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What is N=4 SYM?

Rutgers - J. M. Henn, IAS

• SU(N) Yang - Mills theory

    fermions and scalars, all in adjoint representation

=> perturbatively, very similar to QCD

• conformal field theory (CFT)

    no intrinsic ultraviolet (UV) divergences,

    beta function vanishes

• relation to string theory:

    AdS/CFT correspondence
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Motivation: why N=4 SYM?

Rutgers - J. M. Henn, IAS

• New dualities

Discover fascinating new QFT structures

• Hidden symmetries & integrability

Wilson loops Scattering amplitudes

Correlation functions (Form factors)

Dual conformal / Yangian symmetry

AdS/CFT correspondence
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Why scattering amplitudes? (I)

Rutgers - J. M. Henn, IAS

• tree-level amplitudes known analytically

• massless QCD trees from N=4 SYM

supersymmetric Yang-Mills as a tool for QCD

Dixon, J.M.H., Plefka, Schuster (2010)

Drummond, J.M.H. (2008)

• unitarity-based methods

• better understanding of IR divergences

• OPE constraints from Wilson loops

• recursion relations for planar loop integrands

• interesting questions for mathematicians

• strong coupling: integrable Y-system

new methods and insights:
Arkani-Hamed et al. (2010)

Alday, Gaiotto, Maldacena, Sever,  Vieira (2010)

Becher, Neubert; Dixon, Gardi, Magnea

Arkani-Hamed et al. (2010), Caron-Huot

being used in Blackhat for phenomenology

• N=4 SYM suggests good loop-level integral basis 

``The analytic S-matrix’’;      Bern, Dixon, Dunbar, Kosower, ...

Gangl, Goncharov; Brown; Broadhurst Kreimer,...

Alday, Maldacena, Sever, Vieira (2010)
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Example: choice of integral basis

Rutgers - J. M. Henn, IAS

B. Form factor in terms of master integrals

Just as in QCD, the three-loop scalar form factor in N = 4 can be reduced to master inte-

grals by means of the Laporta algorithm [44], for which we used the program REDUZE [45].

One obtains
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is given in Eq. (2.14). In order to arrive at Eq. (5.2) we have to plug in D = 4�2✏ and

the ✏-expansions for the master integrals from Eqs. (A.7) – (A.27) of [30], together with

their higher order ✏-terms from [32].

C. Four-point amplitude to two loops

Here we summarise the known four-point amplitude in N = 4 super Yang-Mills to two

loop order. As we have seen in the main text, both leading and subleading terms in colour

are required when computing the form factor at leading colour using unitarity.

– 29 –

three-loop N=4 SYM form factor 

Gehrmann, J.M.H., Huber (2011)

A5,1 A5,2 A6,1 A6,2

A6,3 A7,1 A7,2 A7,3

,2

A7,4 A7,5 A8,1 A9,1

A9,2 A9,4

B4,1 [= A4] B5,2 [= A5,4] B6,2 [= A6,4] B8,1

B5,1 [= A5,3] B6,1 [= A6,6] C6,1 [= A6,5] C8,1

Figure 1: Master integrals for the three-loop form factors. Labels in brackets indicate the naming
convention of Ref. [25].

corresponding to weight eight numerically to a precision of one per-mille or better using

MB.m [30] and FIESTA [31, 32]. All other of the 22 master integrals we even confirm ana-

lytically through to weight eight by expanding the closed form in terms of hypergeometric

functions given in [20, 21] using the HypExp package [33].

– 2 –

Gehrmann, Glover, Huber, Ikizlerli, Studerus;
Lee, Smirnov & Smirnov
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Example: choice of integral basis

Rutgers - J. M. Henn, IAS

three-loop N=4 SYM form factor 

Gehrmann, J.M.H., Huber (2011)

F1

p

a

p

b

F2

p

a

p

b

F3

p

a

p

b

F4

p

a

p

b

F5

p

a

p

b

F6

F8 F9

Figure 7: Diagrams of which the three-loop form factor F (3)
S

in N = 4 SYM is built. All internal
lines are massless. The incoming momentum is q = p1+p2, outgoing lines are massless and on-shell,
i.e. p21 = p

2
2 = 0. Diagrams with labels p

a

and p

b

on arrow lines have an irreducible scalar product
(p

a

+ p

b

)2 in their numerator (diagrams that lack these labels have unit numerator). All diagrams
displayed exhibit uniform transcendentality (UT) in their Laurent expansion in ✏ = (4�D)/2.

same colour representation, which is achieved by setting C

A

= C

F

= 2T
F

and n

f

= 1 in

the QCD result [27]. It turns out that with this adjustment the leading transcendentality
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following expression satisfies all cuts that we have evaluated,
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We will now argue that Eq. (4.13) is the complete result for the three-loop form factor. In

fact, potential corrections to equation (4.13) can come only from seven-propagator integrals

that have vanishing two-particle cuts. An example of such an integral is F
10

shown in Fig. 6.

As we will see in section 7, the appearance of such integrals is highly unlikely due to their

bad UV behaviour, violating a bound based on supersymmetry power counting.

Moreover, in section 6, we will perform an even more stringent check on Eq. (4.13) by

verifying the correct exponentiation of infrared divergences. In particular, this means that

any potentially missing terms in equation (4.13) would have to be IR and UV finite, and

vanish in all unitarity cuts that we considered.

5. Final result for the form factor at three loops

In the previous section we obtained the extension of Eq. (2.13) to three loops,
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The expressions for F
i

, and F

exp

i

are again given in appendix A. All diagrams are displayed

in Fig. 7. This yields
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We can make a very interesting observation here. For anomalous dimensions of twist

two operators, there is a heuristic leading transcendentality principle [54–56], which relates

the N = 4 SYM result to the leading transcendental part of the QCD result. We can

investigate whether a similar property holds for the form factor.

For the comparison, we specify the QCD quark and gluon form factor to a super-

symmetric Yang-Mills theory containing a bosonic and fermionic degree of freedom in the
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– 15 –

• each integral has uniform (and maximal) 
``transcendentality’’
 T[ Zeta[n] ] = n 
 T[eps^-n] = n
 T[A B] = T[A] + T[B]

• for theories with less susy, other integrals 
also needed
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Example: choice of integral basis

Rutgers - J. M. Henn, IAS

three-loop N=4 SYM form factor 
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51840
+

2449⇡2

⇣

5

432
� 385579⇣

7

1008

◆

+✏

2

✓
1549

45
⇣

5,3

� 22499⇣
3

⇣

5

30
+

496⇡2

⇣

2

3

27
� 1183759981⇡8

7838208000

◆
+O(✏3) . (5.2)

We can make a very interesting observation here. For anomalous dimensions of twist

two operators, there is a heuristic leading transcendentality principle [54–56], which relates

the N = 4 SYM result to the leading transcendental part of the QCD result. We can

investigate whether a similar property holds for the form factor.

For the comparison, we specify the QCD quark and gluon form factor to a super-

symmetric Yang-Mills theory containing a bosonic and fermionic degree of freedom in the

– 15 –

• each integral has uniform (and maximal) 
``transcendentality’’
 T[ Zeta[n] ] = n 
 T[eps^-n] = n
 T[A B] = T[A] + T[B]

• for theories with less susy, other integrals 
also needed
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Why scattering amplitudes? (II)

Rutgers - J. M. Henn, IAS

• results based on new symmetries

• iterative structures:

 - for loop integrals

 - for N=4 SYM Wilson loops

all-order results?

• can we resum the perturbative series?

• test the AdS/CFT correspondence

Drummond, J.M.H. ,Trnka (2010); Dixon, Drummond, J.M.H. (2011)

Caron-Huot (2011); Bullimore, Skinner (2011)
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Amplitudes - where are we?

Rutgers - J. M. Henn, IAS

• tree-level and one-loop essentially completely understood

  methods: analytic properties (BCFW recursion, unitarity)

  unexpected simplicity: dual conformal symmetry

• n>5 points: 

partial results at two and three loops,

especially for n=6

• four- and five-point amplitudes known to all orders:

   dual conformal symmetry & AdS/CFT

• strong coupling:  integrable Y-system
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Dual conformal symmetry

Rutgers - J. M. Henn, IAS

Alday Maldacena (2007)

• first seen in planar loop integrals Broadhurst (1993); Drummond, J.M.H., 
Smirnov, Sokatchev (2006)

• natural at strong coupling: 
isometry of T-dual AdS space

• symmetry unbroken in “Higgsed’’ N=4 SYM
Alday, J.M.H., Plefka, Schuster (2009)

Hints for dual conformal symmetry

observation: N = 4 SYM loop integrals have a dual conformal symmetry
[Drummond, J.H., Smirnov, Sokatchev, 2006]

One-loop: ‘scalar box’ integral

p1 p2

p3p4

x1

x2

x3

x4

xa = x2
13x

2
24

∫

dDxa

x2
1ax

2
2ax

2
3ax

2
4a

loop integrand has conformal symmetry in dual space xµ
i − xµ

i+1 = pi

e.g. inversion symmetry xµ → xµ/x2 or special conformal transformations

Kµ =
∑

i

[

2xµ
i xν

i

∂

∂xiν
− x2

i

∂

∂xiµ

]

all integrals contributing to A4 up to four (five) loops have this property!
[Bern, Dixon, Kosower, Czakon; + Carrasco, Johansson, 2007]

AdS/CFT interpretation: T-duality AdS5 → AdS5 [Alday, Maldacena, 2007]

breaking of symmetry D = 4 − 2ε under control [Drummond, J.M.H., Korchemsky, Sokatchev, 2007]

[8/32]

x

µ
i � x

µ
i+1 = p

µ
i
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The remainder function

Rutgers - J. M. Henn, IAS

u =
x

2
13x

2
46

x

2
14x

2
36

, v =
x

2
24x

2
51

x

2
25x

2
41

, w =
x

2
35x

2
62

x

2
36x

2
25

.

• 4 of 5-point amplitudes fixed by dual conformal Ward identity

• remainder function:

x

µ
i � x

µ
i+1 = p

µ
i

Drummond, J.M.H., Korchemsky, Sokatchev (2007)

AMHV = Atree
MHV MMHV ,

log(MMHV ) = AIR +ABDS +R(u, v, w) +O(✏)

variables:

• modification of BDS ansatz was expected
Alday, Maldacena (2007); Drummond, J.M.H., Korchemsky, Sokatchev 

(2007), Bartels, Lipatov, Sabio-Vera (2008), Bern et al (2008)
Bern, Dixon, Smirnov (2005)
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The ratio function

Rutgers - J. M. Henn, IAS

Drummond, J.M.H., Korchemsky, Sokatchev (2008)

is IR finite, expected to be dual conformal

ANMHV = AMHV PNMHV• define “ratio”
(similar for generic non-MHV)

PNMHV

ANMHVAMHV removes IR divergences from

Drummond, J.M.H., Korchemsky, Sokatchev (2008)
Branduber, Heslop, Travaglini (2009)Elvang, Freedman, Kiermaier (2009)

• at six points Roiban, Kosower, Vergu (2010)

It is very helpful in our analysis to consider the discontinuities of the functions involved. The
symbol makes clear the locations of the discontinuities of the function. If we have

S(f (k)) =
∑

!α

φα1 ⊗ . . .⊗ φαk
, (12)

then the degree k function f (k) will have a branch cut starting at φα1 = 0. The discontinuity
across this branch cut, denoted by ∆φα1

f (k), will also be a pure function, of degree k − 1. Its
symbol is found by clipping the first element off the symbol for f (k):

S(∆φα1
f (k)) =

∑

!α

φα2 ⊗ . . .⊗ φαk
. (13)

In general, taking discontinuities commutes with taking derivatives.

3 Constraining the three-loop remainder function

We will now describe a procedure for constraining the form of the remainder function based on
a plausible ansatz for its symbol. Our experience with six-point integrals in both four and six
dimensions [54, 55, 63] is that their symbols are always formed of terms with entries drawn from
the following set of nine elements,

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (14)

Here we use the notation

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (15)

where

z± =
1

2

[

−1 + u+ v + w ±
√
∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (16)

Thus our ansatz for the remainder function at l loops will be the most general symbol of degree
2l that we can make from the above set of nine elements. That is, we assume that the symbol
for the remainder function can be factorised in terms of the set (14).

We can also write the cross ratios in terms of ratios of two-brackets of CP1 variables wi,

u =
(23)(56)

(25)(36)
, v =

(34)(61)

(36)(41)
, w =

(45)(12)

(41)(52)
, (17)

where (ij) = −(ji) = εabwa
iw

b
j . In these variables, ∆ is a perfect square,

√
∆ = ±(12)(34)(56) + (23)(45)(61)

(14)(25)(36)
, (18)

7
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∆
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for the remainder function can be factorised in terms of the set (14).
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u =
(23)(56)

(25)(36)
, v =

(34)(61)

(36)(41)
, w =

(45)(12)

(41)(52)
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where (ij) = −(ji) = εabwa
iw
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j . In these variables, ∆ is a perfect square,
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∆ = ±(12)(34)(56) + (23)(45)(61)

(14)(25)(36)
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7

The arguments of the delta functions are the total momentum p↵↵̇ =
P

i �
↵
i �̃

↵̇
i and total

chiral supercharge q↵A =
P

i �
↵
i ⌘

A
i , respectively. The full MHV superamplitude is the

tree-level one multiplied by an infrared-divergent factor,

AMHV = A(0)
MHV ⇥ M . (2.4)

Moving beyond MHV amplitudes, we define the ratio function by factoring out the MHV
superamplitude from the full superamplitude [34],

A = AMHV ⇥ P . (2.5)

Here P has an expansion in terms of increasing Grassmann degree, corresponding to the
type of amplitudes (MHV, NMHV, NNMHV, etc.),

P = 1 + PNMHV + PNNMHV + . . .+ PMHV . (2.6)

The number of terms in the above expansion of P is (n � 3), where n is the number of
external legs. The Grassmann degrees of the terms are 0, 4, 8, . . . , (4n� 16). At six points,
which is the case of interest for this paper, there are just three terms, corresponding to
MHV, NMHV and N2MHV. The N2MHV amplitudes for n = 6 are equivalent to MHV
amplitudes, which are simply related to the MHV amplitudes by parity. Thus the non-
trivial content of the ratio function at six points is in the NMHV term.

At tree level, P is given by a sum over dual superconformal ‘R-invariants’ [34]. In
particular, for six points we have

P (0)
NMHV = R1;35 +R1;36 +R1;46 . (2.7)

The R-invariants can be described using dual coordinates xi, ✓i defined by

p↵↵̇i = �↵
i �̃

↵̇
i = x↵↵̇

i � x↵↵̇
i+1, q↵Ai = �↵

i ⌘
A
i = ✓↵Ai � ✓↵Ai+1 . (2.8)

Then we have [34, 41]

Rr;ab =
ha, a� 1ihb, b� 1i �4�hr|xraxab|✓bri+ hr|xrbxba|✓ari

�

x2
ab hr|xraxab|bi hr|xraxab|b� 1i hr|xrbxba|ai hr|xrbxba|a� 1i . (2.9)

The R-invariants take an even simpler form in terms of momentum twistors [61, 43].
These variables are (super)twistors associated to the dual space with coordinates x, ✓. They
are defined by

Zi = (Zi |�i), ZR
i = �R

↵↵̇ (�
↵
i , x

�↵̇
i �i�), �A

i = ✓↵Ai �i↵ , (2.10)

where �R
↵↵̇ are the Pauli matrices. The momentum (super)twistors Zi transform linearly

under dual (super) conformal symmetry, so that (abcd) = ✏RSTUZ
R
a Z

S
b Z

T
c Z

U
d is a dual con-

formal invariant. The R-invariants can then be written in terms of the following structures:

[abcde] =
�4
�

�a(bcde) + cyclic
�

(abcd)(bcde)(cdea)(deab)(eabc)
, (2.11)

7

helicity factors: (1) = R1;3,5

variables:

• symmetry V (w, v, u) = V (u, v, w) , Ṽ (yw, yv, yu) = �Ṽ (yu, yv, yw) .

PNMHV =
1

2
(1)

h
V (u, v, w) + Ṽ (yu, yv, yw)

i
+ cyclic
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Rutgers - J. M. Henn, IAS

• vanishing in collinear limit

• absence of spurious poles

Constraints on NMHV ratio function

For example, in the six-point case the R-invariants (1) and (3) both contain the spurious
factor (2456) in the denominator. (In the dual-coordinate notation, this particular pole is
proportional to h2|x25|5] rather than h1|x14|4].) In the tree-level amplitude (2.15) there is
a cancellation between the two terms, so we see that

(1) ⇡ �(3) as (2456) ! 0. (2.35)

At loop level, using this relation, we find that the absence of the spurious pole implies the
following condition on V and Ṽ ,

[V (u, v, w)� V (w, u, v) + Ṽ (yu, yv, yw)� Ṽ (yw, yu, yv)](2456)=0 = 0 . (2.36)

As the spurious bracket (2456) vanishes, we find the following limiting behaviour,

w ! 1 , yu ! (1� w)
u(1� v)

(u� v)2
, yv ! 1

(1� w)

(u� v)2

v(1� u)
, yw ! 1� u

1� v
. (2.37)

This is easiest to see in the two-bracket notation of eq. (2.24), in which (2456) = 0 cor-
responds to (13) = 0 and hence to w1 = w3. The above condition reduces to the one of
ref. [47] on the assumption that Ṽ = 0.2 The one-loop expression for V , eq. (2.31), satisfies
the above constraint with Ṽ (1) = 0, since log(w) ! 0 in the limit.

There is also a constraint from the collinear behaviour. There are two types of collinear
limits, a ‘k-preserving’ one where NkMHV superamplitudes are related to NkMHV superam-
plitudes with one fewer leg, and a ‘k-decreasing’ one which relates NkMHV superamplitudes
to Nk�1MHV superamplitudes with one fewer leg. These two operations are related to each
other by parity and correspond to a supersymmetrisation of the two splitting functions
found when analysing pure gluon amplitudes [62, 63, 35, 64, 40]. For the six-point NMHV
case, we only need to examine one of the collinear limits; the other will follow automatically
by parity.

Under the collinear limit, the n-point amplitude should reduce to the (n � 1)-point
one multiplied by certain splitting functions. The splitting functions are automatically
taken care of by the MHV prefactor in eq. (2.5). The n-point ratio function P should
then be smoothly related to the (n � 1)-point one. Consequently, in the collinear limit
the loop corrections to the six-point ratio function should vanish, because the five-point
ratio function (containing only MHV and MHV components) is exactly equal to its tree-
level value. The R-invariants behave smoothly in the limit, either vanishing or reducing
to lower-point invariants. In the case at hand we can consider the limit Z6 ! Z1, which
also corresponds to w6 ! w1, or x2

35 ! 0, or w ! 0 with v ! 1 � u. In this limit, all
R-invariants vanish except for (6) and (1), which become equal. Beyond tree level, the
sum of their coe�cients must therefore vanish in the collinear regime. This implies the
constraint,

[V (u, v, w) + V (w, u, v) + Ṽ (yu, yv, yw)� Ṽ (yw, yu, yv)]w!0, v!1�u = 0 . (2.38)

In fact the parity-odd function Ṽ drops out of this constraint. The reason is that the
collinear regime can be approached from the surface �(u, v, w) = 0 (see eq. (2.18)), and all
parity-odd functions should vanish on this surface.

2This is true after correcting a typo in eq. (3.63) of that reference.

11

[V (u, v, w)� V (w, u, v) + Ṽ (yu, yv, yw)� Ṽ (yw, yu, yv)](⇤) = 0 .

(⇤) : w ! 1 , yu ! (1�w)
u(1� v)

(u� v)2
, yv ! 1

(1� w)

(u� v)2

v(1� u)
, yw ! 1� u

1� v
.

Dixon, Drummond, J.M.H. (2011)

Korchemsky, Sokatchev (2009)

• consistency with OPE expansion of (super) Wilson loops:
L-th discontinuity annihilated by differential operator

Alday, Gaiotto, Maldacena, Sever, Vieira (2010) Sever, Vieira, Wang (2011)

Example:

• expect at L loops: 2L-fold iterated integrals

V (1)
=

1

2

h
� log u logw + log(uw) log v + Li2(1� u) + Li2(1� v) + Li2(1� w)� 2⇣2

i
, ˜V (1)

= 0 .
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What are symbols?

Rutgers - J. M. Henn, IAS

• in loop calculations, complicated iterated integrals appear, that 
are generalizations of the polylogarithm:

• the symbol S(f) captures important properties of a function f
    e.g. derivatives, locations of branch cuts
    while forgetting precise integration contours, numerical values
    (can be reconstructed later)

Li

n

(x) =

Z
x

0

dt

t

Li

n�1(t) , Li1(x) = � log(1� x)

• symbol reduces complicated identities between functions,
    e.g. polylogarithm identities to simple algebra
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Pure functions and symbols

Rutgers - J. M. Henn, IAS

• pure function: derivatives can be written as:

d f (k)
=

X

r

f (k�1)
r d log �r .

�rwith some algebraic functions

Goncharov (2009); also: F. Brown• define symbol recursively in degree k:

S(f (k)) =
X

~↵

�↵1 ⌦ . . .⌦ �↵k ,

• Examples:
S(log x) = x , S(log(1� x)) = 1� x

- if derivative is known, symbol is known:
- by definition:

d

dx

Li2(x) = � log(1� x)

x

�! S(Li2(x)) = �[(1� x)⌦ x]

- symbols of products from factors:

S(log x log y) = x⌦ y + y ⌦ x
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Useful symbol properties

Rutgers - J. M. Henn, IAS

• factorization (inherited from logarithm)
. . .⌦ x y ⌦ . . . = . . .⌦ x⌦ . . .+ . . .⌦ y ⌦ . . .

• integrability not every (multi-variables) symbol is a function
S(log x log y) = x⌦ y + y ⌦ x

but no function has symbol x⌦ y � y ⌦ x

• integrability test Gaiotto, Maldacena, Sever, Vieira (2011)Goncharov 

! (d log �i ^ d log �i+1)[�1 ⌦ . . .⌦ . . .⌦ �k] = 0

�1 ⌦ . . .⌦ �i ⌦ �i+1 ⌦ . . .⌦ �k

for symbols of functions

• first entry controls branch cut location Gaiotto, Maldacena, Sever, Vieira (2011)

u, v, wcan only be
Reason: cuts start at x2

ij = 0 for massless particles
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Two-loop remainder function

Rutgers - J. M. Henn, IAS

• can be expressed in terms of classical polylogarithms
Goncharov, Spradlin, Vergu, Volovich (2010)

Drummond, J.M.H., Korchemsky, Sokatchev (2007/8) Bern et al (2008) Del Duca, Duhr, Smirnov (2009) Drummond, J.M.H. (2010)

• symbol is remarkably simple:

• relation to finite loop integrals

Dixon, Drummond, J.M.H. (2011)

Arkani-Hamed et al (2010)

6
~(2)

1
2

3
4

5

6
i j

1

4

i
= 6D2

3 5

6
1

4

i
2

3 5

6

(1)

Taking the positive branch of the square root, and using the Schouten identity for the two-
brackets, we have

1− u =
(35)(26)

(25)(36)
, 1− v =

(46)(31)

(36)(41)
, 1− w =

(51)(42)

(41)(52)
, (19)

yu =
(23)(46)(15)

(56)(13)(24)
, yv =

(61)(24)(35)

(34)(51)(26)
, yw =

(45)(62)(31)

(12)(35)(46)
. (20)

Note that under a cyclic permutation, wi → wi+1, with indices modulo 6, the sign of
√
∆ flips,√

∆ → −
√
∆. So the y variables permute as yu → 1/yv → yw → 1/yu. This inversion will

not affect the symmetry properties of the parity-even functions and symbols in which we are
interested, which involve even numbers of y variables.

From eqs. (17), (19) and (20) we see that our ansatz is equivalent to saying that the symbol
can be factorised in terms of two-brackets (ij) (or equivalently momentum-twistor four-brackets)
at the six-point level. (There are 15 two-brackets (ij), but only combinations that are invariant
under rescaling of individual wi coordinates are allowed, which reduces the number of independent
combinations to the nine exhibited in eqs. (17), (19) and (20).) Note that we can fix a coordinate
choice wi = (1, zi), where these variables coincide with the zi variables of ref. [35], so that our
ansatz is also equivalent to assuming that the symbol can be factorised in terms of differences of
the zi. The form of our ansatz is certainly sufficient at the two-loop level, because the remainder
function is explicitly known [6, 7, 32, 33, 35], and its symbol is indeed of this form [35]. In the
above variables, it is given by

S(R(2)
6 )

= −1
8

{[

u⊗ (1− u)⊗ u

(1− u)2
+ 2

(

u⊗ v + v ⊗ u)⊗ w

1− v
+ 2 v ⊗ w

1− v
⊗ u

]

⊗ u

1− u

+
[

u⊗ (1− u)⊗ yuyvyw − 2 u⊗ v ⊗ yw
]

⊗ yuyvyw
}

+ permutations , (21)

where the sum is over the 6 permutations of u, v and w, which correspondingly permute yu, yv
and yw.

What constraints should the symbol of the remainder function obey?

• It should be integrable, i.e. it should actually be the symbol of a function.

• The first entry in any term of the symbol should be a cross ratio u, v or w. The leading
entries describe the locations of the discontinuities of the function, which can only originate
at x2

ij = 0, as can be seen by considering the unitarity cuts of the amplitude [41]. These
points correspond to cuts in u, v or w originating at either 0 or∞. A first entry containing
1− u, yu, etc., would lead to a discontinuity starting at an unphysical point.

Within our ansatz for the symbol of the three-loop remainder function, these two constraints
are sufficient to show (by explicit enumeration) that the second entry of the symbol can only

8

It is very helpful in our analysis to consider the discontinuities of the functions involved. The
symbol makes clear the locations of the discontinuities of the function. If we have

S(f (k)) =
∑

!α

φα1 ⊗ . . .⊗ φαk
, (12)

then the degree k function f (k) will have a branch cut starting at φα1 = 0. The discontinuity
across this branch cut, denoted by ∆φα1

f (k), will also be a pure function, of degree k − 1. Its
symbol is found by clipping the first element off the symbol for f (k):

S(∆φα1
f (k)) =

∑

!α

φα2 ⊗ . . .⊗ φαk
. (13)

In general, taking discontinuities commutes with taking derivatives.

3 Constraining the three-loop remainder function

We will now describe a procedure for constraining the form of the remainder function based on
a plausible ansatz for its symbol. Our experience with six-point integrals in both four and six
dimensions [54, 55, 63] is that their symbols are always formed of terms with entries drawn from
the following set of nine elements,

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (14)

Here we use the notation

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (15)

where

z± =
1

2

[

−1 + u+ v + w ±
√
∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (16)

Thus our ansatz for the remainder function at l loops will be the most general symbol of degree
2l that we can make from the above set of nine elements. That is, we assume that the symbol
for the remainder function can be factorised in terms of the set (14).

We can also write the cross ratios in terms of ratios of two-brackets of CP1 variables wi,

u =
(23)(56)

(25)(36)
, v =

(34)(61)

(36)(41)
, w =

(45)(12)

(41)(52)
, (17)

where (ij) = −(ji) = εabwa
iw

b
j . In these variables, ∆ is a perfect square,

√
∆ = ±(12)(34)(56) + (23)(45)(61)

(14)(25)(36)
, (18)
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It is very helpful in our analysis to consider the discontinuities of the functions involved. The
symbol makes clear the locations of the discontinuities of the function. If we have

S(f (k)) =
∑

!α

φα1 ⊗ . . .⊗ φαk
, (12)

then the degree k function f (k) will have a branch cut starting at φα1 = 0. The discontinuity
across this branch cut, denoted by ∆φα1

f (k), will also be a pure function, of degree k − 1. Its
symbol is found by clipping the first element off the symbol for f (k):

S(∆φα1
f (k)) =

∑

!α

φα2 ⊗ . . .⊗ φαk
. (13)

In general, taking discontinuities commutes with taking derivatives.

3 Constraining the three-loop remainder function

We will now describe a procedure for constraining the form of the remainder function based on
a plausible ansatz for its symbol. Our experience with six-point integrals in both four and six
dimensions [54, 55, 63] is that their symbols are always formed of terms with entries drawn from
the following set of nine elements,

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (14)

Here we use the notation

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (15)

where

z± =
1

2

[

−1 + u+ v + w ±
√
∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (16)

Thus our ansatz for the remainder function at l loops will be the most general symbol of degree
2l that we can make from the above set of nine elements. That is, we assume that the symbol
for the remainder function can be factorised in terms of the set (14).

We can also write the cross ratios in terms of ratios of two-brackets of CP1 variables wi,

u =
(23)(56)

(25)(36)
, v =

(34)(61)

(36)(41)
, w =

(45)(12)

(41)(52)
, (17)

where (ij) = −(ji) = εabwa
iw

b
j . In these variables, ∆ is a perfect square,

√
∆ = ±(12)(34)(56) + (23)(45)(61)

(14)(25)(36)
, (18)

7
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Ansatz for the symbol

Rutgers - J. M. Henn, IAS

• assume symbol is built from the following nine letters

two-loop remainder functionMotivation:

explicitly known six-point loop integrals Dixon, Drummond, J.M.H. (2011)

Del Duca, Duhr, Smirnov (2011)

Goncharov, Spradlin, Vergu, Volovich (2010)

u =
yu(1� yv)(1� yw)

(1� ywyu)(1� yuyv)
, 1� u =

(1� yu)(1� yuyvyw)

(1� ywyu)(1� yuyv)
,

v =
yv(1� yw)(1� yu)

(1� yuyv)(1� yvyw)
, 1� v =

(1� yv)(1� yuyvyw)

(1� yuyv)(1� yvyw)
,

w =
yw(1� yu)(1� yv)

(1� yvyw)(1� ywyu)
, 1� w =

(1� yw)(1� yuyvyw)

(1� yvyw)(1� ywyu)
.

{u, v, w, 1� u, 1� v, 1� w, yu, yv, yw}
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Imposing constraints on the ansatz

Rutgers - J. M. Henn, IAS

Summary of constraints on symbol:

• integrability
• first entry (absence of unphysical branch cuts)
• symmetry
• collinear behavior
• absence of spurious divergences
• consistency with OPE

imply non-zero odd
part at two loops!}

Result: S(V ) = ↵X S(VX) +
9X

i=1

↵i S(fi), S(Ṽ ) = ↵X S(ṼX) + ↵8 S(f̃) ,

Corollary:
�v�vP(2356)

NMHV / 1

(2356)


log

2 u+ log

2 w + 4 log u logw + 2 log

2
(1� v)

� 4 log(uw) log(1� v)� 2

⇣
Li2(1� u) + Li2(1� w)� 2 ⇣2

⌘�
.
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From symbols to functions

Rutgers - J. M. Henn, IAS

• write down candidate function that has the correct symbol

Example:

• parametrize the beyond the symbol ambiguities
• apply constraints for the functions

X := u⌦ (1� u)⌦ w ⌦ (1� w) + u⌦ w ⌦ (1� u)⌦ (1� w) + u⌦ w ⌦ (1� w)⌦ (1� u)

+ w ⌦ u⌦ (1� u)⌦ (1� w) + w ⌦ u⌦ (1� w)⌦ (1� u) + w ⌦ (1� w)⌦ u⌦ (1� u)

f = Li2(1� u)Li2(1� w) , S(f) = X

f̂ = �⇣2
2
[Li2(1� u) + Li2(1� v) + Li2(1� w)] +

5

4
⇣4

f + f̂ satisfies collinear and spurious constraints

Procedure:
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New functions appearing in the ansatz

Rutgers - J. M. Henn, IAS

• after imposing constraints at function level: 
   10 coefficients left to be determined
• most functions are expressible using polylogarithms with 

rational arguments, e.g.

• other functions: can be identified with finite loop integrals!

How to fix the remaining coefficients?

Li2(1� u)Li2(1� w)� ⇣2
2
[Li2(1� u) + Li2(1� v) + Li2(1� w)] +

5

4
⇣4

• new form of MHV remainder function
R(2)

6 (u, v, w) =
1

4

h
⌦(2)(u, v, w) + ⌦(2)(v, w, u) + ⌦(2)(w, u, v)

i
+R(2)

6,rat

1

2 3

4

56

1

2 3

4

56

6
~(2)

1
2

3
4

5

6
i j

1

4

i
= 6D2

3 5

6
1

4

i
2

3 5

6

(1)

6
~(2)

1
2

3
4

5

6
i j

1

4

i
= 6D2

3 5

6
1

4

i
2

3 5

6

(1)

�̃ ⌦̃(2)⌦(2)
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Analytic computation via loop integrals

Rutgers - J. M. Henn, IAS

• loop integral expression for even part Roiban, Kosower, Vergu (2010)

Drummond, J.M.H. (2010)

1 2 3 4

5 6 7
p

!p ! k2"2

8

p

!p ! k3"2

9

p

!p ! k1"2

10
p

!p ! k3"2

11

q

p

!q ! k1"2 !p ! k4"2

12

qp

!q ! k3"2 !p ! k4"2

13 14 15
p

!p ! k2"2

16

• NMHV and MHV similar
    eliminate cumbersome integrals 12 and 13
      using known MHV answer (for equal cross ratios)

• remaining integrals easy to evaluate 
    in massive regularization

J.M.H., Naculich Schnitzer, Spradlin (2010)

• numerical checks for generic u

lim

u!0

S(2)

⇤ |
log

0 m2 =

5

32

log

4 u+ log

3 u


3

4

u+

7

8

u2

+

7

4

u3

+

71

16

u4

+

253

20

u5

+O(u6

)

�

+ log

2 u


�⇡2

12

+

7

4

u2

+

19

4

u3

+

653

48

u4

+

995

24

u5

+O(u6

)

�
+ O(log u) ,

• analytic result in limits, e.g.

• fixes all coefficients in our ansatz; nontrivial check!
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Differential equations for on-shell loop integrals

established method [Kotikov 1991; Gehrmann, Remiddi, 1999; ... ]

differentiate w.r.t. masses or momenta (i.e. Mandelstam invariants)

first-order differential equations

apply to a set of master integrals and family of reduced integrals
(reduction identities have to be known)

this talk: new method [Drummond, J.M.H., Trnka, arXiv:1010.3679 ]

applies to certain infinite classes of loop integrals
(motivated by N = 4 SYM)

apply to one integral at a time (no integral reduction needed)

second-order operators reduce the loop order by one → iterative structure

D(2) =

[14/32]

New functions

Rutgers - J. M. Henn, IAS

• “most complicated’’ part of amplitude

Drummond, J.M.H, Trnka (2010)

Drummond, J.M.H. Dixon (2010)

• finite, dual conformal integrals

• hints of simplicity: 2nd-order differential equations

• solution

1

2 3

4

56

1

2 3

4

56

6
~(2)
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6
i j
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i
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3 5
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(1)

⌦(2), ⌦̃(2)

for vt and wt in terms of ut, obtaining,

vt =
(1� u) v ut

u (1� v) + (v � u) ut

, (4.15)

wt = 1� (1� w) ut (1� ut)

u (1� v) + (v � u) ut

. (4.16)

Inserting these expressions into d log t = d log[(1� wt)/ut/vt], we have

d(log t)

dut

=
1

ut(ut � 1)
, (4.17)

which enables us to use ut as the final integration parameter,

⌦(2)(u, v, w) = �6 ⇣4 +

Z u

1

dut

ut(ut � 1)
Q�(ut, vt, wt) . (4.18)

Using this formula, with Q� from eq. (4.6), for which the polylogarithms are all rational
functions of the cross ratios, it is easy to rapidly get high-accuracy values for ⌦(2). For
example, we find

⌦(2)(16/5, 112/85, 28/17) = �6.221018431345742955,

⌦(2)(28/17, 16/5, 112/85) = �5.273317108708980008,

⌦(2)(112/85, 28/17, 16/5) = �9.962051212650647413,

in general agreement with the numbers obtained at these points using a Mellin-Barnes
representation for the loop integral.

4.2 A new representation of the two-loop remainder function

Now that we have obtained representations of the function ⌦(2), we note that the two-loop
remainder function can be written in terms of this function, together with functions with
purely rational (y-independent) symbols. Specifically, we have

R(2)
6 (u, v, w) =

1

4

h

⌦(2)(u, v, w) + ⌦(2)(v, w, u) + ⌦(2)(w, u, v)
i

+R(2)
6,rat . (4.19)

The piece with a rational symbol is defined as

R(2)
6,rat = �1

2



1

4

⇣

Li2(1�1/u)+Li2(1�1/v)+Li2(1�1/w)
⌘2

+r(u)+r(v)+r(w)�⇣4

�

, (4.20)

with

r(u) =� Li4(u)� Li4(1� u) + Li4(1� 1/u)� log uLi3(1� 1/u)� 1

6
log3 u log(1� u)

+
1

4

⇣

Li2(1� 1/u)
⌘2

+
1

12
log4 u+ ⇣2

⇣

Li2(1� u) + log2 u
⌘

+ ⇣3 log u . (4.21)

20

for vt and wt in terms of ut, obtaining,

vt =
(1� u) v ut

u (1� v) + (v � u) ut

, (4.15)

wt = 1� (1� w) ut (1� ut)

u (1� v) + (v � u) ut

. (4.16)

Inserting these expressions into d log t = d log[(1� wt)/ut/vt], we have

d(log t)

dut

=
1

ut(ut � 1)
, (4.17)

which enables us to use ut as the final integration parameter,

⌦(2)(u, v, w) = �6 ⇣4 +

Z u

1

dut

ut(ut � 1)
Q�(ut, vt, wt) . (4.18)

Using this formula, with Q� from eq. (4.6), for which the polylogarithms are all rational
functions of the cross ratios, it is easy to rapidly get high-accuracy values for ⌦(2). For
example, we find

⌦(2)(16/5, 112/85, 28/17) = �6.221018431345742955,

⌦(2)(28/17, 16/5, 112/85) = �5.273317108708980008,

⌦(2)(112/85, 28/17, 16/5) = �9.962051212650647413,

in general agreement with the numbers obtained at these points using a Mellin-Barnes
representation for the loop integral.

4.2 A new representation of the two-loop remainder function

Now that we have obtained representations of the function ⌦(2), we note that the two-loop
remainder function can be written in terms of this function, together with functions with
purely rational (y-independent) symbols. Specifically, we have

R(2)
6 (u, v, w) =

1

4

h

⌦(2)(u, v, w) + ⌦(2)(v, w, u) + ⌦(2)(w, u, v)
i

+R(2)
6,rat . (4.19)

The piece with a rational symbol is defined as

R(2)
6,rat = �1

2



1

4

⇣

Li2(1�1/u)+Li2(1�1/v)+Li2(1�1/w)
⌘2

+r(u)+r(v)+r(w)�⇣4

�

, (4.20)

with

r(u) =� Li4(u)� Li4(1� u) + Li4(1� 1/u)� log uLi3(1� 1/u)� 1

6
log3 u log(1� u)

+
1

4

⇣

Li2(1� 1/u)
⌘2

+
1

12
log4 u+ ⇣2

⇣

Li2(1� u) + log2 u
⌘

+ ⇣3 log u . (4.21)

20

we see that the symbol S(⌦(2)) is consistent with the di↵erential equation,

@w⌦
(2)(u, v, w) = ��̃6

2
@w log(yuyv) = � �̃6p

�
. (4.1)

We recognise here the di↵erential equation [57] relating the two-loop, finite double-pentagon
integral ⌦(2) to the massless, one-loop, six-dimensional hexagon function �̃6.

The relation (4.1) can be used to write an integral formula for ⌦(2),

⌦(2)(u, v, w) = �
Z w

0

dt
p

�(u, v, t)
�̃6(u, v, t) + ⌦(2)(u, v, 0) . (4.2)

The relevant boundary condition is ⌦(2)(u, v, 0) =  (2)(u, v), where  (2) is the two-loop
pentaladder function found in ref. [56]. The boundary behaviour at w = 0 was tested
numerically from the Mellin-Barnes representation for ⌦(2) [56]. The symbol (3.11) reduces
to the symbol of  (2) at w = 0. It is the unique symbol within our ansatz, built from the
letters in eq. (3.1), that obeys eq. (4.1) and the w = 0 boundary condition. The integral in
eq. (4.2) is well-defined and real in the Euclidean region, i.e. the positive octant in which
u, v, w are all positive, because the integrand �6 ⌘ �̃6/

p
� is well-defined and real there,

and �6 is well-behaved even where � vanishes [57].

As discussed in ref. [57], the first-order di↵erential equation (4.1) can be obtained from
the second-order equation of ref. [56] for the double-pentagon integral, which can be written
as

w@w

h

�u(1� u)@u � v(1� v)@v + (1� u� v)(1�w)@w
i

⌦(2)(u, v, w) = ⌦(1)(u, v, w) . (4.3)

Because the second-order operator naturally factorises into two first-order operators, we
can integrate up to ⌦(2) in two steps. This procedure will yield another one-dimensional
integral relation for ⌦(2). We define

Q�(u, v, w) ⌘
h

�u(1� u)@u � v(1� v)@v + (1� u� v)(1� w)@w
i

⌦(2)(u, v, w) , (4.4)

so that
w@wQ�(u, v, w) = ⌦

(1)(u, v, w) . (4.5)

The above formula can be used to define the function Q�,

Q�(u, v, w) = 2



Li3(1� w) + Li3

✓

1� 1

w

◆�

(4.6)

+ logw
h

�Li2(1� w) + Li2(1� u) + Li2(1� v) + log u log v � 2 ⇣2
i

� 1

3
log3 w � 2 Li3(1� u)� Li3

✓

1� 1

u

◆

� 2 Li3(1� v)� Li3

✓

1� 1

v

◆

+ log
⇣u

v

⌘ h

Li2(1� u)� Li2(1� v)
i

+
1

6
log3 u+

1

6
log3 v

� 1

2
log u log v log(uv) .

18
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6-point 2-loop NMHV function

Rutgers - J. M. Henn, IAS

Roiban, Kosower, Vergu (2010)perfect agreement with numerical values from

V + Ṽ = �1

2

h
⌦(2)(w, u, v) + ⌦̃(2)(1/yw, 1/yu, 1/yv)

i
+ T (u, v, w)

⇥
V +R(2)

6

⇤
( 165 , 112

85 , 28
17 ) = 14.428955293631618492 ,

⇥
V +R(2)

6

⇤
( 11285 , 28

17 ,
16
5 ) = 12.613874875030471932 ,

⇥
V +R(2)

6

⇤
( 2817 ,

16
5 , 112

85 ) = 11.705797993389994692 .

analytic formula

T given by polylogarithms with rational arguments

new predictions for odd part

ANMHV = AMHV PNMHV

PNMHV =
1

2
(1)

h
V (u, v, w) + Ṽ (yu, yv, yw)

i
+ cyclic
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6-point two-loop NMHV ratio

Rutgers - J. M. Henn, IAS

V + Ṽ = �1

2

h
⌦(2)(w, u, v) + ⌦̃(2)(1/yw, 1/yu, 1/yv)

i
+ T (u, v, w)

T (u, v, w) = TA(u, v, w) + TA(w, v, u) + TB(u, v, w)

TA(u, v, w) = �1

2
Li4

✓
1� 1

u

◆
� 3

2
Li4(1� u) +

1

2
Li4(u) +

1

12
ln3 u ln(1� u) + ln

⇣uv
w

⌘
Li3(1� u)

+
1

2
ln
⇣ v

w

⌘
Li3

✓
1� 1

u

◆
+

3

8
[Li2(1� u)]2 +

1

8

⇥
4Li2(1� u) + ln2 u

⇤
Li2(1� v)

+
1

8

h
6 ln v lnw � 2 lnu ln

⇣ v

w

⌘
� ln2 v � ln2 w � 12 ⇣2

i
Li2(1� u)

TB(u, v, w) = Li4

✓
1� 1

v

◆
+

1

2
Li4(1� v) +

1

2
Li4(v) +

1

12
ln3 v ln(1� v) +

1

2
ln v Li3
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1� 1
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+
1

8
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1

4

⇥
ln(uw) ln v � lnu lnw � 2 ⇣2
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+
1

2
Li2(1� u) Li2(1� w)� 1

48
ln4

⇣ u
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+

1

16
ln2 u ln2 w � 1

12
(ln3 u+ ln3 w) ln v

+
1

16
(ln2 u+ ln2 w + 4 lnu lnw) ln2 v � 1

24
ln4 v � ⇣2

4
(ln2 u+ ln2 w � ln2 v)� ⇣3

2
ln(uvw)

⇥
V +R(2)

6

⇤
( 165 , 112

85 , 28
17 ) = 14.428955293631618492 ,

⇥
V +R(2)

6

⇤
( 11285 , 28

17 ,
16
5 ) = 12.613874875030471932 ,

⇥
V +R(2)

6

⇤
( 2817 ,

16
5 , 112

85 ) = 11.705797993389994692 .
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Conclusions and outlook

Rutgers - J. M. Henn, IAS

Dixon, Drummond, J.M.H. (2011)

• analytic result for six-point two-loop NMHV ratio function

• finite loop integrals play key role; classical polylogarithms not 
sufficient; simple integral representations derived from 
differential equations

• new representation of two-loop remainder function

• symbol fixed up to 2 parameters

• analytic prediction for NLO and NNLO Regge limit

Analytic formula for 2-loop NMHV ratio function

Similar analysis for 3-loop MHV remainder function

NLO prediction recently confirmed by Fadin, Lipatov (2011)
see also: Bartels, Lipatov, Prygarin

6
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1
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6
i j
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6

(1)

independently confirmed: Caron-Huot (2011)
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Extra slides

Rutgers - J. M. Henn, IAS
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Rutgers - J. M. Henn, IAS

Duality between Wilson loops and 
scattering amplitudes

Alday, Maldacena (2007)

one loop:  Drummond, Korchemsky, Sokatchev; 
Brandhuber, Heslop Travaglini (2007),
two loops: Drummond, J.M.H. Korchemsky, Soktachev 
(2007, 2008); Bern et al. (2008)

Caron-Huot; Mason, Skinner; subtleties with regularization: Belitsky, Korchemsky, Sokatchev (2010)

Drummond, J.M.H, Korchemsky, Sokatchev (2007)

• motivated by AdS/CFT

• also present at weak coupling

• extension to non-MHV amplitudes

• (dual) conformal Ward identities

• operator product expansion (OPE) for Wilson loops
Alday, Gaiotto, Maldacena, Sever, Vieira (2010)

Duality between Wilson loops and scattering amplitudes

[Alday, Maldacena, 2007; Drummond, Korchemsky, Sokatchev, 2007; Brandhuber, Heslop, Travaglini, 2007]

Checked by two-loop computations for n ≤ 6 points
[Drummond, J.M.H. ,Korchemsky,Sokatchev, 2007,2008; Bern,Dixon,Kosower,Roiban,Spradlin,Vergu,Volovich, 2008]

all-order dual conformal Ward identities [Drummond, J.M.H., Korchemsky, Sokatchev, 2007]

⇒ kinematical dependence of four-and five-point Wilson loops/scattering
amplitudes fixed to all orders in the coupling!

e.g. F4(λ) = 1
4Γcusp(λ) log2 s

t + C (λ) + O(ε, 1/N2)

⇒ justifies conjecture by Bern, Dixon and Smirnov (2005)!

⇒ agrees with string theory calculation by Alday, Maldacena (2007)!
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