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SEE = −trρA ln ρA

H = HA ⊗HAc

Entanglement Entropy
Characterize entanglement in QFT:
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Emergent Geometry & Entanglement
7

FIG. 4: The causal cone is the set of all unitaries, isometries, and sites

of the network that can affect the state of a region in the UV lattice.

The effective number of sites in a region, and hence the width of the

causal cone, shrinks exponentially fast we descend in the network.

This behavior persists until the causal cone width is of order a few

lattice spacings where it will fluctuate depending on the details of the

scheme.
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FIG. 5: Entropy bounds in entanglement renormalization

(schematic). The entropy of a region in the UV lattice (grey boxed in

region) is bounded by the number of network bonds that must be cut

to isolate it. The red curve is the corresponding minimal curve which

is pierced by the minimal number of bonds. The length of this curve,

suitably defined, or equivalently, the number of bonds cut bounds the

entropy.

perature diverges.

D. Quantum expanders

We have argued that entanglement renormalization natu-

rally identifies area with entanglement. Hence to have a classi-

cal area in the holographic interpretation of MERA we should

find an object that adds a definite amount of entanglement.

Enter quantum expanders. The definition of a quantum ex-

pander begins with the notion of a quantum channel E . We
imagine we have in our control a system A with some state

ρA. This system A is also in contact with an environment B
with which it is initially uncorrelated. The full state is thus

ρAB = ρA ⊗ |0〉〈0|B where |0〉 is some reference state. We
are allowed to act with a unitary transformation VAB on AB
followed by discarding B. A quantum channel in its simplest
form is then the sequence of steps

ρA → ρAB → VABρABV
†
AB

→ trB(VABρABV
†
AB) ≡ E(ρA). (2.31)

This process is designed to model noise acting on quantum

information in the form of a unitary transformation acting on

a larger system (to which we do not have access) containing

the system of interest.

As a simple example, suppose A and B are two level sys-

tems with states |0〉 and |1〉 and with V chosen such that

VAB |00〉 = |00〉 (2.32)

and

VAB|10〉 = |11〉. (2.33)

If ρA = |ψ〉〈ψ| with |ψ〉 = c0|0〉+ c1|1〉 then

E(ρA) = |c0|2|0〉〈0|+ |c1|2|1〉〈1| (2.34)

and the state has gone from pure to mixed. We may interpret

this particular quantum channel as decohering or measuringA
in the {|0〉, |1〉} basis since it copies the state of the system in
this basis to the environment B. Note also that ρA was pure
while E(ρA) has entropy of ln 2, so we learn that quantum
channels can add entropy (noise) to the system.

It is a standard theorem (Stinespring dilation theorem) that

any quantum channel can be written as

E(ρ) =
αmax
∑

α=1

MαρM
†
α (2.35)

where theMα are called Kraus operators and satisfy

∑

α

M †
αMα = 1 (2.36)

(proven by tracing over A and using the fact that V is uni-

tary). Indeed, the operators Mα are nothing but particular

sub-matrices of V ,

(Mα)ij = (VAB)iα,j0, (2.37)

so that

(

αmax
∑

α=1

MαρM
†
α

)

il

=
∑

α

(VAB)iα,j0ρjk(V
†
AB)k0,lα

=
∑

α

〈iα|VAB(ρ⊗ |0〉〈0|)V †
AB |lα〉. (2.38)

Note that all we really require to prove this theorem is that the

initial state of AB be uncorrelated.

A quantum expander is simply a quantum channel where

the matricesMα satisfy

Mα =
1

√
αmax

Uα (2.39)

with Uα unitary and where the expander is guaranteed to add

entropy to the state [26, 27]. The latter condition is obtained

by requiring the spectrum of the expander to have a gap.

Eigenoperators of E are operators such that

E(O) = λO (2.40)

Some relationship between entanglement and 
emergent geometry:

=
∑

i

pi ⊗

Tensor Networks:

Maldacena; Van Raamsdonk; Maldacena-Susskind (EPR = ER) ...

Swingle, ...
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Ryu-Takayanagi formula

: Minimal surface

Ryu, Takayanagi `06

Beautiful generalization
of Bekenstein-Hawking
area law for Black Holes

Entanglement = probe of emergent 
geometry!

r

AdS/CFT: geometry emerges out of CFT 

Ac Maldacena, Lewkowycz `13
proven:

Classical gravity limit:
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Plan:

• Large-N phase transitions in Entanglement 
Entropy

• Spacetime dynamics (Einstein’s Equations) 
from the Entanglement First Law

Two interesting consequences/lessons of this 
formula:
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Minimization procedure gives rise to 
geometric phase transitions:

Two locally minimal surfaces:

BH BH

A A
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Minimization procedure gives rise to 
geometric phase transitions:

Two locally minimal surfaces:

Order parameter: Mutual Information

I(A1,A2) = S(A1) + S(A2)− S(A1 ∪A2)

I = 0 I != 0
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Minimization procedure gives rise to 
geometric phase transitions:

Two locally minimal surfaces:

Order parameter: Mutual Information

I(A1,A2) = S(A1) + S(A2)− S(A1 ∪A2)

I = O(G0
N ) I = O(G−1

N )
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Bulk Quantum Corrections to RT

In a local QFT: Mutual Information can never be zero

TF, Lewcowycz, MaldacenaS1−loop
EE = SEE(Ab) + Sloc

A1 A2

Ab
1

Ab
2

I(A1;A2) = Ibulk(A
b
1;A

b
2)

In fact we argued leading correction comes from 
mutual information of bulk fields:

I ≥
(〈

ÔA1ÔA2

〉

c

)2
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Many similarities with Hawking-Page

BH

Global AdS

As a function of TR

S = O(G0
N ) S = O(G−1

N )
Deep connections with deconfinement
transition of large-N gauge theories

In 2d EE connection is very strong!

Witten; Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk 
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The replica trick 

Introduce Entanglement Renyi Entropy:

Main computational tool for EE in QFT

Sn(A) = − 1

n− 1
lnTrρnA

SEE(A) = −TrρA ln ρA

lim
n→1

Sn(A) = SEE(A)

Compute for integer            attempt to continue
     to non-integer ....  take the limit 

n ≥ 2

 hard to deal
        with

 Why? One can formulate         as a 
          euclidean path-integral 

TrρnA
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The replica trick 

• Take n-copies of CFT on the Euclidean plane:

trρnA
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The replica trick 

• Take n-copies of CFT on the Euclidean plane:

• Split t=0 surface into
   regions A and A

trρnA

c
AcAc A
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The replica trick 

• Take n-copies of CFT on the Euclidean plane:

• Split t=0 surface into
   regions A and A
• Cut and join according
   to products and traces

c
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The replica trick 

• Partition function on
this manifold:

• Take n-copies of CFT on the Euclidean plane:

• Split t=0 surface into
   regions A and A
• Cut and join according
   to products and traces

c
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Riemann surface:

• Goal: use usual rules of AdS/CFT to compute 
the partition function:

Genus (n-1)

ZCFT(Mn)

Two intervals leads to a complicated surface:

complicated!
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Bulk Solution?

??

Solve Einstein’s equations subject to boundary 
conditions and bulk regularity. 

Boundary
conditions

(not minimal surface 
   but actual 3d manifold)

Many solutions! 

Classical gravity limit: only need least action solution
Tuesday, March 4, 2014



The case           is easy:n = 2

BTZ black holeThermal AdS

Hawking Page phase transition!

Headrick `10Double cover gives a simple torus,
and       is the thermal partition function.ZM2

Text

Solid torus:

τ

1

space time
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The case           is easy:n = 2

BTZ black holeThermal AdS

Hawking Page phase transition!

Headrick `10Double cover gives a simple torus,
and       is the thermal partition function.ZM2

Text

Solid torus:

τ

1

space time

τ = i
K(x− 1)

K(x)

x = 1/2

x =
(z1 − z2)(z3 − z4)
(z2 − z4)(z1 − z3)
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But to find EE need solutions
for all integer n??

Simplifying assumptions:
1. Least action solution is a handlebody
2. This handlebody preserves the boundary symmetries:

      replica symmetry not spontaneously broken 

cyclic permutations of the replicas

We found two solutions satisfying these assumptions
Exchange dominance at           for all  x = 1/2

Analytically continue the action to        - RT n = 1

n
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A Handlebody is a 3 manifold which fills in the
Riemann surface in such a way that there are g=(n-1) 
contractible cycles in the bulk (analog of solid torus)

OR

Pick these cycles symmetrically to preserve replica 
symmetry:

Tuesday, March 4, 2014



Constructed as follows:
Find a flat            connection living on      .  This can

then be extended to a 3d solution of Einstein’s
equations (a`la Witten’s           CS description of gravity.)

In particular contractible cycles must necessarily
have zero            monodromy and this uniquely

specifies the flat connection 
(e.g. we can find it numerically)

SL(2, C) Mn

SL(2, C)

SL(2, C)

Bulk action is then easy to compute (numerically.) 
Actually this algorithm works for non-integer n.

Why?

Extract Renyi Entropy!
Large-N phase transition at x=1/2
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General Lessons:
Why can we analytically continue in n?

Quotient

Algorithm finds this!

Zn symmetric

•         has conical deficit singularities, 
       opening angle: 
• For          regain original bulk + tensionless
      cosmic string 
• Equations for cosmic string fixed by Einstein’s
   equations - RT answer

n ≈ 1

Maldacena Lewcowycz

2π/n

Has fixed points
along co-dim 2 surfaces 
~ RT surface
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General Lessons:
Universality at large-c

AdS3Solutions we construct are locally         which is 
maximally symmetric and thus remains a solution 

including higher derivative corrections

(Riemann      Ricci) ∝

Expect Renyi Entropy to be universal for large-c CFTs

Sn = cfuniversal +O(c0)
Recall  Sgrav ∝ c

Like universality of thermodynamics at large-c 

Additional constraint on spectrum: density of
states is         for   O(c0) h < O(c)

Dijkgraaf, Maldacena, Moore, Verlinde `00 Keller `11

Tuesday, March 4, 2014



 CFT derivation
• Exact same prescription can be arrived at in a
completely different way for large-c CFTs

OPE coefficients
primaries

conformal blocks

• At large-c the relevant F’s are computed by the 
same monodromy problem as for the handlebodies
• Assuming nice behavior of the spectrum of
primaries as well as for the OPE coefficients one 
arrives at the same result

Hartman 13

Zamolodchikov `87
“Classical conformal blocks”

Z(Mn) =

Twist operators in 
(CFT )n/Zn
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Plan:

• Large-N phase transitions in Entanglement 
Entropy

• Spacetime dynamics (Einstein’s Equations) 
from the Entanglement First Law

Two interesting consequences/lessons of this 
formula:
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Dynamics & Entanglement
If geometry emerges, what about the dynamics

of this geometry? eg Eintein’s Equations

Many Hints - Thermodynamic in Nature

Recent precise statement: linearized Einstein’s Equations
                from “First Law of Entanglement”

Now: discuss a simple proof of this result
           and extension to higher derivative gravity

!Q"a

Jacobson `95

Padmanabhan; Verlinde

Lashkari, McDermott,Van Raamsdonk 
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First Law of Entanglement Entropy
ρA = trAc |0〉〈0||0〉 ∈ (H = HA ⊗HAc)

Modular Hamiltonian (Entanglement Hamiltonian):

H(|0〉)
A ≡ − log ρA + C

Calculate expectation in another state: Modular Energy
ρ′

A = trAc |ψ〉〈ψ|
“Small” variation in state

SA(ρA) = −trρA log ρA

EA(ρ′
A)− EA(ρA) = δEA ≈ δSA = SA(ρ′

A)− SA(ρ)

EA(ρ′
A) = trρ′

AH(|0〉)
A

State dependent operator (always vacuum for this talk)

(T = 1)
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Some Comments:
• “Small” change in state:

• Can be understood as a consequence of the 
positivity of relative entropy:

• For a       a thermal density matrix:                    
an exact quantum statement of the first law 
allowing for arbitrary first order variations:

|ψ(λ)〉 = |0〉 + λ|φ〉 + . . .

S(ρA|ρ′
A) = δE − δS ≥ 0

ρA exp(−βH)

T δS = δE
Energy Energy

Casini `08
a form of the 

Bekenstein Bound 

Blanco, Casini, Hung, Myers `13
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Modular Hamiltonian

Well known example of a Modular Hamiltonian:

Consider a local QFT; take A to be a subregion in a 
constant time slice of the QFT:

In general        will be some horrible non local operator HA

A

A
Half space/Rindler wedge    
         boost generator  HA =

Ac

Act
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Modular Hamiltonian for a Ball in CFT

HB = 2π

∫

B
dd−1x

R2 − "x2

2R
Ttt

This explicit expression for H will allow us to 
understand the consequences of first law in AdS/CFT!

In a CFT can conformally map half space
to a ball and the Rindler wedge to D

Conformal Killing Vector
ζB =

π

R

(
(R2 − t2 − #x2)∂t − 2txi∂i

)

Casini, Huerta, Myers `11

B

Boost generator maps to:D
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The First Law in AdS/CFT

B

B
~Σ

z
t

x

Small perturbation to vacuum:

|ψ(λ)〉 = |0〉 + λ|φ〉 + . . .

Consider gravity waves on AdS

gab = gAdS
ab + hab h! 1

 Entanglement Entropy:

Basic setup:RT surface

δS =
1

4GN

∫

B̃
δ
√

gB̃
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Modular Energy in AdS/CFT

ds2 = z−2
(
dz2 + ηµνdxµdxν

)
+ zd−2h(d)

µν dxµdxν + . . .

Assymptotically AdS:

Stress tensor constructed from assymptotic expansion:

〈Tµν〉 ≡
d

16πGN
h(d)

µν
(Einstein Gravity)

EB =
d

8GN

∫

B

(R2 − !x2)
2R

h(d)
tt〈HB〉 ≡

B : !x2 < R2

*(expansion found by solving EOM. We are soon to discuss deriving
  the EOM - might worry this is circular. Never fear: first law
  can also be used to directly derive this assymptotic behavior. )

*

Modular Energy:

Balasubramanian, Kraus ...
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The First Law in AdS/CFT

B̃

B

Non-local constraint on metric
perturbations 

In summary:

δSB = δEB

z

x

Both of these are integrals
of functionals of hΣ
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The First Law in AdS/CFT

B̃

B

Non-local constraint on metric
perturbations 

In summary:

δSB = δEB

z

x

Both of these are integrals
of functionals of h

Power: applies to all sizes of balls centered at 
all boundary points, in all Lorentz frames

Σ
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EOM         First Law

Simple application of Stokes:

To show this we constructed a (D-2) form:
with the following properties: ∫

B
χ = δEB

∫

B̃
χ = δSB

Claim: this set of non-local constraints on h,
equivalent to Einstein’s Equations

χ(h)

Since this should be true for all balls of all sizes etc:

Linearized metric EOM
    (tt component)

dχ ∝ (EOM)vΣ

0 = δSB − δEB ∝
∫

Σ
(EOM)

(EOM)tt = 0
Tuesday, March 4, 2014



EOM         First Law
In all Lorentz frames labelled by a 4-vector: uµ

Does not work for the z-components of the EOM 

Appeal to initial value formulation of gravity
on radial slices where these equations are
constraint equations. Just need to show they
are satisfied at the boundary 

Then this is preserved under radial evolution.

Follows from conservation + tracelessness of Tµν

uµuν(EOM)µν = 0 =⇒ (EOM)µν = 0

(z = 0)
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EOM         First Law
χ(h)But how did we construct this magical form          ? 

Short answer: looked up Iyer & Wald  `94 

They showed that all on-shell linearized perturbations 
of a stationary black hole with a killing horizon

satisfy a first law.

B

B
~Σ

The region of interest to us
can be thought of as a Rindler
wedge with a killing horizon: 

ξB = − 2
R

t[z∂z + xi∂i] +
1
R

[R2 − z2 − t2 − #x2] ∂t

ξB |z=0 → ζB

Killing energy = modular energy
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EOM         First Law
Iyer & Wald  `94 

Constructed a closed (D-2) form
for on-shell perturbations. 

χ(h, ξB)

Bonus:
Their construction applies to arbitrary theories
of higher derivative gravity.  Extend our proof:

RT (area law)

Einstein’s Equations Equations of Higher
derivative gravity

Swald

dχ ∝ (EOM)vΣ

We generalized to

TF, Guica, Hartman, Myers, Van Raamsdonk `13
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EOM         First Law
Iyer & Wald  `94 

Constructed a closed (D-2) form
for on-shell perturbations. 

χ(h, ξB)

Bonus:
Their construction applies to arbitrary theories
of higher derivative gravity.  Extend our proof:

RT (area law)

Einstein’s Equations Equations of Higher
derivative gravity

Swald

Noether Charge Symplectic 
potential

χ = δQ[ξB ]− ξB · Θ(h)
(Covariant phase space formalism)

dχ ∝ (EOM)vΣ

We generalized to

TF, Guica, Hartman, Myers, Van Raamsdonk `13
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Holographic Dictionary from First Law

z

x

Tµν

Remedy a gap in the proof:

lim
R→0

R−dδEB =
2πΩd−2

d2 − 1
δ〈Ttt(x0)〉

Take size of ball to be vanishingly small:

First law along with the Wald functional
allows us to read off the stress tensor
from the asymptotic metric!

Allows us to derive the full 
Fefferman-Graham expansion.

δSB = δSWald
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Conclusions

• First Law for Entanglement Entropy:

• Non-local constraint on dual spacetime
• Equivalent to linearized metric EOM
• Also gives us the holographic dictionary 

• Further work:

• Non-linear equations?
• More precise relationship to Jacobson?
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