New standard physics at the LHC

Yuval Grossman

Cornell

Probing QCD

Two papers

Learn about QCD using the weak interaction

- Measuring the polarization of heavy quarks
 - M. Galanti, A. Giammanco, YG, Y. Kats, E. Stamou, J. Zupan, 1505.02771
- Hadronic Z decays
 - YG, M. Konig, M. Neubert, 1501.06569

Measuring heavy quark polarization

Probing QCD

Motivation

- It will be really cool if we can measure polarization of quarks
 - Examples include $H \rightarrow b\bar{b}$ and $\tilde{b} \rightarrow b\tilde{g}$
 - Polarization carries information about the Dirac structure of the couplings, not only their strengths
- It seems impossible since hadronization washes away the polarization of the quarks
- Think of b quark that hadronized into B meson
- Can we measure the polarization of b quarks?

Heavy baryons!

- Despite hadronization, bottom baryons partly retain the polarization of the b quark
- Evidences observed at LEP in $Z \to b\overline{b}$
- About 8% of the *b* quarks hadronized into baryons

- How to measure the b and c polarizations at the LHC?
- Can we calibrate the measurement on SM samples?
- Can we use it for discovering/characterizing new physics?

Probing QCD

Theory of polarization loss

Probing QCD

Time scales of polarization loss

Start with the known statement:

"The top quark decays before it hadronized and thus it keeps its polarization"

- Is that statement correct ?
- What is the situation for $\Gamma_t = 30 \text{ MeV}$?

Time scales of polarization loss

Start with the known statement:

"The top quark decays before it hadronized and thus it keeps its polarization"

- Is that statement correct ?
- What is the situation for $\Gamma_t = 30 \text{ MeV}$?

The relevant depolarization scale is

$$\frac{\Lambda_{\rm QCD}^2}{m_t} \sim 1 \; {\rm MeV}$$

Probing QCD

Recall the Hydrogen atom

- The 21 cm line measures the hyperfine splitting
- Consider a proton with spin up that "meets" an electron with spin down
 - Very fast the electron decay to the n = 1 state
 - Then the atom is in a superposition of a J = 0 and J = 1 state
 - The atom then oscillates between the two states, and the proton depolarizes at time scale of $1/\Delta E$
- What is the situation when a proton with spin up "meets" an electron with spin up?
- Hyperfine interactions in bound states lead to depolarization

b and c quarks

We now move to bound states of QCD, $Q\bar{q}$

- In the heavy quark limit (we use Q = b)
 - No polarization is retained for mesons
 - All baryons decay strongly to Λ_b
 - For baryons in the Heavy quark limit $\mathcal{P}(Q) = \mathcal{P}(\Lambda_b)$
 - There are corrections of order $\Lambda_{
 m QCD}/m_b$
- Open questions
 - How large are these corrections?
 - Can we understand them theoretically?
 - Can we measure them?

Determining the depolarization

Probing QCD

How much polarization is retained?

For interpreting polarization measurement, we need to know

 $r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$

Bottom line:

- We can calculate it, but the result involves unknown hadronic parameters and thus we cannot predict it
- \bullet We hope that r can measured in some decay modes
- We can show, theoretically, that r is universal (up to a known, small running)
- Thus, measuring r once, we can use the value of r to prove the b polarization in other processes

Calculation of r

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$$

• Main $1/m_b$ effect is mainly due to $\Sigma_b - \Sigma_b^*$ oscillation

- The light DOFs in a $\Sigma_b^{(*)}$ (Λ_b) are a J = 1 (J = 0) state
- We need $x \equiv \Delta M / \Gamma_{\Sigma}$ with $\Delta M \equiv m(\Sigma_b^*) m(\Sigma_b)$.
- x is of O(1)
 - $\Delta M \sim \Lambda_{QCD}^2 / m_b \sim 20 \text{ MeV}$
 - $\Gamma(\Sigma) \sim \Lambda_{QCD}^2/m_b \sim 10 \text{ MeV}$

• $\Sigma_b - \Sigma_b^*$ oscillation washes out the *b* polarization

Calculations

With some approximation we get

$$r = \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

 \bullet r depends on two hadronization parameters

$$A = \frac{P(\Sigma_b)}{P(\Lambda_b)} \qquad w_1 = \frac{P(|S_Z^{\text{light}}| = 1)}{P(S^{\text{light}} = 1)}$$

No direct measurement of A yet.

- Statistical hadronization model: $A \sim 2.6$
- Pythia tunes (light hadron data): $A = 0.35 \pm 0.10$
- DELPHI $w_1 = -0.36 \pm 0.44$ and CLEO $w_1 = 0.71 \pm 0.13$

Determining A and w_1

If b is polarized transversely, r is different

$$r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$$
 $r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}$

- In principle we can measure both A and w_1
- Yet, it involves measuring r, so it will not help us to determined r
- The bottom line, it will be very hard to calculate r

Universality

Probing QCD

Why we like universality

While we cannot calculate r we can measure it

- Consider a decay where, assuming the SM, we know the initial polarization of the b quark
- The point is that r is almost the same in any high energy process
- Basically, the b does not care much about the overall energy, just the fact that it is in a jet
- The ultimate plan is to measure r in several processes and compare them

Where to measure it in the LHC?

- Top decay
 - Maximal polarization; Large cross section; Clean sample
- - Large polarization; Large cross section; Large QCD background ($S/B\approx 1/15$)
 - LEP data gave about 30% uncertainty in the value of r
- QCD production
 - Large cross section; Small and only transverse polarization; Good for LHCb
 - Looking for correlation between the two bs to get r_L

How to measure it?

$$b \to X \ell \nu$$

• Large rate (about 10%) and high sensitivity to θ , the angle between the polarization and the lepton direction

$$\frac{d\Gamma}{d\cos\theta} \propto (1 + \alpha \mathcal{P}\cos\theta)$$

where

$$\alpha_\ell \approx 0.26 \qquad \alpha_\nu = 1$$

- B mesons only dilute the effect, no need to veto on them. Maybe we can still do better by demanding a Λ ?
- Can we use neutrinos? (probably yes)
- Can we use exclusive decay? (need to study it)

Y. Grossman

Probing QCD

What about charm?

- Same formalism ensures polarization retention as in b
- Potentially promising decay mode: $\Lambda_c \rightarrow PK\pi$ with 6.7% BR (vs 3% for semileptonic)
- About 6% of charms end up inside baryons
- Can we do it with charms from $W \to c\bar{s}$ decays?
- Can also be done at Belle2 using $e^+e^- \rightarrow \Lambda_c \bar{\Lambda}_c$

Conclusions (part I)

Probing QCD

Conclusions (part I)

- In general, measuring b and c polarizations is interesting
- For that we need to get some "calibration" from known SM processes
- It seems possible at the LHC

Rutgers, Nov. 10, 2015 p. 21

Probing QCD

Exclusive Z decays

Probing QCD

Bottom line

- Theoretically, we can learn a lot from decays like $Z \rightarrow \psi \gamma$ and $W \rightarrow D_s \gamma$
- It will be really nice if the decay rates for such exclusive decays can be measured
- The BRs are up to 10^{-7}
- Looking for some of them may require novel experimental ideas
- We can measure some interesting hadronic parameters
- Can also be used in Higgs decays to probe Higgs
 couplings
 Bodwin et. al., 1306.5770; Kagan et. al., 1406.1722

Probing QCD

The very basic theory: $Z \rightarrow \psi \gamma$

- We usually think of $Z \to q\bar{q}$ as $Z \to 2j$
- At some rare cases the $q\bar{q}$ hadronized into one hadron

- For example, $\mathcal{A}(Z \to M\gamma) \sim \phi_M(k) \sim \langle q\bar{q} | M \rangle(k)$
- ϕ_M is a leading-twist LCDA
- We cannot calculate this amplitude from first principles

More theory

- One can get some handle on QCD when the decaying particle is heavy: QCD factorization
- QCD factorization was developed for B physics, but higher order effects are important there
- Can we find a really heavy particle to test QCD factorization?
 - Top, Higgs, W, Z
- It turns out that higher order effects in Z decays are down by

$$\left(\frac{\Lambda_{\rm QCD}}{m_Z}\right)^2 \sim 10^{-4}$$

 \checkmark Z decays are good testing ground for factorization

Y. Grossman

Probing QCD

Calculations

Using some models for the matrix elements we can estimate the rates

Decay mode	BR	Decay mode	BR
$Z^0 \to \pi^0 \gamma$	$1 \cdot 10^{-11}$	$W^{\pm} \to \pi^{\pm} \gamma$	$4 \cdot 10^{-9}$
$Z^0 \to \rho^0 \gamma$	$4 \cdot 10^{-9}$	$W^{\pm} \to \rho^{\pm} \gamma$	$9 \cdot 10^{-9}$
$Z^0 \to \omega \gamma$	$3 \cdot 10^{-8}$	$W^{\pm} \to K^{\pm} \gamma$	$3 \cdot 10^{-10}$
$Z^0 o \phi \gamma$	$9 \cdot 10^{-9}$	$W^{\pm} \to K^{*\pm} \gamma$	$5 \cdot 10^{-10}$
$Z^0 ightarrow J/\psi \gamma$	$8 \cdot 10^{-8}$	$W^{\pm} \to D_s \gamma$	$4 \cdot 10^{-8}$
$Z^0 \to \Upsilon(1S) \gamma$	$5 \cdot 10^{-8}$	$W^{\pm} \to D^{\pm}\gamma$	$1 \cdot 10^{-9}$
$Z^0 \to \Upsilon(4S) \gamma$	$1 \cdot 10^{-8}$	$W^{\pm} \to B^{\pm} \gamma$	$2 \cdot 10^{-12}$

Very optimistically we can hope to get 10^{11} Zs and 5×10^{11} Ws at CMS and at Atlas

Y. Grossman

Probing QCD

Specific decays

Probing QCD

 $Z \to \psi \gamma$

- $BR \sim 10^{-7}$
- Already been looked for at Atlas, with a bound of order 3×10^{-6}
- \checkmark Trigger on the photon and the muons from the ψ
- $\,$ Theoretically, one can add the ψ and ψ'
- Similar idea for $\Upsilon(nS)$ with n = 1, 2, 3

 $Z \to \Upsilon(4S)\gamma$

- $BR \sim 10^{-8}$
- $\Upsilon(4S)$ decays to $B\bar{B}$ all the time
- Can these isolated B mesons be identified?
- The photon and the known invariant mass can help
- Similarly for $\psi(3770)$ but with D and not B

$Z \to X\gamma$

- $BR \sim 10^{-8}$ with $X = \phi, \omega, \rho$ (no numbers yet for η, η')
- Is the a way to trigger and identify such events?
 - Can we use the kaons for the ϕ ?
 - Can we identified π^0 or few π^0 using converted photons?
 - Can we use charged pions?

$W \to D_s \gamma$

- $BR \sim 4 \times 10^{-8}$
- The most promising decay in terms of number of events (given that we have 5 more Ws than Zs)
- Again, can we trigger on and identify a D_S ?
- It is probably best to use Ws from top decay?
 M. Mangano and T. Melia, arXiv:1410.7475
- Any other W decays that may be possible to look at?

Conclusions

Probing QCD

Conclusions

We can learn about QCD form the weak interaction

- We hope to be able to measure b and c polarizations
- Exclusive Z and W decays can check QCD factorization
- Eventually, this provide tools for look for BSM

Probing QCD