Displaced Leptons and Other Exotic Objects at the LHC

Jared A. Evans

jaredaevans@gmail.com

Department of Physics University of Illinois, Urbana-Champaign

Evans, Shelton - arXiv:1601.01326

Evans (UIUC)

Displaced Leptons

Status of LHC Exotic Objects

Displaced Leptons from $\tilde{\tau}_R$ s in Gauge Mediation

HSCP Searches (CMS) Disappearing Tracks Searches (ATLAS & CMS) CMS Displaced $e\mu$ Search Recast Limits Paths for Improvements

A Gap: Same-Flavor Displaced Leptons Models: co-NLSPs, EGMSB, RPV, freezein dark matter A Same-Flavor Displaced Lepton Search for 13 TeV

Comments and Perspectives

The LHC has constrained many new particles in many models

- MSSM
- ► t'/b'
- UED
- GMSB
- RPV
- Stealth
- 2HDM

...

Signature Space

These searches cast a wide net

The LHC has constrained many new particles in many models

- MSSM
- ► t'/b'
- UED
- GMSB
- RPV
- Stealth
- 2HDM

These searches cast a wide net - but there are gaps

Need comprehensive program that covers ALL new physics scenarios

The LHC has constrained many new particles in many models

- MSSM
- ► t'/b'
- UED
- GMSB
- RPV
- Stealth
- 2HDM

These searches cast a wide net – but there are gaps

Need comprehensive program that covers ALL new physics scenarios An exotic object could be our FIRST pathway to BSM physics!

Evans (UIUC)

The LHC has constrained many new particles in many models

- MSSM
- ► t'/b'
- UED
- GMSB
- RPV
- Stealth
- 2HDM

These searches cast a wide net – but there are gaps

Need comprehensive program that covers ALL new physics scenarios An exotic object could be our ONLY pathway to BSM physics!!!

Evans (UIUC)

Displaced Leptons

What are Exotic Objects?

What are Standard Objects?

	Object	Very Rough Identification Criteria						
1)	Photon	Hard, isolated EM calo deposit, $E_{tracks} \ll E_{calo}$						
2)	Electron	Hard, isolated EM calo deposit, $E_{\textit{track}} \sim E_{\textit{calo}}$						
3)	Muon	Hard, isolated track through muon chamber						
4)	Jet	Other hard calo/track/particle clusters						
a)	Tau	Single or 3-prong hard, isolated track(s)						
b)	<i>b</i> -jet	Secondary vertex, looks b-ish						
5)	Ēτ	$-\sumec{ m ho} au$						
	Key: Changed Inductor Photon Photon Similar	La phone la pho						

Evans (UIUC)

Displaced Leptons

What are Exotic Objects?

	Object	Very Rough Identification Criteria
1)	Photon	Hard, isolated EM calo deposit, $E_{tracks} \ll E_{calo}$
2)	Electron	Hard, isolated EM calo deposit, $E_{\textit{track}} \sim E_{\textit{calo}}$
3)	Muon	Hard, isolated track through muon chamber
4)	Jet	Other hard calo/track/particle clusters
a)	Tau	Single or 3-prong hard, isolated track(s)
b)	<i>b</i> -jet	Secondary vertex, looks b-ish
5)	Ḗτ	$-\sum ec{ m ho}_T$

Loaded words: track, isolated, hard, cluster, vertex, b-ish ...

Exotic objects have properties that allow them to be distinguished from these standard objects

What are Exotic Objects?

	Object	Very Rough Identification Criteria
1)	Photon	Hard, isolated EM calo deposit, $E_{tracks} \ll E_{calo}$
2)	Electron	Hard, isolated EM calo deposit, $E_{\textit{track}} \sim E_{\textit{calo}}$
3)	Muon	Hard, isolated track through muon chamber
4)	Jet	Other hard calo/track/particle clusters
a)	Tau	Single or 3-prong hard, isolated track(s)
b)	<i>b</i> -jet	Secondary vertex, looks b-ish
5)	Ḗτ	$-\sum ec{ m ho}_T$

Loaded words: track, isolated, hard, cluster, vertex, b-ish ...

Exotic objects have properties that allow them to be distinguished from these standard objects

Two basic classes: Direct & Indirect

Indirect

Observe the object itself

Observe atypical SM decay products

Direct vs Indirect

Direct

Indirect

Observe the object itself

Examples:

Disappearing tracks Heavy, stable, charged particles Magnetic monopoles *R*-hadrons

Quirks

• • •

Observe atypical SM decay products

Direct vs Indirect

Indirect

Observe the object itself

Direct

Observe atypical SM decay products

Examples:

Disappearing tracks Heavy, stable, charged particles Magnetic monopoles *R*-hadrons Quirks

LHC searches exist

. . .

What are Exotic Objects?

Direct vs Indirect

Observe the object itself

Direct

Examples:

Disappearing tracks Heavy, stable, charged particles Magnetic monopoles *R*-hadrons

Quirks

Observe atypical SM decay products

Indirect

Collimated particles fail isolation

Non-isolated leptons/photons Photon or lepton jets

LHC searches exist

What are Exotic Objects?

Direct vs Indirect

Direct

Observe the object itself

Examples:

Disappearing tracks Heavy, stable, charged particles Magnetic monopoles *R*-hadrons

Quirks

LHC searches exist

Indirect

Observe atypical SM decay products

Collimated particles fail isolation

Non-isolated leptons/photons Photon or lepton jets

Particles that decay in flight

Long lifetime from an approximate symmetry in the low energy theory

High dimension operators High mass scale Small couplings

t̃→d̄s (RPV) 104 charged stable 10-10 10^{3} charge-stripp 10^{2} LHC8 projection 10^{-9} 10^{1} 10^{0} ст (m) CMS dijet ATLAS HCAL $\lambda''_{312}=10^{-8}$ 10^{-} ATLAS µ spect 10^{-2} 10^{-7} 10^{-1} $10^{-4} - 10^{-6}$ prompt paired diiets 10^{-} 200400 600 800 1000 jet substructure m_7 (GeV) (projection) Liu, Tweedie - 2015

Many displaced decays are well-covered: Most RPV

Liu, Tweedie – 2015 Csaki, Kuflik, Lombardo, Slone, Volansky – 2015

Zwane - 2015

Evans (UIUC)

Displaced Leptons

ĝ→jjj (RPV)

Many displaced decays are well-covered: Most RPV

Liu, Tweedie – 2015 Csaki, Kuflik, Lombardo, Slone, Volansky – 2015

Zwane - 2015

Evans (UIUC)

Displaced Leptons

Many displaced decays are well-covered: Most GMSB

Liu, Tweedie - 2015

a) $\tilde{g} \rightarrow q q \tilde{B}$, m(\tilde{B}) = 0 (mini-split)

Many displaced decays are well-covered: Mini-Split Liu, Tweedie – 2015 Coverage exceeds prompt signatures!

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ $ au$	₽ _T
$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \gamma & egin{array}{c} \mu & \ au \end{array} & \ au \end{array} & \ au \end{array}$	X X X X X X	X X X X	X X X	X X	Х	
	Sea	rch		arXiv	Symbol	Comments

- Focused on pair produced, heavy decays inside the detector
- Only a selection of searches used, but fairly representative
- Cavalier about lifetime ranges and triggers; ignoring tops
- Bold is where searches are really optimized

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęτ
j	jj/dv	jj/dv	jj/dv	jj/ dv	jj∕ d∖	/ jj/dv	jj/ dv
b	X	jj/dv	jj/dv	jj/ dv	jj∕ d∖	/ jj/dv	jj/ dv
γ	X	Х					
е	X	Х	Х	dv	dv	dv	
μ	X	Х	Х	Х	dv	dv	
au	X	Х	Х	Х	Х	dv	
		_					_
	Sea	rch		arXiv		Symbol	Comments
CMS	6 Displa	aced Di	jets	1411.653	30	jj	$m_X > 50 \text{ GeV}$
ATLA	S Displ	aced V	ertex	1504.051	62	dv	$m_X > 10 \text{ GeV}$

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęτ	
j	jj/dv	jj/dv	jj/dv	jj/ dv	jj/ dv	jj/dv	jj/ dv	
b	X	jj/dv	jj/dv	jj/ dv	jj∕ dv	jj/dv	jj/ dv	
γ	X	X	v			1 /11		
e				dv/II	dv	dv/ll		
μ	X	X	X	X	dv/ll	dv/ll		
au	X	Х	Х	Х	Х	dv/ll		
Search arXiv Symbol Comments								
CMS	S Displa	aced Di	jets	1411.653	30	jj	$m_X > 50 \text{ GeV}$	
ATLA	S Displ	aced V	ertex	1504.051	62	dv	$m_X > 10 \text{ GeV}$	
CMS	Displac	ed Dile	epton	1411.697	77	II	$m_X > 15 \text{ GeV}$	

	<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт	
	j	jj/dv	jj/dv	jj/dv/d	A jj/dv	jj/ d	l v jj/dv	jj/ dv	
	b	X	jj/dv	jj/dv/d	A jj/dv	jj/d	l v jj/dv	jj∕ dv	
	γ	X	Х	dA	dA	dA	A dA	dA	
	е	X	Х	Х	dv/ll	d١	dv/	I	
	μ	X	Х	Х	Х	dv/	/ll dv/	I	
	au	X	Х	Х	Х	Х	dv/ll		
		_						_	
_		Sea	rch		arXiv	'	Symbol	Comments	
CMS Displaced Dijets					1411.65	530	jj	$m_X > 50 \text{ GeV}$	1
	ATLA	S Displ	aced V	ertex	1504.05	162	dv	<i>m_X</i> > 10 GeV	1
	CMS	Displac	ed Dile	epton	1411.69	977		<i>m_X</i> > 15 GeV	1
	ATLA	S Dela	yed Ph	oton	1409.55	542	dA	$m_X\gtrsim 100~{ m GeV}$	I

j jj/dv jj/dv jj/dv/dA jj/dv jj/dv jj/dv/em jj/dv	_
b X jj/dv jj/dv/dA jj/dv jj/dv jj/dv/em jj/dv	
γ X X dA dA dA dA/em dA	
e X X X dv/ll dv dv/ll	
μ X X X X dv/II dv/II	
$ au \mid X \mid $	
Search arXiv Symbol Comn	nents
CMS Displaced Dijets 1411.6530 jj $m_X > 5$	0 GeV
ATLAS Displaced Vertex 1504.05162 dv $m_X > 1$	0 GeV
CMS Displaced Dilepton 1411.6977 II $m_X > 1$	5 GeV
ATLAS Delayed Photon 1409.5542 dA $m_X \gtrsim 10^{-10}$	00 GeV
CMS Displaced $e\mu$ 1409.4789 em Best a	t LFU

	<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au		Ęт	
	j	jj/dv	jj/dv	jj/dv/d/	A jj∕ dv	jj/ dv	jj/dv/	em	jj/ dv	
	b	X	jj/dv	jj/dv/d <mark>/</mark>	A jj∕ dv	jj/ dv	jj/dv/	em	jj∕ dv	
	γ	X	Х	dA	dA	dA	dA/e	m	dA	
	е	X	Х	Х	dv/ll	dv	dv/	11 /	\frown	
	μ	X	Х	Х	Х	dv/ll	dv/	11		
	au	X	Х	Х	Х	Х	dv/ll/	em 💧	em	
		Sea	.rch		arXiv	S	Symbol	С	omm	ents
	CMS	6 Displa	aced Di	jets	1411.65	30	jj	m _X	· > 50) GeV
ATLAS Displaced Vertex					1504.051	62	dv	m _X	· > 10) GeV
CMS Displaced Dilepton					1411.69	77	II	m_X	r > 15	i GeV
ATLAS Delayed Photon					1409.55	42	dA	m_X	\gtrsim 10	0 GeV
	CM	IS Disp	placed e	Э μ	1409.47	89	em	Be	est at	LFU

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт
$\int b \gamma e \mu \tau$	X X X X X	X X X X	X X X	X X	X		
	Models		Symbo	l			

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт
ļ	М						Μ
b	X	M					Μ
γ	X	Х					
е	X	Х	Х				
μ	X	Х	Х	Х			
au	X	Х	Х	Х	Х		
	Models		Symbol	_			
	Mini-Split		М				

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт
j	MG						MG
b	Х	MG					MG
γ	Х	Х					G
e	Х	Х	Х	G			G
μ	Х	Х	Х	Х	G		G
au	Х	Х	Х	Х	Х	G	G
	Models		Symbo				
	Mini-Split		M				
	GMSB		G				

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт
j	MGR	R		R	R	R	MGR
b	X	MGR		R	R	R	MGR
γ	Х	Х					G
e	Х	Х	Х	GR	R	R	GR
μ	Х	Х	Х	Х	GR	R	GR
au	Х	Х	Х	Х	Х	GR	GR
	Models	Symbo	bl				
Mini-Split		М					
GMSB		G					
RPV/dRPV		R					

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт
j	MGRS	R		R	R	R	MGR
b	X	MGRS		R	R	R	MGR
γ	Х	Х	S				G
e	Х	Х	Х	GR	R	R	GR
μ	Х	Х	Х	Х	GR	R	GR
au	Х	Х	Х	Х	Х	GR	GR
	Models		Symbo	bl			
	Mini-Split	М					
GMSB			G				
RPV/dRPV			R				
	Stealth		S				

<i>0</i> 2 <i>0</i> 1	j	b	γ	е	μ	au	Ęт
j	MGRS	R		R	R	R	MGR
b	Х	MGRSH		R	R	R	MGR
γ	Х	Х	S				G
e	Х	Х	Х	GR	R	R	GR
μ	Х	Х	Х	Х	GRH	R	GR
au	Х	Х	Х	Х	Х	GRH	GR
	Models		Symbo	I			
Mini-Split			М				
	GMSB		G				
	/	R					
Stealth			S				
	Higgs Mixe	d	Н				

<i>0</i> 2 <i>0</i> 1	j	b	γ	е	μ	au	Ęт
j	$MGRS\gamma$	R		R	R	R	MGR
b	Х	$MGRSH\gamma$		R	R	R	MGR
γ	Х	Х	S				G
e	Х	Х	Х	$GR\gamma$	R	R	GR
μ	Х	Х	Х	X	$GRH\gamma$	R	GR
au	Х	Х	Х	Х	X	$GRH\gamma$	GR
	Models	S	ymbo	bl			
Mini-Split			Μ				
GMSB			G				
	/	R					
Stealth			S				
Higgs Mixed		d	Н				
	Dark Photo	n	γ				

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт	
j	$MGRS\gamma$	R		R	R	R	MGRD	_
b	Х	$MGRSH\gamma$		R	R	R	MGRD	
γ	Х	Х	S				G	
e	Х	Х	Х	$GR\gamma$	R	R	GRD	
μ	Х	Х	Х	X	$GRH\gamma$	R	GRD	
au	Х	Х	Х	Х	Х	$GRH\gamma$	G RD	
	Models	S	Symbo	bl				
	Mini-Split		М					
	GMSB		G					
	RPV/dRPV	/	R					
	Stealth		S					
Higgs Mixed			Н					
Dark Photon			γ					
MD Fr	eezein Darl	<pre>Matter</pre>	D					
E	vans (UIUC)		Displaced	Leptons		February	16,2016 8	/ 39

<i>0</i> ₂ <i>0</i> ₁	j	b	γ	е	μ	au	Ęт
j	$MGRS\gamma$	R		R	R	R	MGRD
b	Х	$MGRSH\gamma$		R	R	R	MGRD
γ	Х	Х	S				G
e	Х	Х	Х	$GR\gamma$	R	R	GRD
μ	Х	Х	Х	X	$GRH\gamma$	R	GRD
τ	Х	Х	Х	Х	Х	$GRH\gamma$	GRD
	Models	ç	Symbo	bl			
-	Mini-Split		М				
	GMSB		G				
	RPV/dRP\	/	R	We	ll-motiva	ted Theo	retically
	Stealth		S			_	lotiouity
	Higgs Mixe	d	Н	Wea	k Covera	ige Expe	rimentally
	Dark Photo	n	γ				
MD Fr	eezein Darl	< Matter	D				
E	vans (UIUC)		Displaced	Leptons		Februar	y 16, 2016 8/3
Displaced Leptons in Prompt Searches

Prompt lepton-based searches:

- Quality criteria drop displaced electrons
- Displaced muons veto events (cosmics)
- Vetoes range from 50 µm-1 mm

Prompt jets+ $\not\!\!\!E_T$ searches:

- Veto events with leptons
- Definition not always transparent

Displaced Leptons in Prompt Searches

Prompt lepton-based searches:

- Quality criteria drop displaced electrons
- Displaced muons veto events (cosmics)
- Vetoes range from 50 µm-1 mm

Prompt jets+ $\not\!\!\!E_T$ searches:

- Veto events with leptons
- Definition not always transparent

 $pp \rightarrow \tilde{\ell}^+ \tilde{\ell}^- + X \rightarrow \{\text{displaced muons}\} + X$ lives in a prompt search blind spot!

Displaced electrons and taus \Rightarrow reduced efficiency

Evans (UIUC)

Gauge Mediation and $\tilde{\tau}_R$ NLSPs

Lightning Review of Minimal GMSB

Gauge Mediation and $\tilde{\tau}_R$ NLSPs

Lightning Review of Minimal GMSB

Gauge Mediation and $\tilde{\tau}_R$ NLSPs

Lightning Review of Minimal GMSB

GMSB is a very well-motivated source of displaced particles

$$c au pprox 100 \,\mu {
m m} \left(rac{100 \,\, {
m GeV}}{m_{ au}}
ight)^5 \left(rac{\sqrt{F}}{100 \,\, {
m TeV}}
ight)^4$$
What is \sqrt{F} ?

GMSB is a very well-motivated source of displaced particles

$$c au pprox 100 \,\mu {
m m} \left(rac{100 \,\, {
m GeV}}{m_{ au}}
ight)^5 \left(rac{\sqrt{F}}{100 \,\, {
m TeV}}
ight)^4$$
What is \sqrt{F} ?

$$F < M^2$$
; otherwise arbitrary

$$c au \sim 10 \ \mu m \left(rac{100 \ {
m GeV}}{m_{ au}}
ight) \left(rac{M}{\sqrt{F}}
ight)^4 rac{1}{N_{eff}^2} \qquad ({
m minimal \ GM \ only})$$

LHC relevant range: 100 $\mu {
m m} \lesssim c au \lesssim$ 1 m

Measuring $m_{\tilde{\tau}_R}$ & $c\tau_{\tilde{\tau}_R}$ probes SUSY breaking!

Gauge Mediation and $\tilde{\tau}_R$ NLSPs LEP Limits on Slepton NLSPs

OPAL placed the best limits on sleptons of all lifetimes

At long lifetime: $c\tau_{\tilde{\tau}} \gtrsim 1 \text{ m} \Rightarrow$ heavy, detector-stable, charged particle

CMS HSCP search 1305.0491 (expect similar from ATLAS 1411.6795)

Efficiency maps provided: 1502.02522

Relevant LHC search: Disappearing Tracks CMS 1411.6006

At slightly shorter lifetimes: 30 cm $\lesssim c \tau_{\tilde{\tau}} \lesssim$ 3 m \Rightarrow disappearing tracks

Cuts

Simple efficiency map provided 1411.6006

Evans (UIUC)

Relevant LHC search: Disappearing Tracks ATLAS 1310.3675

At slightly shorter lifetimes: 20 cm $\lesssim c \tau_{\tilde{\tau}} \lesssim$ 2 m \Rightarrow disappearing tracks

<u>Cuts</u>

No efficiency map provided

Relevant LHC search: Disappearing Tracks Recast Caveats

Isolation requirements are hard on long-lived staus

Even with wide opening angles, effective ΔR can be very small

(We model this, but very uncertain)

Extensive recasting details provided!

Evans (UIUC)

Impact Parameter

Impact Parameter is *not* the location of parent *b* and τ decay products are more collimated

Relevant LHC search: CMS Displaced $e\mu$ (1409.4789) Backgrounds & Data

Event source	SR1	SR2	SR3
Other EW	$0.65 \pm 0.13 \pm 0.09$	$(0.89\pm 0.53\pm 0.12)\times 10^{-2}$	$<\!(89\pm53\pm12)\times10^{-4}$
Top quark	$0.77 \pm 0.04 \pm 0.08$	$(1.25\pm0.26\pm0.12) imes10^{-2}$	$(2.4\pm1.3\pm0.2) imes10^{-4}$
$Z \rightarrow \tau \tau$	$3.93 \pm 0.42 \pm 0.39$	$(0.73\pm0.73\pm0.07)\times10^{-2}$	${<}(73\pm73\pm7)\times10^{-4}$
HF	$12.7\pm0.2\pm3.8$	$(98\pm 6\pm 30)\times 10^{-2}$	$(340\pm110\pm100)\times10^{-4}$
Total expected background	$18.0 \pm 0.5 \pm 3.8$	$1.01 \pm 0.06 \pm 0.30$	$0.051 \pm 0.015 \pm 0.010$
Observed	19	0	0

Evans (UIUC)

February 16, 2016 19 / 39

Only HSCP limits on direct $\tilde{\tau}_R$ production!

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown)

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown)

Limits are very sensitive to $m_{\tilde{\tau}_R}$

Evans	(UIUC)
LVans	(0100)

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown)

Limits are very sensitive to $m_{\tilde{\tau}_R}$

Evans (UIUC)

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown) Limits are very sensitive to $m_{\tilde{\tau}_{B}}$

Evans (UIUC)

CMS heavy, stable, charged particle search does very well!

Using "tracker-only" signal region could improve sensitivity

Currently no efficiency maps provided

ATLAS hurt by lepton vetoes and hardest track requirement

Both disappearing tracks searches are hurt by isolation requirements

Could similar pre-selection capitalize on kinked track?

There are several lessons from GMSB $\tilde{\tau}_R$ s to improve sensitivity

$$egin{aligned} & BR(ilde{ au}^+ ilde{ au}^-
ightarrow e^\pm\mu^\mp+X)=6\%\ & BR(ilde{ au}^+ ilde{ au}^-
ightarrow e^+e^-+X)=3\%\ & BR(ilde{ au}^+ ilde{ au}^-
ightarrow \mu^+\mu^-+X)=3\% \end{aligned}$$

1) Add same-flavor lepton channels

There are several lessons from GMSB $\tilde{\tau}_R$ s to improve sensitivity

$$egin{aligned} & BR(ilde{ au}^+ ilde{ au}^-
ightarrow e^\pm\mu^\mp+X)=6\%\ & BR(ilde{ au}^+ ilde{ au}^-
ightarrow e^+e^-+X)=3\%\ & BR(ilde{ au}^+ ilde{ au}^-
ightarrow \mu^+\mu^-+X)=3\% \end{aligned}$$

1) Add same-flavor lepton channels

$$\begin{array}{l} BR(\tilde{\tau}^+\tilde{\tau}^- \rightarrow e^{\pm}\tau_h^{\mp} + X) = 23\%\\ BR\tilde{\tau}^+\tilde{\tau}^- \rightarrow \mu^{\pm}\tau_h^{\mp} + X) = 23\%\\ BR(\tilde{\tau}^+\tilde{\tau}^- \rightarrow \tau_h^{\pm}\tau_h^{\mp} + X) = 42\% \end{array}$$

2) Include hadronic τ_h s

Experimental feasibility of displaced τ_h s?

Evans (UIUC)

Potential Improvements?

CMS Displaced Lepton Search

Right-handed polarized τ s from $\tilde{\tau}_R$ decays give softer leptons

3) Lower p_T thresholds can capture a lot more signal Additional triggers – $\not\!\!\!E_T + \ell \ell$, $\not\!\!\!E_T$, $\ell \ell \ell$, etc

Evans (UIUC)

Search vetoes additional leptons. Why?

Displaced multilepton background should be very small

Potential Improvements?

CMS Displaced Lepton Search

Search vetoes additional leptons. Why?

Displaced multilepton background should be very small

(CDF ghost muons???)

Potential Improvements?

CMS Displaced Lepton Search

10⁶ CDF 0810.5357 10 Search vetoes additional leptons. Muons / (0.008 cm) Why? Displaced multilepton background should be very small (CDF ghost muons???) 1.5 d (cm)

Gluino & Higgsino model have additional leptons often $\sim\!(45\%,\,30\%)$

If pair-produced object is not charged under lepton number, additional leptons are generic

4) Don't veto additional leptons

Gluino & Higgsino models have Majorana particles in chain \Rightarrow same-sign displaced leptons

5) Include same-sign displaced lepton signal regions

Gluino & Higgsino models have Majorana particles in chain ⇒ same-sign displaced leptons

5) Include same-sign displaced lepton signal regions

5') Same-sign possibility fairly generic, be wary of CR contamination SS ℓ can appear in the $\tilde{t} \rightarrow \ell^+ b$ benchmark of CMS 1409.4789 Mesino oscillation allows up to 3/8 of events as SS ℓ sarid, Thomas – 9909349

Potential Improvements?

CMS Displaced Lepton Search

Potential Improvements?

CMS Displaced Lepton Search

Extend reach in $c\tau$?

 Allow d₀ above 2 cm (Even just for muons)

Potential Improvements?

CMS Displaced Lepton Search

Extend reach in $c\tau$?

- 6) Allow d₀ above 2 cm(Even just for muons)
- 7) Relax isolation in high d_0 bins (Backgrounds are small there)

Same-flavor Displaced Lepton Models Slepton Co-NLSP in GGM

If $m_{\tilde{\ell}_R} - m_{\tilde{\tau}_R} \ll 10 \text{ GeV}$ or $m_{\tilde{B}} \gg m_{\tilde{\tau}_R}$, then $\Gamma(\tilde{\ell}_R \to \ell \tau \tilde{\tau}_R) \ll \Gamma(\tilde{\ell}_R \to \ell \tilde{G}) \Rightarrow$ Slepton Co-NLSP

Events have displaced e^+e^- , $\mu^+\mu^-$, or $\tau^+\tau^-$

If $m_{\tilde{\ell}_R} - m_{\tilde{\tau}_R} \ll 10 \text{ GeV}$ or $m_{\tilde{B}} \gg m_{\tilde{\tau}_R}$, then $\Gamma(\tilde{\ell}_R \to \ell \tau \tilde{\tau}_R) \ll \Gamma(\tilde{\ell}_R \to \ell \tilde{G}) \Rightarrow$ Slepton Co-NLSP

Events have displaced e^+e^- , $\mu^+\mu^-$, or $\tau^+\tau^-$

Small splitting can happen for low tan β In GGM, M_1 and $m_{\tilde{E}_R}^2$ are independent

 $\mu^+\mu^-$ and ${\it e}^+{\it e}^-$ searches would be more sensitive to this model

If $m_{\tilde{\ell}_R} - m_{\tilde{\tau}_R} \ll 10 \text{ GeV}$ or $m_{\tilde{B}} \gg m_{\tilde{\tau}_R}$, then $\Gamma(\tilde{\ell}_R \to \ell \tau \tilde{\tau}_R) \ll \Gamma(\tilde{\ell}_R \to \ell \tilde{G}) \Rightarrow$ Slepton Co-NLSP

Events have displaced ${\it e^+e^-},\,\mu^+\mu^-,\,{\rm or}\,\,\tau^+\tau^-$

Small splitting can happen for low tan β In GGM, M_1 and $m_{\tilde{E}_R}^2$ are independent

 $\mu^+\mu^-$ and e^+e^- searches would be more sensitive to this model

Can one get 100% e^+e^- or $\mu^+\mu^-$ without $\tau^+\tau^-$?

Same-flavor Displaced Lepton Models $\tilde{\tau}_1$ with LLE RPV

RPV can do almost anything

Same-flavor Displaced Lepton Models $\tilde{\tau}_1$ with *LLE* RPV

Same-flavor Displaced Lepton Models $\tilde{\tau}_1$ with *LLE* RPV

 $\lambda_{232} \cos \theta_{\tilde{\tau}} \gg \text{other RPV} \quad \Rightarrow \quad \mathsf{BR}(\tilde{\tau}_1 \to \mu \nu) \approx 100\%$

Extended GMSB (EGMSB) models can generate large A_t for maximal \tilde{t} mixing and decreased tuning of the MSSM Higgs

Craig, Knapen, Shih, Zhao - 1206.4086; Evans, Shih - 1303.0228; others

EGMSB can also give a 1st- or 2nd-gen slepton NLSP Shadmi, Szabo - 1103.0292

Extended GMSB (EGMSB) models can generate large A_t for maximal \tilde{t} mixing and decreased tuning of the MSSM Higgs

Craig, Knapen, Shih, Zhao - 1206.4086; Evans, Shih - 1303.0228; others

EGMSB can also give a 1st- or 2nd-gen slepton NLSP shadmi, Szabo - 1103.0292

Add EGMSB MSSM-Messenger coupling: $W \supset \kappa_i E_i^c \Phi_U \Phi_{\bar{D}}$ $\vec{\kappa} = (0, \kappa_2, 0)$ gives $\Delta m_{\tilde{\mu}} \sim -25\kappa_2^2 m_{\tilde{\ell}}$

$$\kappa_2 \sim 0.1 \Rightarrow \tilde{\mu}_R \text{ NLSP}$$

 $rac{\kappa_1}{\kappa_2} \ll$ 0.1 & $rac{\kappa_3}{\kappa_2} \lesssim$ 0.3 no CMS $e\mu$ sensitivity and safe from flavor

Same-flavor Displaced Lepton Models

Freezein of Dark Matter During a Matter-Dominated Era

Minimal models of lepton-flavored DM

Model	Mediator	DM	Lagrangian
1	Scalar	Fermion	$y_{ij}^{LDM}\ell_i^c\zeta^-\chi_i+m_{\zeta}^2\zeta^+\zeta^-+m_{\chi,ij}\chi_i\bar{\chi}_j$
2	Fermion	Scalar	$y_{ij}^{LDM}\ell_i^c\psi S_j + m_\psi^\psi\psi\bar\psi + m_{S,ij}^2S_i^\dagger S_j$

 y^{LDM} for $c\tau \sim \mathcal{O}(1mm - 1m) \Rightarrow \Omega_{DM}$ too high!

Same-flavor Displaced Lepton Models

Freezein of Dark Matter During a Matter-Dominated Era

Minimal models of lepton-flavored DM

Co, D'Eramo, Hall, Pappadopulo - 1506.07532

Same-flavor Displaced Lepton Models

Freezein of Dark Matter During a Matter-Dominated Era

Minimal models of lepton-flavored DM

Model	Mediator	DM	Lagrangian
1	Scalar	Fermion	$y_{ij}^{LDM}\ell_i^c\zeta^-\chi_i+m_{\zeta}^2\zeta^+\zeta^-+m_{\chi,ij}\chi_i\bar{\chi}_j$
2	Fermion	Scalar	$y_{ij}^{LDM}\ell_i^c\psi S_j + m_\psi^{}\psi\bar{\psi} + m_{S,ij}^2S_i^{\dagger}S_j$

 y^{LDM} for $c\tau \sim \mathcal{O}(1mm - 1m) \Rightarrow \Omega_{DM}$ too high!

For Model 2:

$$\frac{\Omega_{DM}}{\Omega_{DM,obs}} \approx \left(\frac{20}{m_{\psi}/T_{RH}}\right)^7 \left(\frac{500 \text{ GeV}}{m_{\psi}}\right)^2 \left(\frac{m_S}{1 \text{ MeV}}\right) \left(\frac{1 \text{ cm}}{c\tau_{\psi}}\right)$$

For 100 GeV $< m_{\psi} \lesssim 1$ TeV and 100 μ m $\lesssim c\tau \lesssim 1$ m $m_S \ll m_{\psi}$ and T_{RH} can be chosen to give $\Omega_{DM} = \Omega_{DM,obs}!$

Same-Flavor Displaced Lepton Search

Backgrounds

How can we estimate 13 TeV backgrounds?

- 1. Use 8 TeV backgrounds to estimate 8 TeV SF backgrounds
- 2. Rescale backgrounds by $\frac{\sigma(13)}{\sigma(8)}$ (supported by HF MC)
- 3. Assume displaced $Z \rightarrow e^+ e^- / \mu^+ \mu^-$ is small or can be controlled
- 4. Artificially low trigger, but have a background we can estimate

Backgrounds

How can we estimate 13 TeV backgrounds?

Sample	SR1	SR2	SR3
$e^{\pm}\mu^{\mp}$ 8 TeV (CMS actual)	18.0 ± 3.8	1.01 ± 0.31	0.051 ± 0.018
$e^{\pm}\mu^{\mp}$ 8 TeV (estimate)	19.8 ± 4.1	$\textbf{0.92} \pm \textbf{0.28}$	0.055 ± 0.024
$e^{\pm}\mu^{\mp}$ 13 TeV (20 fb $^{-1}$)	34.1 ± 6.5	$\textbf{1.49} \pm \textbf{0.44}$	$\textbf{0.086} \pm \textbf{0.038}$
<i>e</i> ⁺ <i>e</i> ⁻ 13 TeV (20 fb ⁻¹)	25.2 ± 3.6	$\textbf{1.43} \pm \textbf{0.33}$	$\textbf{0.31} \pm \textbf{0.06}$
$\mu^+\mu^-$ 13 TeV (20 fb $^{-1}$)	13.0 ± 3.1	$\textbf{0.50} \pm \textbf{0.15}$	0.012 ± 0.006

- 1. Use 8 TeV backgrounds to estimate 8 TeV SF backgrounds
- 2. Rescale backgrounds by $\frac{\sigma(13)}{\sigma(8)}$ (supported by HF MC)
- 3. Assume displaced $Z \rightarrow e^+ e^- / \mu^+ \mu^-$ is small or can be controlled
- 4. Artificially low trigger, but have a background we can estimate

Same-Flavor Displaced Lepton Search

13 TeV Same-Flavor Search

Same-Flavor Displaced Lepton Search

Improving a 13 TeV Same-Flavor Search

$$\tilde{e}^+ \rightarrow e^+ \tilde{G} \Rightarrow \text{hard leptons}$$

 $\tilde{\mu}^+ \rightarrow \mu^+ \tilde{G} \Rightarrow \text{hard leptons}$

 $\tilde{\tau}^+ \rightarrow \tau^+ \tilde{G} \Rightarrow \text{soft leptons}$

8) SF search can be improved with higher $p_{T,\ell}$, lower background bins

Efficiency maps and recasting instructions are an *essential* facet to all searches for exotic objects

Evans (UIUC)

Comments and Perspectives Recasting

Clear information about applying the search beyond the benchmark

are valuable for recasting to new scenarios

(Admittedly, tricky to assess in advance)

Evans (UIUC)

Comments and Perspectives

Known unknowns...

What more is wanted from theory?

What more is wanted from theory?

What is the status of displaced photons without ∉_T? Is there a gap at ATLAS? Does CMS fill it? What more is wanted from theory?

What is the status of displaced photons without ∉_T? Is there a gap at ATLAS? Does CMS fill it?

Quirks

What regions of parameter space ($m_Q \text{ vs } \Lambda_{IC}$) are constrained? What new search strategies could fill the gaps? What more is wanted from theory?

What is the status of displaced photons without ∉_T? Is there a gap at ATLAS? Does CMS fill it?

Quirks

What regions of parameter space ($m_Q \text{ vs } \Lambda_{IC}$) are constrained? What new search strategies could fill the gaps?

Hidden valleys (high mass and Higgs portal)

What classes of models are constrained by existing searches? Can model-specific details be distilled to a simplified framework? Minimal set of searches to cover all observable possibilities?

Comments and Perspectives

Known unknowns...

Comments and Perspectives

Known unknowns...

- Displaced same-flavor leptons
- Displaced taus
- ATLAS displaced leptons

- Displaced same-flavor leptons
- Displaced taus
- ATLAS displaced leptons
- Non-isolated leptons Brust, Maksimovic, Sady, Saraswat, Walters, Xin 1210.3657
- Photon jets Eliis, Roy, Scholtz 1410.0362

- Displaced same-flavor leptons
- Displaced taus
- ATLAS displaced leptons
- Non-isolated leptons Brust, Maksimovic, Sady, Saraswat, Walters, Xin 1210.3657
- Photon jets Eliis, Roy, Scholtz 1410.0362
- Emerging jets Schwaller, Stolarski, Weiler 1502.05409
- Quirks (straight tracks & anomalous bending) Kang, Luty 0805.4642

- Displaced same-flavor leptons
- Displaced taus
- ATLAS displaced leptons
- Non-isolated leptons Brust, Maksimovic, Sady, Saraswat, Walters, Xin 1210.3657
- Photon jets Eliis, Roy, Scholtz 1410.0362
- Emerging jets Schwaller, Stolarski, Weiler 1502.05409
- Quirks (straight tracks & anomalous bending) Kang, Luty 0805.4642
- Unknown unknowns {insert your paper here}

Conclusions

- Many exotic objects are covered, but there are gaps
- Sensitivity to $\tilde{\tau}_R$ can be improved in the CMS $e^{\pm}\mu^{\mp}$ search
- Add SFℓ bins
- Add τ_h bins
- Lowered p_T thresholds
- Extend $d_0 > 2 \text{ cm}$

- ► Add SSℓ bins (CR contamination)
- Allow extra ls
- Relax isolation in high d₀ bins
- Add high $p_{T,\ell}$ bins
- Disappearing track searches should consider this benchmark
 Kinked tracks?
- Several models with displaced $ee/\mu\mu$ uncovered at LHC
- A lot of exciting work needs to be done on exotic objects!