Symmetry constraints on counterterms in $N = 8$ supergravity

Henriette Elvang

University of Michigan

&

Institute for Advanced Study

Rutgers September 28, 2010

Based on

arXiv:1009.1643 w/ Niklas Beisert, Dan Freedman, Michael Kiermaier, Alejandro Morales, Stephan Stieberger

arXiv:1007.4813 w/ Michael Kiermaier

arXiv:1003.5018 w/ Dan Freedman, Michael Kiermaier

Henriette Elvang [Symmetry constraints on counterterms in](#page-44-0) $N = 8$ supergravity

Is $\mathcal{N} = 8$ supergravity UV finite in 4d?

Perturbative structure of $\mathcal{N} = 8$ supergravity in 4d |

L-loop divergence \leftrightarrow counterterm of mass dimension (2L + 2)

for example: R^4 at 3-loop order

Perturbative structure of $\mathcal{N}=8$ supergravity in 4d

L-loop divergence \leftrightarrow counterterm of mass dimension (2L + 2)

for example: R^4 at 3-loop order

Candidate counterterms are

- **·** local operators
- $N = 8$ SUSY
- \bullet $SU(8)_R$ -invariant
- \bullet $E_{7(7)}$ -compatible

Chart of potential counterterms

Pure supergravity finite at 1- and 2-loop order.

Purely gravitational operators are contractions of Riemann tensors $R_{\mu\nu\rho\sigma}$ and covariant derivatives D_{μ} . Here's the chart:

Must require $\mathcal{N} = 8$ SUSY and SU(8).

Analysis of potential counterterms

Instead of studying the operators, we analyze their matrix elements:

no such matrix elements \leftrightarrow no such operator \leftrightarrow no such counterterm.

If matrix elements do exist: determine multiplicities of such operators.

- **1** PART 1: $\mathcal{N} = 8$ SUSY and $SU(8)$.
- **2** PART 2: $E_{7(7)}$ constraints.
- ³ THE END: "Landscape" of candidate counterterms.

Tool kit

• "Little group scaling":

For each external state $i = 1, \ldots, n$,

 $|i\rangle \rightarrow t_i |i\rangle$ and $|i] \rightarrow t_i^{-1} |i]$, \implies $A_n \rightarrow t_i^{-2h_i} A_n$

where h_i is the helicity.

• Dimensional analysis:

Each $\langle ij \rangle$ and $[ij]$ has mass dimension 1.

• $\mathcal{N} = 4, 8$ SUSY Ward identities:

$$
\mathsf{MHV}\colon \langle++---++\ldots\rangle=\frac{\langle 34\rangle^{\mathcal{N}}}{\langle 12\rangle^{\mathcal{N}}}\langle--++++\ldots\rangle.
$$

Example: 4-gluon MHV amplitude

$$
A_n(1^-2^-3^+4^+ \ldots n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \cdots \langle n1 \rangle}
$$

has mass dim. $4 - n$.

4-loops: R^5 (mass dim. $2L + 2 = 10$)

10 derivatives in R^5

- \rightarrow leading 5-point interaction has 10 power of momentum
- \rightarrow 5-pt matrix element has mass dim. 10 and is polynomial of degree 10 in $\langle .. \rangle$'s and $[..]'$ s.

4-loops: R^5 (mass dim. $2L + 2 = 10$)

10 derivatives in R^5 \rightarrow leading 5-point interaction has 10 power of momentum \rightarrow 5-pt matrix element has mass dim. 10 and is polynomial of degree 10 in $\langle .. \rangle$'s and $[..]'$ s.

$$
\text{Little gp scaling} \quad \rightarrow \quad \langle 1^- 2^- 3^+ 4^+ 5^+ \rangle_{R^5} \text{ contains } \left\{ \begin{array}{l} |1\rangle^4, |2\rangle^4 \\ |3|^4, |4|^4, |5|^4 \end{array} \right.
$$

unique: $\langle 1^-2^-3^+4^+5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

4-loops: R^5 (mass dim. $2L + 2 = 10$)

10 derivatives in R^5 \rightarrow leading 5-point interaction has 10 power of momentum \rightarrow 5-pt matrix element has mass dim. 10 and is polynomial of degree 10 in $\langle .. \rangle$'s and $[..]'$ s.

$$
\text{Little gp scaling} \qquad \rightarrow \quad \langle 1^- 2^- 3^+ 4^+ 5^+ \rangle_{R^5} \text{ contains } \left\{ \begin{array}{l} |1\rangle^4, |2\rangle^4 \\ |3|^4, |4|^4, |5|^4 \end{array} \right.
$$

unique: $\langle 1^-2^-3^+4^+5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

SUSY Ward Id.s
$$
\rightarrow \quad \langle 1^+2^+3^-4^-5^+ \rangle_{R^5} = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 1^-2^-3^+4^+5^+ \rangle_{R^5} \text{ i.e.}
$$

$$
\langle 34 \rangle^4 [12]^2 [25]^2 [51]^2 = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2
$$

$$
\text{local} = \text{non-local} \quad \text{conflict}
$$

4-loops: R^5 (mass dim. $2L + 2 = 10$)

10 derivatives in R^5 \rightarrow leading 5-point interaction has 10 power of momentum \rightarrow 5-pt matrix element has mass dim. 10 and is polynomial of degree 10 in $\langle .. \rangle$'s and $[..]'$ s.

$$
\text{Little gp scaling} \quad \rightarrow \quad \langle 1^- 2^- 3^+ 4^+ 5^+ \rangle_{R^5} \text{ contains } \left\{ \begin{array}{l} |1\rangle^4, |2\rangle^4 \\ |3|^4, |4|^4, |5|^4 \end{array} \right.
$$

unique: $\langle 1^-2^-3^+4^+5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

SUSY Ward Id.s
$$
\rightarrow \quad \langle 1^+2^+3^-4^-5^+ \rangle_{R^5} = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 1^-2^-3^+4^+5^+ \rangle_{R^5} \text{ i.e.}
$$

$$
\langle 34 \rangle^4 [12]^2 [25]^2 [51]^2 = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2
$$

$$
\text{local} = \text{non-local} \quad \text{conflict}
$$

 \implies No $\mathcal{N}=$ 8 SUSY matrix elements. So R^5 is not indep. supersymmetrizable.

Carry out an analysis of matrix elements at MHV and NMHV level. [HE, Freedman, Kiermaier, 1003.5018]

• Use superamplitudes.

- **.** Use solution to SUSY Ward identities. [HE, Freedman, Kiermaier, 0911.3169]
- Use Gröbner basis.

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

Chart of potential counterterms

The matrix elements of a prospective counterterm must respect $\mathcal{N} = 8$ SUSY and $SU(8)$ Ward identities.

If no: excluded. If yes: we find multiplicities of such operators.

 $"$ None $\rightarrow "$

we proved no MHV and no NMHV, and conjectured no N^k MHV for $L < 7$ in [HE, Freedman, Kiermaier, 1003.5018]. Conjecture proven by [Howe, Heslop, Drummond, 1008.4939]

Chart of potential counterterms

The matrix elements of a prospective counterterm must respect $\mathcal{N} = 8$ SUSY and $SU(8)$ Ward identities.

If no: excluded. If yes: we find multiplicities of such operators.

 $"$ None $\rightarrow "$

we proved no MHV and no NMHV, and conjectured no N^k MHV for $L < 7$ in [HE, Freedman, Kiermaier, 1003.5018]. Conjecture proven by [Howe, Heslop, Drummond, 1008.4939]

R 4

To test $E_{7(7)}$ we will need a 6-point matrix element of R^4 with two scalars and four gravitons:

$$
\left\langle \varphi\, \overline{\varphi} \, + + - \, - \right\rangle_{R^4}
$$

Very hard to calculate from Feynman diagrams \Rightarrow \leftrightarrow \Rightarrow \rightarrow

We use a trick to extract the 6-point $R⁴$ matrix elements from the closed string theory tree amplitude.

1 PART 1: $\mathcal{N} = 8$ SUSY and $SU(8)$.

- **2** PART 2: $E_{7(7)}$ constraints.
	- From open string amplitudes to closed string amplitudes via KLT.
	- String tree amplitudes and their symmetries.
	- R^4 and $E_{7(7)}$.
	- Matching with automorphic function.
	- \bullet $E_{7(7)}$ at higher loop order.
- **3** "Landscape" of candidate counterterms.

KLT relations in string theory

Kawai-Lewellen-Tye (KLT) relations:

(closed string tree amplitude) $=\sum_{k=1}^{n}f(s)$ (open string tree amplitude) $L \times$ (open string tree amplitude) R

for example for 5-point amplitudes

$$
M_5(1,2,3,4,5) = -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{\alpha'^2\pi^2} A_5(1,2,3,4,5) \widetilde{A}_5(2,1,4,3,5) + (2 \leftrightarrow 3).
$$

The decomposition of states is "closed string $= L$ and R movers".

In the following:

- Toroidally compactified Type II superstring theory in $D = 4$.
- Allow ONLY massless external states.

open string states \leftrightarrow 16 states of $\mathcal{N} = 4$ SYM

closed string states \leftrightarrow 256 states of $\mathcal{N}=8$ supergravity

$\mathcal{N} = 4$ SYM

$2^4=16$ massless states

state helicity 1 gluon $+1$ g $^+$ 4 gluinos $+\frac{1}{2}$ λ^a 6 scalars $0 \t z^{ab}$ 4 gluinos $-\frac{1}{2}$ λ^{abc} 1 gluon -1 $g^{1234} = g^{-1}$

3 pairs of complex scalars are self-conjugate: $\overline{z}_{ab} = \frac{1}{2} \epsilon_{abcd} z^{cd}$.

Global $SU(4)$ R-symmetry: $A_n(z^{12}, g^-, z^{34}, ...) = 0$ unless $SU(4)$ -singlet.

$\mathcal{N}=8$ supergravity

 $2^8 = 256$ massless states state helicity 1 graviton $+2$ h^+ . . . 70 scalars 0 φ^{abcd} . . . **1** graviton -2 $h^- = h^{12345678}$ $(a, b, \ldots = 1, \ldots, 8)$

35 pairs of complex scalars are self-conjugate: $\overline{\varphi}_{abcd} = \frac{1}{4!} \epsilon_{abcd} \varphi^{efgh}$

 $\mathcal{N} = 8$ supergravity has global $SU(8)$ R-symmetry: $M_n^{\text{SUGRA}}(\nu^{12}, \varphi^{1245}, \dots) = 0$ unless $SU(8)$ -singlet.

$[\mathcal{N} = 8$ supergravity] = $[\mathcal{N} = 4$ SYM]²

All 2 8 $\mathcal{N}=8$ states decompose into $2^4\times 2^4$ $\mathcal{N}=4$ SYM states.

For example, gravitons $=$ gluon $^2\colon\;$ $h^\pm = g^\pm \otimes g^\pm$

Where the 35 pairs of complex scalars come from:

Decompose $SU(8)$ → $SU(4) \times SU(4)$ as $\{1, ..., 8\}$ → $\{1, 2, 3, 4\}$ ⊗ $\{5, 6, 7, 8\}$

1) 1 pair is
$$
SU(4) \times SU(4)
$$
-singlet
\n
$$
\varphi \equiv \varphi^{1234} = g^{1234} \otimes g^+ = g^- \otimes g^+
$$
\n
$$
\overline{\varphi} \equiv \varphi^{5678} = g^+ \otimes g^{5678} = g^+ \otimes g^-.
$$
\n2) 16 pairs $\overline{4} \otimes 4$: $\varphi_f = \lambda^- \otimes \lambda^+$ ex. $\varphi^{123|5}$
\n3) 18 pairs $6 \otimes 6$: $\varphi_s = z \otimes z$ ex. $\varphi^{12|56}$

KLT relations, e.g. with $\mathsf{h}^\pm = \mathsf{g}^\pm \otimes \mathsf{g}^\pm$

 $M_5(1^-, 2^-, 3^+, 4^+, 5^+) = -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{\sqrt{2}}$ $\frac{\alpha}{2\pi^2}$ A₅(1⁻, 2⁻, 3⁺, 4⁺, 5⁺) \widetilde{A}_5 (2⁻, 1⁻, 4⁺, 3⁺, 5⁺) + (2 \leftrightarrow 3).

- KLT makes $SU(4) \times SU(4)$ a manifest global symmetry of the $D = 4$ closed string tree amplitudes M_n with massless external states.
- But closed string theory has no global continuous symmetries!
- \bullet $SU(4) \times SU(4) \subset T$ -duality group $SO(6, 6)$. Global symmetry only in this sector, only at tree level.
- Classification needs two integers k and \tilde{k} : $N^{(k,\tilde{k})}$ MHV.

Example of $SU(8)$ -violating amplitude

 $M_5(1-2-3+4+ \varphi_5^{1234})$) classification $N^{(1,0)}$ MHV ≡ " \sqrt{N} MHV" $= -\frac{\sin(\alpha' \pi s_{12}) \sin(\alpha' \pi s_{34})}{\sqrt{2}}$ $\frac{\alpha}{2}$ α^{2} π^{2} $A_{5}(1-2-3+4+5-)$ $\widetilde{A}_{5}(2-1-4+3+5+)$ $+$ $(2 \leftrightarrow 3)$

Example of $SU(8)$ -violating amplitude

$$
M_5(1^- 2^- 3^+ 4^+ \varphi_5^{1234})
$$
 classification N^(1,0)MHV \equiv " \sqrt{N} MHV"
\n
$$
= -\frac{\sin(\alpha' \pi s_{12}) \sin(\alpha' \pi s_{34})}{\alpha'^2 \pi^2} A_5(1^- 2^- 3^+ 4^+ 5^-) \tilde{A}_5(2^- 1^- 4^+ 3^+ 5^+) + (2 \leftrightarrow 3)
$$
\n
$$
= \alpha'^3 6 \zeta(3) \langle 12 \rangle^4 [34]^4 + O(\alpha'^5).
$$

This amplitude violates $SU(8)$!! but vanishes for $\alpha' = 0$ as required by $SU(8)$ in supergravity. ... preserves $SU(4)\times SU(4)$.

Example of $SU(8)$ -violating amplitude

$$
M_5(1^- 2^- 3^+ 4^+ \varphi_5^{1234})
$$
 classification N^(1,0)MHV \equiv " \sqrt{N} MHV"
\n
$$
= -\frac{\sin(\alpha' \pi s_{12}) \sin(\alpha' \pi s_{34})}{\alpha'^2 \pi^2} A_5(1^- 2^- 3^+ 4^+ 5^-) \tilde{A}_5(2^- 1^- 4^+ 3^+ 5^+) + (2 \leftrightarrow 3)
$$
\n
$$
= \alpha'^3 6 \zeta(3) \langle 12 \rangle^4 [34]^4 + O(\alpha'^5).
$$

This amplitude violates $SU(8)!!$ but vanishes for $\alpha' = 0$ as required by $SU(8)$ in supergravity. ... preserves $SU(4) \times SU(4)$.

Let's try to understand this better:

Note the α'^3 matrix element has no poles

- . . . comes from a local operator with 8 derivatives
- \ldots candidate: $\ \varphi\, R^4$

The first operator in the closed string effective action is (in Einstein frame)

$$
\alpha'^3 \sqrt{-g} \, e^{-6\phi} R^4 = \alpha'^3 \sqrt{-g} \, (1 - 6\phi + \dots) R^4 \,,
$$

where ϕ is the dilaton.

Its 4- and 5-point matrix elements are

$$
\langle 1^{-} 2^{-} 3^{+} 4^{+} \rangle_{e^{-6\phi}R^{4}} = -\alpha'^{3} 2 \zeta(3) \langle 12 \rangle^{4} [34]^{4},
$$

$$
\langle 1^{-} 2^{-} 3^{+} 4^{+} \phi \rangle_{e^{-6\phi}R^{4}} = \alpha'^{3} 12 \zeta(3) \langle 12 \rangle^{4} [34]^{4}.
$$

Closed string effective action $\alpha'^3 \, \sqrt{-g} \, e^{-6 \phi} R^4$

How to identity the dilaton among the 70 scalars of the $\mathcal{N} = 8$ spectrum? It is $SU(4) \times SU(4)$ -invariant and respects L/R exchange:

Recall: 1 pair is $SU(4) \times SU(4)$ -singlet

 $\varphi \equiv \varphi^{1234} = {\bf g}^- \otimes {\bf g}^+ \,, \qquad \qquad \overline{\varphi} \equiv \varphi^{5678} = {\bf g}^+ \otimes {\bf g}^- \,.$

This identifies: $\phi = \frac{1}{2}(\varphi^{1234} + \varphi^{5678}).$

Then
$$
\langle 1 - 2 - 3 + 4 + \phi \rangle_{e^{-6}\phi}R^4 = M_5(1 - 2 - 3 + 4 + \varphi^{1234})|_{\alpha'^3} + M_5(1 - 2 - 3 + 4 + \varphi^{5678})|_{\alpha'^3}.
$$

\n $_{12 \zeta(3) \langle 12 \rangle^4 [34]^4} = 6 \zeta(3) \langle 12 \rangle^4 [34]^4 + 6 \zeta(3) \langle 12 \rangle^4 [34]^4$

So the dilaton is 'responsible' for the $SU(8)$ -violation.

The α'^3 -correction to the closed string tree amplitude are encoded in the supersymmetrization of

$$
\alpha'^3 \sqrt{-g} \, e^{-6\phi} R^4
$$

This preserves only $SU(4) \times SU(4)$.

- The α' -corrections explicitly break $SU(8) \rightarrow SU(4) \times SU(4)$ because the dilaton singles out a special "direction" in $SU(8)$.
- We cannot use the closed string tree amplitude directly to explore the 3-loop R^4 candidate counterterm of $\mathcal{N}=8$ supergravity, because it has to be an $SU(8)$ -invariant supersymmetrization.

Symmetries

 $\bullet \mathcal{N}=8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to $SU(8)$.

The $133 - 63 = 70$ scalars are the Goldstone bosons.

Symmetries

 $\bullet \mathcal{N}=8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to $SU(8)$.

The $133 - 63 = 70$ scalars are the Goldstone bosons.

Low-energy theorems:

In $\mathcal{N} = 8$ supergravity, single soft scalar limits vanish,

 $M_n(\varphi(p), \dots) \to 0$ as $p \to 0$.

[Bianchi, HE, Freedman '0805; Arkani-Hamed, Cachazo, Kaplan '0808; Kallosh, Kugo '0811]

Symmetries

 $\bullet \mathcal{N} = 8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to $SU(8)$.

The $133 - 63 = 70$ scalars are the Goldstone bosons.

Low-energy theorems:

In $\mathcal{N} = 8$ supergravity, single soft scalar limits vanish,

 $M_n(\varphi(p), \dots) \to 0$ as $p \to 0$.

[Bianchi, HE, Freedman '0805; Arkani-Hamed, Cachazo, Kaplan '0808; Kallosh, Kugo '0811]

• Counterterms:

 $E_{7(7)}$ compatible? Test if the single soft scalar limits of their matrix elements vanish.

Specifically, for R^4 we would like to calculate

$$
\lim_{p_1 \to 0} \left\langle \varphi \, \overline{\varphi} \, 3^{-} 4^{-} 5^{+} 6^{+} \right\rangle_{R^4} = ?
$$

to test if it vanishes or not. ⁴ [Brödel & Dixon, 2009]

Single soft limits of the MHV 4-, 5- and 6-pt matrix elements trivially vanish

How to obtain R^4 matrix elements from α'^3 of the string amplitude: 'Average' the α'^3 contributions of the string amplitude over $SU(8)$ =⇒ 'Average' the matrix elements of $e^{-6\phi}R^4$ over $SU(8)$ =⇒

matrix elements of an $SU(8)$ -invariant supersymmetric 8-derivative operator.

There is only ONE such operator, namely the desired R^4 . [Freedman, Kiermaier, H.E. (March 2010)]

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}.$ Thanks to $SU(4) \times SU(4)$, we get $\big\langle \varphi \, \overline{\varphi} \, + + - - \big\rangle_{R^4} \quad = \quad \frac{1}{3!}$ $\frac{1}{35} \big\langle \varphi^{1234} \varphi^{5678} + + - - \big\rangle_{e^{-6} \phi R^4} \, - \, \frac{16}{35}$ $\frac{16}{35} \left\langle \varphi^{123|5} \varphi^{4|678} + + - - \right\rangle_{e^{-6}\phi_{R}4}$ $+\frac{18}{25}$ $\frac{16}{35} \left\langle \varphi^{12|56} \varphi^{34|78} + + - - \right\rangle_{e^{-6} \phi R^4}.$

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}.$ Thanks to $SU(4) \times SU(4)$, we get $\big\langle \varphi \, \overline{\varphi} \, + + - - \big\rangle_{R^4} \quad = \quad \frac{1}{3!}$ $\frac{1}{35} \big\langle \varphi^{1234} \varphi^{5678} + + - - \big\rangle_{e^{-6} \phi R^4} \, - \, \frac{16}{35}$ $\frac{16}{35} \left\langle \varphi^{123|5} \varphi^{4|678} + + - - \right\rangle_{e^{-6}\phi_{R}4}$ $+\frac{18}{25}$ $\frac{16}{35} \left\langle \varphi^{12|56} \varphi^{34|78} + + - - \right\rangle_{e^{-6} \phi R^4}.$

We calculate these 3 matrix elements from the α' -expansion of the closed string NMHV amplitudes, obtained via KLT

 $(\alpha^\prime$ -expansion of open string amplitude from Stieberger & Taylor)

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}.$ Thanks to $SU(4) \times SU(4)$, we get $\big\langle \varphi \, \overline{\varphi} \, + + - - \big\rangle_{R^4} \quad = \quad \frac{1}{3!}$ $\frac{1}{35} \big\langle \varphi^{1234} \varphi^{5678} + + - - \big\rangle_{e^{-6} \phi R^4} \, - \, \frac{16}{35}$ $\frac{16}{35} \left\langle \varphi^{123|5} \varphi^{4|678} + + - - \right\rangle_{e^{-6}\phi_{R}4}$ $+\frac{18}{25}$ $\frac{16}{35} \left\langle \varphi^{12|56} \varphi^{34|78} + + - - \right\rangle_{e^{-6} \phi R^4}.$

We calculate these 3 matrix elements from the α' -expansion of the closed string NMHV amplitudes, obtained via KLT

 $(\alpha^\prime$ -expansion of open string amplitude from Stieberger & Taylor)

$$
\lim_{p_1 \to 0} \langle \varphi^{1234} \varphi^{5678} + + - \rangle_{e^{-6}\phi R^4} = -12 \zeta(3) \times [34]^4 \langle 56 \rangle^4,
$$
\n
$$
\lim_{p_1 \to 0} \langle \varphi^{123|5} \varphi^{4|678} + + - \rangle_{e^{-6}\phi R^4} = -6 \zeta(3) \times [34]^4 \langle 56 \rangle^4,
$$
\n
$$
\lim_{p_1 \to 0} \langle \varphi^{12|56} \varphi^{34|78} + + - \rangle_{e^{-6}\phi R^4} = 0.
$$

hence

$$
\lim_{p_1 \to 0} \; \bigl\langle \varphi \, \overline{\varphi} \, + + - - \bigr\rangle_{R^4} \; = \; 2 \zeta(3) \, \frac{6}{5} \, {[34]}^4 \langle 56 \rangle^4 \; \neq \; 0 \, .
$$

Conclusion: the unique $SU(8)$ -invariant supersymmetrization of R^4 is NOT $E_{7(7)}$ -compatible.

Chart of potential counterterms

Candidate counterterm operators must be $\mathcal{N} = 8$ SUSY and $SU(8)$ -invariant and have $E_{7(7)}$ symmetry.

(*) Why
$$
\lim_{p_1 \to 0} \langle \varphi^{12|56} \varphi^{34|78} + + - \rangle_{e^{-6}\varphi R^4} = 0 ?
$$

 $\bullet\; \mathcal{N}=8$ supergravity:

Global $E_{7(7)}$ symmetry spontaneously broken to $SU(8)$. The $133 - 63 = 70$ scalars are the Goldstone bosons, which transform in the 70.

For $\alpha' > 0$:

Global $SO(6,6)$ spontaneously broken to $SU(4) \times SU(4)$. There are $66 - 30 = 36$ Goldstone bosons. They transform in the $6 \otimes 6$.

• These are type 3) of list we constructed early in the talk:

3) $\varphi_s = z \otimes z$ $ex. \, \varphi^{12|56}$

Eq. (*) holds to all orders in α' . have checked explicit up to and incl. α'^7 .

Green, Miller, Russo, and Vanhove (GMRV) have shown that duality and supersymmetry requires the SUSY operator R^4 to have a non-linear completion of the form $f_{R^4}R^4$, where f_{R^4} is a moduli-dependent automorphic function which satisfies

$$
\Delta f_{R^4} = -42 f_{R^4} \quad \text{for} \quad D = 4
$$

Here Δ is the Laplacian on $E_{7(7)}/SU(8)$.

Compare:

Let's compare GMRV to our result:

$$
\lim_{p_1 \to 0} \left\langle \varphi \, \overline{\varphi} \, + \, + \, - \, - \right\rangle_{R^4} \; = \; 2 \zeta(3) \frac{6}{5} \, [34]^4 \langle 56 \rangle^4 \; \neq \; 0 \, .
$$

Must come from local operator $(\varphi\overline{\varphi})_{\rm sing}R^4$, so that must be part of the non-linear completion of R^4 , i.e. $f_{R^4}R^4$ with

$$
f_{R^4} \propto -2\zeta(3)\Big[1-\frac{6}{5}\big(\varphi^{1234}\varphi^{5678}+34 \text{ others}\big)+\ldots\Big]
$$

The Laplacian on $E_{7(7)}/SU(8)$ is

$$
\Delta = \left(\frac{\partial}{\partial \varphi^{1234}} \frac{\partial}{\partial \varphi^{5678}} + 34 \text{ inequalityalent perms} \right) + \dots
$$

Indeed we find

$$
\Delta f_{R^4} + 42 f_{R^4} = -2\zeta(3)\Big(-\frac{6}{5} \times 35 + 42\Big) + O(\varphi \overline{\varphi}) = 0 + O(\varphi \overline{\varphi})
$$

so our result matches GMRV!

$\mathcal{N}=8$ supergravity

The R^4 operator in $D=4$:

- \bullet $\mathcal{N} = 8$ SUSY and $SU(8)$ invariant.
- NOT $E_{7(7)}$ invariant.
- Explains why R^4 is not a candidate counterterm...
- . . . and why the 3-loop 4-point amplitude is finite.

[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban '07]

Closed string effective action

$$
S_{\text{eff}} = S_{\text{SG}} - 2 \alpha'^3 \zeta(3) e^{-6\phi} R^4 - \alpha'^5 \zeta(5) e^{-10\phi} D^4 R^4 + \frac{2}{3} \alpha'^6 \zeta(3)^2 e^{-12\phi} D^6 R^4 - \frac{1}{2} \alpha'^7 \zeta(7) e^{-14\phi} D^8 R^4 + \dots
$$

 $SU(8)$ average procedure gives unique D^4R^4 matrix elements from α'^5 of closed string amplitude.

- NOT $E_{7(7)}$ invariant.
- Single soft limit shows SUSY operator is $f_{D^4R^4}D^4R^4$ with $f_{D^4R^4} \; \propto \; - \zeta(5) \Big[1 - {\textstyle{6 \over 7}} \big(\varphi^{1234} \varphi^{5678} + 34 \; \text{others} \big) + \ldots \Big]$
- \bullet Satisfies Green et al's $\Delta f_{D^4R^4} = -60 f_{D^4R^4}$
- Conclude: $D^4 R^4$ is not a candidate counterterm.
- \bullet $\mathcal{N} = 8$ SG finite at 5-loops.

Next up: $D^4 R^4$ and $D^6 R^4$

Closed string effective action

$$
S_{\text{eff}} = S_{\text{SG}} - 2 \alpha'^3 \zeta(3) e^{-6\phi} R^4 - \alpha'^5 \zeta(5) e^{-10\phi} D^4 R^4 + \frac{2}{3} \alpha'^6 \zeta(3)^2 e^{-12\phi} D^6 R^4 - \frac{1}{2} \alpha'^7 \zeta(7) e^{-14\phi} D^8 R^4 + \dots
$$

Matrix elements from α'^6 of closed string amplitude are polluted by pole terms R^4 — R^4 from $\alpha'^3 \times \alpha'^3$.

- We calculate fully $\mathcal{N}=8$ SUSY'ize R^{4} — $R^{4}.$
- Extract $\big<\varphi\,\overline{\varphi}$ + + $--\big>_{R^4=R^4}$ and subtract it from $\big<\varphi\,\overline{\varphi}$ + + $--\big>_{e^{-12\phi}D^6R^4}.$
- $SU(8)$ average then gives $\langle \varphi \overline{\varphi} + + - \rangle_{D^6 R^4}$, which has non-vanishing single soft scalar limit.
- Satisfies Green et al's $\Delta f_{D^6R^4} = -60 f_{D^6R^4} (f_{R^4})^2$.

The inhom. term is from R^4 — R^4 .

- NOT $E_{7(7)}$ invariant.
- Conclude: $D^6 R^4$ is not a candidate counterterm.
- \bullet $\mathcal{N} = 8$ SG finite at 6-loops.

Landscape of potential counterterms

 $\mathcal{N} = 8$ SUSY and $SU(8)$ -invariant candidate counterterm operators.

What do we know about $L > 7$ loops?

 $\mathcal{N} = 8$ SUSY and $SU(8)$ -singlet candidate counterterm operators and $SU(8)$ 70 operators for their single soft scalar limits.

Multiplicities found using $SU(2, 2|8)$.

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

For $n > 4$ none of the $L = 7$ operators respect $E_{7(7)}$ compatible. This means that the 4-graviton amplitude determines whether theory finite or not at $L = 7$.

SUSY, $SU(8)$, $E_{7(7)} \implies N = 8$ supergravity in 4d finite up to 7-loop order.

First divergence at $L = 7$?

Candidate full superspace integral — but does is vanish?

First divergence at $L = 8$?

Candidate full superspace integral available [Kallosh (1981), Howe & Lindstrom (1981)]