New standard physics at the LHC

Yuval Grossman

Cornell

Two papers

Learn about QCD using the weak interaction

- Measuring the polarization of heavy quarks
	- M. Galanti, A. Giammanco, YG, Y. Kats, E. Stamou, J. Zupan, 1505.02771
- Hadronic *^Z* decays
	- YG, M. Konig, M. Neubert, 1501.06569

Measuring heavy quark polarization

Motivation

- It will be really cool if we can measure polarization of quarks
	- Examples include *^H* [→]
	- Examples include $H\to b\bar{b}$ and $\tilde{b}\to b\tilde{g}$
Polarization carries information about the Dirac structure of the couplings, not only their strengths
- It seems impossible since hadronization washes away the polarization of the quarks
- Think of *^b* quark that hadronized into *^B* meson
- Can we measure the polarization of *^b* quarks?

Heavy baryons!

- Despite hadronization, bottom baryons partly retain thepolarization of the*b* quark
- Evidences observed at LEP in $Z\to bb$ ¯
- About 8% of the b quarks hadronized into baryons

- How to measure the b and c polarizations at the LHC?
- Can we calibrate the measurement on SM samples?
- Can we use it for discovering/characterizing newphysics?

Theory of polarization loss

Time scales of polarization loss

Start with the known statement:

"The top quark decays before it hadronized and thus it keeps its polarization"

- Is that statement correct ?
- What is the situation for Γ_t $t = 30$ MeV ?

Time scales of polarization loss

Start with the known statement:

"The top quark decays before it hadronized and thus it keeps its polarization"

- **In Itement correct ?**
- What is the situation for Γ_t $t = 30$ MeV ?

The relevant depolarization scale is

$$
\frac{\Lambda_{\rm QCD}^2}{m_t}\sim 1~{\rm MeV}
$$

Recall the Hydrogen atom

- The 21 cm line measures the hyperfine splitting
- Consider ^a proton with spin up that "meets" an electronwith spin down
	- Very fast the electron decay to the $n=1$ state
	- Then the atom is in a superposition of a $J=0$ and $J=1$ state
	- **The atom then oscillates between the two states,** and the proton depolarizes at time scale of 1*/*∆*E*
- What is the situation when a proton with spin up "meets" an electron with spin up?
- **•** Hyperfine interactions in bound states lead to depolarization

b and *^c* quarks

We now move to bound states of QCD, $Q\bar{q}$

- In the heavy quark limit (we use $Q=b$)
	- **No polarization is retained for mesons**
	- All baryons decay strongly to Λ_b \bullet
	- For baryons in the Heavy quark limit $\mathcal{P}(Q) = \mathcal{P}(\Lambda_b)$
	- There are corrections of order $\Lambda_{\rm QCD}/m_b$
- **Open questions**
	- How large are these corrections?
	- Can we understand them theoretically?
	- Can we measure them?

Determining the depolarization

How much polarization is retained?

For interpreting polarization measurement, we need toknow

> *r*≡ $\mathcal{P}(\Lambda$ *b* $\frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$

Bottom line:

- We can calculate it, but the result involves unknown hadronic parameters and thus we cannot predict it
- We hope that *r* can measured in some decay modes
- We can show, theoretically, that *r* is universal (up to ^aknown, small running)
- Thus, measuring*r* once, we can use the value of *r* toprove the*b* polarization in other processes

Calculation of *^r*

$$
r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}
$$

Main $1/m_b$ effect is mainly due to $\Sigma_b - \Sigma_b^*$ oscillation

- The light DOFs in a $\Sigma_{b}^{(*)}\left(\Lambda_{b}\right)$ are a $J=1$ $(J=0)$ state
- $\textsf{We need} \ x \equiv \Delta M/\Gamma_\Sigma \ \textsf{with} \ \Delta M \equiv m(\Sigma_b^*) m(\Sigma_b).$
- x is of $O(1)$
	- $\Delta M \sim \Lambda_{QCD}^2/m_b \sim 20 \text{ MeV}$
	- $\Gamma(\Sigma) \thicksim$ $\sim \Lambda_{QCD}^2/m_b \sim 10 \text{ MeV}$

 Σ_b $-\Sigma_{b}^{*}$ oscillation washes out the b polarization

Calculations

With some approximation we get

$$
r = \frac{1 + (1 + 4w_1)A/9}{1 + A}
$$

 $\it r$ depends on two hadronization parameters

$$
A = \frac{P(\Sigma_b)}{P(\Lambda_b)} \qquad w_1 = \frac{P(|S_Z^{\text{light}}| = 1)}{P(S^{\text{light}} = 1)}
$$

- No direct measurement of *A* yet.
	- Statistical hadronization model: *A* $A \sim 2.6$
	- P ythia tunes (light hadron data): $A = 0.35 \pm 0.10$
- $\textsf{DELPHI}\; w_1 = -0.36 \pm 0.44$ and $\textsf{CLEO}\; w_1 = 0.71 \pm 0.13$

Determining *^A* and *^w*¹

If *b* is polarized transversely, *^r* is different

$$
r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A} \qquad r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}
$$

- In principle we can measure both A and w_1
- Yet, it involves measuring *^r*, so it will not help us to determined *^r*
- The bottom line, it will be very hard to calculate *^r*

Universality

Why we like universality

While we cannot calculate*r* we can measure it

- Consider a decay where, assuming the SM, we know the initial polarization of the*b* quark
- The point is that r is almost the same in any high energy process
- Basically, the*b* does not care much about the overall energy, just the fact that it is in ^a jet
- The ultimate plan is to measure r in several processes and compare them

Where to measure it in the LHC?

- **•** Top decay
	- Maximal polarization; Large cross section; Cleansample
- $Z\rightarrow bb$
	- Large polarization; Large cross section; Large QCDbackground ($S/B\approx1/15$)
	- LEP data gave about 30% uncertainty in the value
of $_{\infty}$ of*r*
- **COD** production
	- Large cross section; Small and only transversepolarization; Good for LHCb
	- Looking for correlation between the two b s to get r_L

How to measure it?

 $b \to X \ell \nu$

Large rate (about 10%) and high sensitivity to*θ*, theangle between the polarization and the lepton direction

$$
\frac{d\Gamma}{d\cos\theta} \propto (1 + \alpha \mathcal{P}\cos\theta)
$$

where

$$
\alpha_{\ell} \approx 0.26 \qquad \alpha_{\nu} = 1
$$

- *B* mesons only dilute the effect, no need to veto on
them Maybe we see still de better by demanding a them. Maybe we can still do better by demanding a Λ ?
- Can we use neutrinos? (probably yes)
- Can we use exclusive decay? (need to study it)

What about charm?

- Same formalism ensures polarization retention as in*b*
- Potentially promising decay mode: Δ_c → *PΚπ* with
6.7% BB (νs 3% for semilentonic) 6.7% BR (vs 3% for semileptonic)
- About 6% of charms end up inside baryons
- Can we do it with charms from $W\rightarrow c\bar{s}$ decays?
- Can also be done at Belle2 using $e^+e^-\to\Lambda_c\bar{\Lambda}_c$

Conclusions (part I)

Conclusions (part I)

- In general, measuring*b* and*c* polarizations isinteresting
- For that we need to get some "calibration" from known SM processes
- It seems possible at the LHC

Exclusive *^Z* decays

Bottom line

- Theoretically, we can learn a lot from decays like *Z* → $ψγ$ and $W → D_sγ$
- **It will be really nice if the decay rates for such exclusive** decays can be measured
- The BRs are up to $10^{-7}\,$
- **•** Looking for some of them may require novel experimental ideas
- We can measure some interesting hadronic parameters
- Can also be used in Higgs decays to probe Higgs couplingsBodwin et. al., 1306.5770; Kagan et. al., 1406.1722

The very basic theory:*Z*→ *ψγ*

- We usually think of $Z\to q\bar{q}$ as $Z\to 2j$
- At some rare cases the $q\bar{q}$ hadronized into one hadron

- For example, A(*Z*→ *Mγ*)∼ $\phi_M(k)$ ∼ $\langle q\bar{q}|M\rangle(k)$
- ϕ_M is a leading-twist LCDA $_M$ is a leading-twist LCDA
- We cannot calculate this amplitude from first principles

More theory

- One can get some handle on QCD when the decaying particle is heavy: QCD factorization
- QCD factorization was developed for *^B* physics, but higher order effects are important there
- Can we find ^a really heavy particle to test QCDfactorization?
	- Top, Higgs, *^W*, *^Z*
- It turns out that higher order effects in *^Z* decays are down by

$$
\left(\frac{\Lambda_{\rm QCD}}{m_Z}\right)^2 \sim 10^{-4}
$$

Z decays are good testing ground for factorization

Calculations

Using some models for the matrix elements we canestimate the rates

Very optimistically we can hope to get 10^{11} Z s and 5×10^{11}
We at CMS and at Atles *^W*^s at CMS and at Atlas

Specific decays

Z [→] *ψγ*

- *BR* $R \sim 10^{-7}$
- Already been looked for at Atlas, with ^a bound of order 3×10^{-6}
- Trigger on the photon and the muons from the *ψ* \bullet
- Theoretically, one can add the *ψ* and *^ψ*′
- $\textsf{Similar idea for } \Upsilon(nS) \text{ with } n=1,2,3$

Z [→] \rightarrow $\Upsilon(4S)\gamma$

- *BR* $R \sim 10^{-8}$
- $\Upsilon(4S)$ decays to $B\bar{B}$ all the time
- Can these isolated *^B* mesons be identified?
- The photon and the known invariant mass can help
- ${\sf Similarly}$ for $\psi(3770)$ but with D and not B

$\frac{Z \to X\gamma}{2}$

- *BR* $R \sim 10^{-8}$ with $X = \phi, \omega, \rho$ (no numbers yet for η, η')
- If its the a way to trigger and identify such events?
	- Can we use the kaons for the *^φ*?
	- Can we identified π^0 or few π^0 using converted
phatana? photons?
	- Can we use charged pions?

$\frac{W \rightarrow D_s \gamma}{\gamma}$

- *BR* $R \sim 4 \times 10^{-8}$
- The most promising decay in terms of number of events (given that we have 5 more *^W*^s than *^Z*s)
- Again, can we trigger on and identify a D_S ?
- It is probably best to use *^W*^s from top decay? M. Mangano and T. Melia, arXiv:1410.7475
- Any other *^W* decays that may be possible to look at?

Conclusions

Conclusions

We can learn about QCD form the weak interaction

- We hope to be able to measure *^b* and *^c* polarizations
- Exclusive *^Z* and *^W* decays can check QCD factorization
- Eventually, this provide tools for look for BSM

