton of the previous slide
are a solution to the equations of motion that follow from this 5d
effective action.



A Gauge Theory Interpretation

I The field theory is a DLCQ of N = 4 super Yang-Mills with a
light-like twist in the R-symmetry directions.

I The mode of the NS-NS two-form that we turned on is part of
a massive vector transforming in the 15 of SO(6).

I The corresponding operator in the CFT has dimension 5:

OIJ
µ = Tr

(
Fµ

ν Φ[I DνΦJ] +
∑

K

Dµ ΦK Φ[K ΦI ΦJ]

)
+fermions

I We break Lorentz invariance by giving 〈OIJ
u 〉 a nonzero

expectation value.



Thermodynamics



Entropy, temperature, and chemical potential

The thermodynamics of this non-relativistic field theory is inherited
from N = 4 SYM. However, various quantities get re-interpreted.

I The entropy (i.e. the horizon area) is invariant under NMT:
S = r3

+∆y∆x1∆x2/4G5.

I The Hawking temperature is unchanged as well TH = r+/π.

I However, the Killing generator of the event horizon is ∂t while
boundary time is ∂u:

ξ = β−1∂t = ∂u + (2β2)−1∂v .

I Recalling the Boltzmann factor e−E/T+µQ/T , we conclude
that

T = r+/πβ and µ = −1/2β2 .



The free energy

To make sure we know what we are doing, we should check that
the free energy obtained from the on-shell gravity action agrees
with the prescription for entropy and temperature above.

I Indeed we find the N = 4 result for the Euclidean action:

I = − 1

16πG5

∫
d4ξr4

+ = − β

16G5
r3
+V ∆v

I As follows from thermodynamic identities, we can check

S = −
(

T
∂

∂T
+ 1

)
I

I As expected given the scaling symmetry x → λx and t → λ2t,
we find the equation of state

2E = PV · (# of spatial dimensions)



Regulating the Action

We regulated the 5d action with the boundary terms:

S =
1

16π G5

∫
d5x
√
−g

(
R − 4

3
(∂µφ)(∂µφ)− 1

4
e−8φ/3 FµνF

µν

−4 AµA
µ − V (φ)

)
+

1

16π G5

∫
d4ξ
√
−h

(
2K − 2 c0 + c1 φ+ c2 φ

2 + c3 AαAα

+c4 AαAαφ+ c5 (AαAα)2
)
.

We insist that δS = 0 for a class of variations that includes our
solution.



A Few More Details

Consider the near boundary expansion of the metric component
guu:

guu = −r4 +
2

3
γ2r2 +O(1) ,

where γ = β2r4
+.

I The r4 behavior is a boundary condition and is not varied in
calculating δS.

I The leading γ2 term is varied in a correlated way:

δgab =
dgab

dγ2
δa , δAa =

dAa

dγ2
δa , δφ =

dφ

dγ2
δa ,

I The variation subleading to the γ2 term (O(1) here) is
allowed to be completely arbitrary.



The Viscosity

I The viscosity to entropy density ratio in this theory is the
same as for N = 4 super Yang-Mills

η/s = ~/4πkB .

I We calculate η from a two point function of the spatial stress
tensor component T 12:

η = − lim
ω→0

1

ω
Im(G12,12(ω)) .

I The field dual to T 12 in the bulk is δg12 which decouples from
the rest of the fluctuations to linear order.

I Calculating the viscosity boils down to solving the equation of
motion for a minimally coupled scalar in the bulk.



What’s troubling me

I The compactification of v that becomes light-like at the
boundary.

I Understanding one point functions of the stress-tensor that
involve a u index.

I Understanding how to compute two point functions that
involve u indices.

I What does it mean that our theory is a DLCQ of N = 4 SYM
twisted by the R-symmetry?

I To what extent are we learning anything about theories with
Schrödinger symmetry that are not related to N = 4 SYM?



Summary and Outlook

I We found a string theory embedding for the BMS
construction.

I We found a nonzero temperature generalization of the BMS
construction.

I We were able to verify the first law of thermodynamics and
calculate a viscosity for this field theory.

I Can we find a string theory embedding for the BMS
construction for a 3+1 dimensional field theory?

I Can we find string theory embeddings with different
dynamical exponent z , x → λx , t → λz t?

I Can the link to fermions at unitarity be made more precise?



Extra slides



Scalars in the BMS background

Consider a minimally coupled scalar

S = −
∫

dd+3x
√
−g
(
gµν∂µφ

∗∂νφ+ m2φ∗φ
)
.


