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Table 1: Recoil energy dependence of effective cross section per nucleon for the NR operators. (Nu-
clear form factors are factored out.)

theory operators relevant for the scattering process, G(q2, mφ)JχJq(g). Jχ and Jq(g) are ap-
propriate DM and quark (gluon) operators, respectively. G(q2, mφ) comes from the exchange
of the mediator. Second, we convert this to an operator involving nucleons by taking the
nuclear matrix element

〈
N(p + q)|Jq(g)(q)|N(p)

〉
. Then we take the Fourier transform of the

scattering amplitude in the NR limit to get the effective potential, factoring out the nuclear
form factor in the definition of Veff . We present the result of the final step matching in the
cases of scalar, fermion and vector DM in Appendix C.1, C.2, C.3. Details of the nuclear
matrix elements are discussed in section 4. In this section, we discuss simple high energy
models of fermion DM for the set of NR operators in Eq. (2.2, 2.3).

Most of the existing DM models yield simple contact interactions as the leading operator.
It is possible, however, the coefficients of momentum (velocity) suppressed operators dominate
over that of the simplest contact interaction. The coefficient enhancement could be due to
large couplings of a mediator to the dark sector or small mediator mass as σ ∼ m−4. In
models where the leading operator is SD while the SI operators are momentum-suppressed,
the SI scattering could still be detectable as SI searches probe much weaker processes than
SD searches. For the SI operators, we have

• δ3("r)
This is the most studied case. For instance, Higgs exchange between fermion DM and
the nucleus would lead to an operator χ̄χq̄q. With Higgs mass around 100 GeV and
the Higgs–nucleon coupling about the strange-quark Yukawa coupling 10−3, this would
lead to a plausible scattering cross section ∼ 10−44 cm2. This could also arise from
gauge boson exchange, e.g., a Z boson exchange. The DM–Z coupling has to be of
order 10−3 for a 10−44 cm2 cross section. This small coupling could come from some
high dimensional operator. For instance, assume that DM and the SM higgs are both
charged under a new U(1) which is broken at scale Λ ∼10 TeV. Integrating out the Z ′

leads to a dimension six operator χ̄γµχh†Dµh which induces an effective DM-Z coupling
of order (vEW /Λ)2 ∼ (10−4 − 10−3).

• "sχ · "∇δ3("r)
This operator could arise from d′χ̄σµνγ5χF ′

µν , an electric dipole coupling of DM to a
new GeV gauge boson which kinetically mixes with the photon εF ′

µνF
µν [14]. The NR
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“semielastic DM” the spectrum comes from a combination of elastic and inelastic scattering,
while here we only consider elastic scattering. One could play further and consider both
elastic and inelastic scattering and various combinations of operators. If, in the near future,
direct detection confirms DM signals and collects enough data, one in principle could fit
the recoil spectrum to our NR theory parameterization to obtain information about the DM
interaction.
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Figure 1: Left: Recoil energy spectrum for 150 GeV DM scattering on germanium. The curves
correspond to spectra with one of h1, h2, l1, l2 being nonzero in red, blue dashed, purple dotted, and
green dot-dashed. Right: Recoil energy of 150 GeV DM on germanium with nonzero h2 and l1. All
the curves are normalized to have the same number of total events above 1 keV.

The limits on each coefficient from the experiments we consider are displayed in Fig. 2
and Fig. 3. Notice that in cases with a light mediator, due to the enhanced rate at small recoil
energy, the XENON10 reanalysis from Ref. [19] becomes the strongest constraint, as it is the
result with the lowest energy threshold. So far the importance of energy calibration around
the threshold has been mostly emphasized for ruling in or out the light DM scenario [29].
For Xenon-based experiments, the recoil energy threshold is determined by the scintillation
efficiency Leff , which is still controversial at the moment [21, 29]. But as is clear from the
discussions above, the low energy region and the precise measurement of Leff are also crucial
for constraining heavy DM with a light mediator. From Fig. 2, the strongest constraints on
the coefficients of SI operators in Eq. (2.2) are

h1 <∼ 10−8 GeV−2 =
10−4

(100 GeV)2

h2 <∼ 10−7 GeV−3 =
10−1

(100 GeV)3

l1 <∼ 10−11

l2 <∼ 10−9 GeV−1 =
10−7

(100 GeV)
. (3.1)

We have written the couplings as a ratio g
Λk , where the dimensionless part g ∼ gχfp(n) is

a product of the strength of the DM coupling to the mediator and the nucleus coupling
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Figure 2: SI exclusion curves for Wilson coefficients with CDMS black dashed, Xenon10 green solid,
Xenon100 purple dotted.

to the mediator, and we have chosen the scale involved, Λ, to be 100 GeV for illustrative
purposes. (Parametrically, Λ could be mχ, mN , mφ, or some new scale in the dark sector).
From this decomposition, one can draw clues about the relevant scales and couplings of a
model that could give rise to the NR operators. For instance, as already discussed in Sec. 2.3,
the simplest contact interaction could come from Higgs exchange between DM and nucleus
with Higgs mass around 100 GeV and its coupling to nucleus O(10−3−10−4). We also include
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Xenon100 purple dotted.
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