Symmetry constraints on counterterms in N = 8supergravity

Henriette Elvang

University of Michigan &

Institute for Advanced Study

Rutgers September 28, 2010

Based on

arXiv:1009.1643 w/ Niklas Beisert, Dan Freedman, Michael Kiermaier, Alejandro Morales, Stephan Stieberger

arXiv:1007.4813 w/ Michael Kiermaier

arXiv:1003.5018 w/ Dan Freedman, Michael Kiermaier

Henriette Elvang

Symmetry constraints on counterterms in N = 8 supergravity

Is $\mathcal{N} = 8$ supergravity UV finite in 4d?

Henriette Elvang Symmetry constraints on counterterms in N = 8 supergravity

Perturbative structure of $\mathcal{N}=8$ supergravity in 4d

L-loop divergence \leftrightarrow counterterm of mass dimension (2*L* + 2)

for example: R^4 at 3-loop order

Perturbative structure of $\mathcal{N} = 8$ supergravity in 4d

L-loop divergence \leftrightarrow counterterm of mass dimension (2*L* + 2)

for example: R^4 at 3-loop order

Candidate counterterms are

- Iocal operators
- $\mathcal{N} = 8 \text{ SUSY}$
- SU(8)_R-invariant
- $E_{7(7)}$ -compatible

Chart of potential counterterms

Pure supergravity finite at 1- and 2-loop order.

Purely gravitational operators are contractions of Riemann tensors $R_{\mu\nu\rho\sigma}$ and covariant derivatives D_{μ} . Here's the chart:

L	<i>n</i> = 4	5	6			
3	R^4					
4	$D^2 R^4$	R^5				
5	$D^4 R^4$	$D^2 R^5$	R^6			
6	$D^6 R^4$	$D^4 R^5$	$D^2 R^6$	R^7		
7	$D^8 R^4$	$D^6 R^5$	$D^4 R^6$	$D^2 R^7$	R^8	
8	$D^{10}R^4$	$D^8 R^5$	$D^6 R^6$	$D^4 R^7$	$D^2 R^8$	R^9

Must require $\mathcal{N} = 8$ SUSY and SU(8).

Analysis of potential counterterms

Instead of studying the operators, we analyze their matrix elements:

operator	\leftrightarrow	matrix elements
local	\leftrightarrow	polynomial in momenta and polarizations
	\leftrightarrow	polynomial in $\langle ij \rangle$ and $[ij]$.
<u>L</u> -loop	\leftrightarrow	$\langle ij \rangle$, [<i>ij</i>] polynomial has degree 2 <i>L</i> + 2.
$\mathcal{N}=8~\text{SUSY}$	\leftrightarrow	SUSY Ward identities.
<i>SU</i> (8)-invariant	\leftrightarrow	SU(8) Ward identities.
E ₇₍₇₎ -compatible	\leftrightarrow	low-energy theorems

no such matrix elements ↔ no such operator ↔ no such counterterm. If matrix elements do exist: determine multiplicities of such operators.

- **1** PART 1: $\mathcal{N} = 8$ SUSY and SU(8).
- **2** PART 2: $E_{7(7)}$ constraints.
- **③** THE END: "Landscape" of candidate counterterms.

Tool kit

• "Little group scaling":

For each external state $i = 1, \ldots, n$,

 $|i
angle
ightarrow t_i|i
angle$ and $|i]
ightarrow t_i^{-1}|i]$, \implies $A_n
ightarrow t_i^{-2h_i}A_n$

where h_i is the helicity.

• Dimensional analysis:

Each $\langle ij \rangle$ and [ij] has mass dimension 1.

• $\mathcal{N} = 4,8$ SUSY Ward identities:

$$\mathsf{MHV}: \langle ++--++\ldots \rangle = \frac{\langle \mathbf{34} \rangle^{\mathcal{N}}}{\langle \mathbf{12} \rangle^{\mathcal{N}}} \langle --++++\ldots \rangle.$$

Example: 4-gluon MHV amplitude

$$A_n(1^-2^-3^+4^+\dots n^+) = \frac{\langle 12\rangle^4}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\dots\langle n1\rangle}$$

has mass dim. 4 - n.

4-loops: R^5 (mass dim. 2L + 2 = 10)

10 derivatives in $R^5 \rightarrow$ leading 5-point interaction has 10 power of momentum

→ 5-pt matrix element has mass dim. 10 and is polynomial of degree 10 in $\langle ... \rangle$'s and [..]'s.

4-loops: R^5 (mass dim. 2L + 2 = 10)

 $\begin{array}{rccc} 10 \mbox{ derivatives in } R^5 & \to & \mbox{ leading 5-point interaction has 10 power of momentum} \\ & \to & \mbox{ 5-pt matrix element has mass dim. 10} \\ & & \mbox{ and is polynomial of degree 10 in } \langle ... \rangle 's \mbox{ and } [...]'s. \end{array}$

Little grp scaling
$$\rightarrow \langle 1^2 2^3 4^4 5^+ \rangle_{R^5}$$
 contains
$$\begin{cases} |1\rangle^4, |2\rangle^4 \\ |3]^4, |4]^4, |5]^4 \end{cases}$$

unique: $\langle 1^2 2^3 4^4 5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

4-loops: R^5 (mass dim. 2L + 2 = 10)

 $\begin{array}{rcl} \mbox{10 derivatives in } R^5 & \to & \mbox{leading 5-point interaction has 10 power of momentum} \\ & \to & \mbox{5-pt matrix element has mass dim. 10} \\ & & \mbox{and is polynomial of degree 10 in } \langle ... \rangle 's \mbox{ and } [...]'s. \end{array}$

Little grp scaling
$$\rightarrow \langle 1^{-}2^{-}3^{+}4^{+}5^{+}\rangle_{R^{5}}$$
 contains
$$\begin{cases} |1\rangle^{4}, |2\rangle^{4} \\ |3]^{4}, |4]^{4}, |5]^{4} \end{cases}$$

unique: $\langle 1^2 2^3 4^+ 5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

SUSY Ward Id.s
$$\rightarrow \langle 1^+2^+3^-4^-5^+ \rangle_{R^5} = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 1^-2^-3^+4^+5^+ \rangle_{R^5}$$
 i.e.
 $\langle 34 \rangle^4 [12]^2 [25]^2 [51]^2 = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$
local = non-local conflict

4-loops: R^5 (mass dim. 2L + 2 = 10)

 $\begin{array}{rcl} \mbox{10 derivatives in } R^5 & \to & \mbox{leading 5-point interaction has 10 power of momentum} \\ & \to & \mbox{5-pt matrix element has mass dim. 10} \\ & & \mbox{and is polynomial of degree 10 in } \langle ... \rangle 's \mbox{ and } [...]'s. \end{array}$

Little grp scaling
$$\rightarrow \langle 1^2 - 3^4 + 5^+ \rangle_{R^5}$$
 contains
$$\begin{cases} |1\rangle^4, |2\rangle^4 \\ |3]^4, |4]^4, |5]^4 \end{cases}$$

unique: $\langle 1^2 2^3 4^+ 5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

SUSY Ward Id.s
$$\rightarrow \langle 1^+2^+3^-4^-5^+ \rangle_{R^5} = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 1^-2^-3^+4^+5^+ \rangle_{R^5}$$
 i.e.
 $\langle 34 \rangle^4 [12]^2 [25]^2 [51]^2 = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$
local = non-local conflict

 \implies No $\mathcal{N} = 8$ SUSY matrix elements. So R^5 is not indep. supersymmetrizable.

Carry out an analysis of matrix elements at MHV and NMHV level. [HE, Freedman, Kiermaier, 1003.5018]

• Use superamplitudes.

- Use solution to SUSY Ward identities. [HE, Freedman, Kiermaier, 0911.3169]
- Use Gröbner basis.

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

Chart of potential counterterms

The matrix elements of a prospective counterterm must respect $\mathcal{N} = 8$ SUSY and SU(8) Ward identities.

If no: excluded. If yes: we find multiplicities of such operators.

"None \rightarrow ":

we proved no MHV and no NMHV, and conjectured no N^k MHV for L < 7 in [HE, Freedman, Kiermaier, 1003.5018]. Conjecture proven by [Howe, Heslop, Drummond, 1008.4939]

Chart of potential counterterms

The matrix elements of a prospective counterterm must respect $\mathcal{N} = 8$ SUSY and SU(8) Ward identities.

If no: excluded. If yes: we find multiplicities of such operators.

"None \rightarrow ":

we proved no MHV and no NMHV, and conjectured no N^k MHV for L < 7 in [HE, Freedman, Kiermaier, 1003.5018]. Conjecture proven by [Howe, Heslop, Drummond, 1008.4939]

To test $E_{7(7)}$ we will need a 6-point matrix element of R^4 with two scalars and four gravitons:

$$\left\langle \varphi \, \overline{\varphi} + + - - \right\rangle_{R^4}$$

Very hard to calculate from Feynman diagrams 🕨 🧹 🔆

We use a trick to extract the 6-point R^4 matrix elements from the closed string theory tree amplitude.

- **1** PART 1: $\mathcal{N} = 8$ SUSY and SU(8). \checkmark
- **2** PART 2: $E_{7(7)}$ constraints.
 - From open string amplitudes to closed string amplitudes via KLT.
 - String tree amplitudes and their symmetries.
 - R^4 and $E_{7(7)}$.
 - Matching with automorphic function.
 - $E_{7(7)}$ at higher loop order.
- **3** "Landscape" of candidate counterterms.

KLT relations in string theory

Kawai-Lewellen-Tye (KLT) relations:

(closed string tree amplitude) = $\sum f(s)$ (open string tree amplitude)_L × (open string tree amplitude)_R

for example for 5-point amplitudes

$$M_5(1,2,3,4,5) = -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{\alpha'^2\pi^2} A_5(1,2,3,4,5) \widetilde{A}_5(2,1,4,3,5) + (2\leftrightarrow 3).$$

The decomposition of states is "closed string = L and R movers".

In the following:

- Toroidally compactified Type II superstring theory in D = 4.
- Allow ONLY massless external states.

open string states \leftrightarrow 16 states of $\mathcal{N}=4$ SYM

closed string states \leftrightarrow 256 states of $\mathcal{N}=$ 8 supergravity

$\mathcal{N}=4$ SYM

$2^4 = 16$ massless states

statehelicity1 gluon+1 g^+ 4 gluinos $+\frac{1}{2}$ λ^a 6 scalars0 z^{ab} 4 gluinos $-\frac{1}{2}$ λ^{abc} 1 gluon-1 $g^{1234} = g^-$

3 pairs of complex scalars are self-conjugate: $\overline{z}_{ab} = \frac{1}{2} \epsilon_{abcd} z^{cd}$.

Global SU(4) R-symmetry: $A_n(z^{12}, g^-, z^{34}, ...) = 0$ unless SU(4)-singlet.

$\mathcal{N}=8$ supergravity

 $2^{8} = 256 \text{ massless states}$ state helicity
1 graviton +2 h^+
:
70 scalars 0 \varphi^{abcd}
:
1 graviton -2 h^- = h^{12345678} (a, b, \ldots = 1, \ldots, 8)

35 pairs of complex scalars are self-conjugate: $\overline{\varphi}_{abcd} = \frac{1}{4!} \epsilon_{abcdefgh} \varphi^{efgh}$.

 $\mathcal{N} = 8$ supergravity has global SU(8) R-symmetry: $M_n^{SUGRA}(v^{12}, \varphi^{1245}, \dots) = 0$ unless SU(8)-singlet.

$[\mathcal{N} = 8 \text{ supergravity}] = [\mathcal{N} = 4 \text{ SYM}]^2$

All 2^8 $\mathcal{N}=8$ states decompose into $2^4\times 2^4$ $\mathcal{N}=4$ SYM states.

For example, gravitons = gluon²: $h^{\pm} = g^{\pm} \otimes g^{\pm}$

Where the 35 pairs of complex scalars come from:

Decompose $SU(8) \rightarrow SU(4) \times SU(4)$ as $\{1, ..., 8\} \rightarrow \{1, 2, 3, 4\} \otimes \{5, 6, 7, 8\}$

KLT relations, e.g. with $h^\pm = g^\pm \otimes g^\pm$

$$M_5(1^-,2^-,3^+,4^+,5^+) = -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{{\alpha'}^2\pi^2} A_5(1^-,2^-,3^+,4^+,5^+) \widetilde{A}_5(2^-,1^-,4^+,3^+,5^+) + (2\leftrightarrow 3).$$

- KLT makes $SU(4) \times SU(4)$ a manifest global symmetry of the D = 4 closed string tree amplitudes M_n with massless external states.
- But closed string theory has no global continuous symmetries!
- SU(4) × SU(4) ⊂ T-duality group SO(6,6).
 Global symmetry only in this sector, only at tree level.
- Classification needs two integers k and \tilde{k} : $N^{(k,\tilde{k})}MHV$.

Example of SU(8)-violating amplitude

 $M_{5}(1^{-}2^{-}3^{+}4^{+}\varphi_{5}^{1234}) \qquad \text{classification } \mathbb{N}^{(1,0)}\mathsf{MHV} \equiv \sqrt["]{\mathsf{N}}\mathsf{MHV}"$ $= -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{\alpha'^{2}\pi^{2}} A_{5}(1^{-}2^{-}3^{+}4^{+}\mathbf{5}^{-}) \widetilde{A}_{5}(2^{-}1^{-}4^{+}3^{+}5^{+}) + (2 \leftrightarrow 3)$

Example of SU(8)-violating amplitude

$$\begin{split} M_5(1^-2^-3^+4^+\varphi_5^{1234}) & \text{classification } \mathsf{N}^{(1,0)}\mathsf{MHV} \equiv \ \ "\sqrt{\mathsf{N}}\mathsf{MHV}" \\ &= \ -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{\alpha'^2\pi^2} \ A_5(1^-2^-3^+4^+5^-) \widetilde{A}_5(2^-1^-4^+3^+5^+) \ + \ (2\leftrightarrow3) \\ &= \ \alpha'^3 \ 6\,\zeta(3)\,\langle 12\rangle^4 \ [34]^4 + O(\alpha'^5) \,. \end{split}$$

This amplitude violates SU(8)!! but vanishes for $\alpha' = 0$ as required by SU(8) in supergravity. ... preserves $SU(4) \times SU(4)$.

Example of SU(8)-violating amplitude

$$\begin{split} M_5(1^-2^-3^+4^+\varphi_5^{1234}) & \text{classification } \mathsf{N}^{(1,0)}\mathsf{MHV} \equiv \ \ "\sqrt{\mathsf{N}\mathsf{MHV}}" \\ &= -\frac{\sin(\alpha'\pi s_{12})\sin(\alpha'\pi s_{34})}{\alpha'^2\pi^2} \ A_5(1^-2^-3^+4^+5^-) \ \widetilde{A}_5(2^-1^-4^+3^+5^+) \ + \ (2\leftrightarrow3) \\ &= \alpha'^3 \ 6 \ \zeta(3) \ \langle 12 \rangle^4 \ [34]^4 + O(\alpha'^5) \ . \end{split}$$

This amplitude violates SU(8)!! but vanishes for $\alpha' = 0$ as required by SU(8) in supergravity. ... preserves $SU(4) \times SU(4)$.

Let's try to understand this better:

Note the $\alpha^{\prime 3}$ matrix element has no poles

- ... comes from a local operator with 8 derivatives
- ... candidate: φR^4

The first operator in the closed string effective action is (in Einstein frame)

$$\alpha'^{3}\sqrt{-g} e^{-6\phi}R^{4} = \alpha'^{3}\sqrt{-g} (1-6\phi+\dots)R^{4},$$

where ϕ is the dilaton.

Its 4- and 5-point matrix elements are

$$\begin{split} \left< 1^{-} 2^{-} 3^{+} 4^{+} \right>_{e^{-6\phi}R^{4}} &= -\alpha'^{3} 2 \zeta(3) \left< 12 \right>^{4} [34]^{4} \,, \\ \left< 1^{-} 2^{-} 3^{+} 4^{+} \phi \right>_{e^{-6\phi}R^{4}} &= \alpha'^{3} 12 \zeta(3) \left< 12 \right>^{4} [34]^{4} \,. \end{split}$$

Closed string effective action $\alpha'^3 \sqrt{-g} e^{-6\phi} R^4$

How to identity the dilaton among the 70 scalars of the $\mathcal{N} = 8$ spectrum? It is $SU(4) \times SU(4)$ -invariant and respects L/R exchange:

Recall: 1 pair is $SU(4) \times SU(4)$ -singlet

 $arphi \equiv arphi^{1234} = oldsymbol{g}^- \otimes oldsymbol{g}^+$, $\overline{arphi} \equiv arphi^{5678} = oldsymbol{g}^+ \otimes oldsymbol{g}^-.$

This identifies: $\phi = \frac{1}{2}(\varphi^{1234} + \varphi^{5678}).$

Then
$$\langle 1^{-}2^{-}3^{+}4^{+}\phi \rangle_{e^{-6\phi}R^{4}} = M_{5}(1^{-}2^{-}3^{+}4^{+}\varphi^{1234})|_{\alpha'^{3}} + M_{5}(1^{-}2^{-}3^{+}4^{+}\varphi^{5678})|_{\alpha'^{3}}.$$

 $12 \zeta(3) \langle 12 \rangle^{4} [34]^{4} = 6 \zeta(3) \langle 12 \rangle^{4} [34]^{4} + 6 \zeta(3) \langle 12 \rangle^{4} [34]^{4}$

So the dilaton is 'responsible' for the SU(8)-violation.

• The $\alpha'^3\text{-correction}$ to the closed string tree amplitude are encoded in the supersymmetrization of

$$\alpha^{\prime 3} \sqrt{-g} e^{-6\phi} R^4$$

This preserves only $SU(4) \times SU(4)$.

- The α'-corrections explicitly break SU(8) → SU(4) × SU(4) because the dilaton singles out a special "direction" in SU(8).
- We cannot use the closed string tree amplitude directly to explore the 3-loop R^4 candidate counterterm of $\mathcal{N} = 8$ supergravity, because it has to be an SU(8)-invariant supersymmetrization.

Symmetries

• $\mathcal{N} = 8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to SU(8).

The 133 - 63 = 70 scalars are the Goldstone bosons.

Symmetries

• $\mathcal{N} = 8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to SU(8).

The 133 - 63 = 70 scalars are the Goldstone bosons.

Low-energy theorems:

In $\mathcal{N} = 8$ supergravity, single soft scalar limits vanish,

 $M_n(\varphi(p),\dots) o 0$ as p o 0.

[Bianchi, HE, Freedman '0805; Arkani-Hamed, Cachazo, Kaplan '0808; Kallosh, Kugo '0811]

Symmetries

• $\mathcal{N} = 8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to SU(8).

The 133 - 63 = 70 scalars are the Goldstone bosons.

Low-energy theorems:

In $\mathcal{N} = 8$ supergravity, single soft scalar limits vanish,

 $M_n(\varphi(p),\dots) o 0$ as p o 0.

[Bianchi, HE, Freedman '0805; Arkani-Hamed, Cachazo, Kaplan '0808; Kallosh, Kugo '0811]

Counterterms:

 $E_{7(7)}$ compatible? Test if the single soft scalar limits of their matrix elements vanish.

Specifically, for R^4 we would like to calculate

$$\lim_{p_1\to 0} \langle \varphi \,\overline{\varphi} \, 3^- 4^- 5^+ 6^+ \rangle_{R^4} = ?$$

to test if it vanishes or not. Earlier work w/ $e^{-6\phi}R^4$ [Brödel & Dixon, 2009]

Single soft limits of the MHV 4-, 5- and 6-pt matrix elements trivially vanish

How to obtain R^4 matrix elements from α'^3 of the string amplitude: 'Average' the α'^3 contributions of the string amplitude over SU(8) \implies 'Average' the matrix elements of $e^{-6\phi}R^4$ over SU(8) \implies

matrix elements of an SU(8)-invariant supersymmetric 8-derivative operator.

There is only ONE such operator, namely the desired R^4 .

```
[Freedman, Kiermaier, H.E. (March 2010)]
```

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}$. Thanks to $SU(4) \times SU(4)$, we get $\langle \varphi \overline{\varphi} + + -- \rangle_{R^4} = \frac{1}{35} \langle \varphi^{1234} \varphi^{5678} + + -- \rangle_{e^{\cdot 6\phi}R^4} - \frac{16}{35} \langle \varphi^{123|5} \varphi^{4|678} + + -- \rangle_{e^{\cdot 6\phi}R^4}$ $+ \frac{18}{35} \langle \varphi^{12|56} \varphi^{34|78} + + -- \rangle_{e^{\cdot 6\phi}R^4}$.

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}$. Thanks to $SU(4) \times SU(4)$, we get $\langle \varphi \overline{\varphi} + + -- \rangle_{R^4} = \frac{1}{35} \langle \varphi^{1234} \varphi^{5678} + + -- \rangle_{e^{-6\phi}R^4} - \frac{16}{35} \langle \varphi^{123|5} \varphi^{4|678} + + -- \rangle_{e^{-6\phi}R^4} + \frac{18}{35} \langle \varphi^{12|56} \varphi^{34|78} + + -- \rangle_{e^{-6\phi}R^4}$.

We calculate these 3 matrix elements from the $\alpha'\text{-expansion}$ of the closed string NMHV amplitudes, obtained via KLT

(α' -expansion of open string amplitude from Stieberger & Taylor)

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}$. Thanks to $SU(4) \times SU(4)$, we get $\langle \varphi \ \overline{\varphi} + + - - \rangle_{R^4} = \frac{1}{35} \langle \varphi^{1234} \varphi^{5678} + + - - \rangle_{e^{-6}\phi_{R^4}} - \frac{16}{35} \langle \varphi^{123|5} \varphi^{4|678} + + - - \rangle_{e^{-6}\phi_{R^4}}$ $+ \frac{18}{35} \langle \varphi^{12|56} \varphi^{34|78} + + - - \rangle_{e^{-6}\phi_{R^4}}.$

We calculate these 3 matrix elements from the $\alpha'\text{-expansion}$ of the closed string NMHV amplitudes, obtained via KLT

(lpha'-expansion of open string amplitude from Stieberger & Taylor)

$$\begin{split} &\lim_{p_1 \to 0} \ \left\langle \varphi^{1234} \varphi^{5678} + + - - \right\rangle_{e^{-6\phi} R^4} &= -12 \, \zeta(3) \, \times [34]^4 \langle 56 \rangle^4, \\ &\lim_{p_1 \to 0} \ \left\langle \varphi^{123|5} \varphi^{4|678} + + - - \right\rangle_{e^{-6\phi} R^4} &= -6 \, \zeta(3) \, \times [34]^4 \langle 56 \rangle^4, \\ &\lim_{p_1 \to 0} \ \left\langle \varphi^{12|56} \varphi^{34|78} + + - - \right\rangle_{e^{-6\phi} R^4} &= 0. \end{split}$$

hence

$$\lim_{\rho_{1}\rightarrow0}\left\langle \varphi\,\overline{\varphi}++--\right\rangle _{R^{4}}\ =\ 2\zeta(3)\,\frac{6}{5}\left[34\right]^{4}\!\left\langle 56\right\rangle ^{4}\ \neq\ 0\,.$$

Conclusion: the unique SU(8)-invariant supersymmetrization of R^4 is NOT $E_{7(7)}$ -compatible.

Henriette Elvang

Chart of potential counterterms

Candidate counterterm operators must be $\mathcal{N} = 8$ SUSY and SU(8)-invariant and have $E_{7(7)}$ symmetry.

(*) Why
$$\lim_{p_1 \to 0} \left\langle \varphi^{12|56} \varphi^{34|78} + + - - \right\rangle_{e^{-6\phi_R 4}} = 0$$
 ?

- N = 8 supergravity: Global E₇₍₇₎ symmetry spontaneously broken to SU(8). The 133 - 63 = 70 scalars are the Goldstone bosons, which transform in the 70.
- For $\alpha' > 0$:

Global SO(6,6) spontaneously broken to $SU(4) \times SU(4)$. There are 66 - 30 = 36 Goldstone bosons. They transform in the $\mathbf{6} \otimes \mathbf{6}$.

• These are type 3) of list we constructed early in the talk:

3)
$$\varphi_s = z \otimes z$$
 ex. $\varphi^{12|56}$

• Eq. (*) holds to all orders in α' . have checked explicit up to and incl. α'^7 .

Green, Miller, Russo, and Vanhove (GMRV) have shown that duality and supersymmetry requires the SUSY operator R^4 to have a non-linear completion of the form $f_{R^4}R^4$, where f_{R^4} is a moduli-dependent automorphic function which satisfies

$$\Delta f_{R^4} = -42 f_{R^4} \quad \text{for} \quad D = 4$$

Here Δ is the Laplacian on $E_{7(7)}/SU(8)$.

Compare:

Let's compare GMRV to our result:

$$\lim_{P_{1}\rightarrow 0}\left\langle \varphi\,\overline{\varphi}++--\right\rangle _{R^{4}} = 2\zeta(3)\frac{6}{5}\left[34\right]^{4}\left\langle 56\right\rangle ^{4} \neq 0.$$

Must come from local operator $(\varphi \overline{\varphi})_{\text{sing}} R^4$, so that must be part of the non-linear completion of R^4 , i.e. $f_{R^4} R^4$ with

$$f_{R^4} \propto -2\zeta(3) \Big[1 - rac{6}{5} ig(arphi^{1234} arphi^{5678} + 34 ext{ others} ig) + \dots \Big]$$

The Laplacian on $E_{7(7)}/SU(8)$ is

$$\Delta = \left(\frac{\partial}{\partial \varphi^{1234}} \frac{\partial}{\partial \varphi^{5678}} + 34 \text{ inequivalent perms}\right) \ + \ \dots$$

Indeed we find

$$\Delta f_{R^4} + 42 f_{R^4} = -2\zeta(3) \left(-\frac{6}{5} \times 35 + 42 \right) + O(\varphi \overline{\varphi}) = 0 + O(\varphi \overline{\varphi})$$

so our result matches GMRV!

$\mathcal{N}=8$ supergravity

The R^4 operator in D = 4:

- $\mathcal{N} = 8$ SUSY and SU(8) invariant.
- NOT E₇₍₇₎ invariant.
- Explains why R⁴ is not a candidate counterterm...
- ... and why the 3-loop 4-point amplitude is finite.

[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban '07]

Closed string effective action

$$\begin{split} S_{\text{eff}} &= S_{\text{SG}} - 2\,\alpha'^3\zeta(3)\,e^{-6\phi}R^4 - \alpha'^5\,\zeta(5)\,e^{-10\phi}D^4R^4 \\ &+ \frac{2}{3}\,\alpha'^6\,\zeta(3)^2\,e^{-12\phi}D^6R^4 - \frac{1}{2}\alpha'^7\,\zeta(7)\,e^{-14\phi}D^8R^4 + \dots\,. \end{split}$$

SU(8) average procedure gives unique $D^4 R^4$ matrix elements from α'^5 of closed string amplitude.

- NOT E₇₍₇₎ invariant.
- Single soft limit shows SUSY operator is $f_{D^4R^4} D^4R^4$ with $f_{D^4R^4} \propto -\zeta(5) \left[1 \frac{6}{7} (\varphi^{1234} \varphi^{5678} + 34 \text{ others}) + \dots \right]$
- Satisfies Green et al's $\Delta f_{D^4R^4} = -60 f_{D^4R^4}$
- Conclude: $D^4 R^4$ is not a candidate counterterm.
- $\mathcal{N} = 8$ SG finite at 5-loops.

Next up: $D^4 R^4$ and $D^6 R^4$

Closed string effective action

$$\begin{split} S_{\text{eff}} &= S_{\text{SG}} - 2\,\alpha'^3\zeta(3)\,e^{-6\phi}R^4 - \alpha'^5\,\zeta(5)\,e^{-10\phi}D^4R^4 \\ &+ \frac{2}{3}\,\alpha'^6\,\zeta(3)^2\,e^{-12\phi}D^6R^4 - \frac{1}{2}\alpha'^7\zeta(7)\,e^{-14\phi}D^8R^4 + \dots\,. \end{split}$$

Matrix elements from α'^6 of closed string amplitude are polluted by pole terms $R^4 - R^4$ from $\alpha'^3 \times \alpha'^3$.

- We calculate fully $\mathcal{N} = 8$ SUSY'ize $\mathbb{R}^4 \mathbb{R}^4$.
- Extract $\langle \varphi \, \overline{\varphi} + + - \rangle_{R^4 R^4}$ and subtract it from $\langle \varphi \, \overline{\varphi} + + - \rangle_{e^{-12\phi} D^6 R^4}$.
- SU(8) average then gives $\langle \varphi \,\overline{\varphi} + + - \rangle_{D^6 R^4}$, which has non-vanishing single soft scalar limit.
- Satisfies Green et al's $\Delta f_{D^6R^4} = -60 f_{D^6R^4} (f_{R^4})^2$.

The inhom. term is from $R^4 - R^4$.

- NOT *E*₇₍₇₎ invariant.
- Conclude: $D^6 R^4$ is not a candidate counterterm.
- $\mathcal{N} = 8$ SG finite at 6-loops.

Landscape of potential counterterms

 $\mathcal{N} = 8$ SUSY and SU(8)-invariant candidate counterterm operators.

What do we know about $L \ge 7$ loops?

 $\mathcal{N} = 8$ SUSY and SU(8)-singlet candidate counterterm operators and SU(8) **70** operators for their single soft scalar limits.

7-loop	4-pt	5-pt	6-pt	7-pt 8	8-pt 9-p	ot 10-p	t 11-pt	12-pt	13-pt	14-pt 15-	pt 16-pt
singlet	$D^8 R^4_{1 \times MHV}$	$-D^6 R^5$	$D^4 R^6_{2 \times \text{NMHV}}$	<i>D</i> ² <i>R</i> ⁷ 3×1	$R^8 = \varphi^2 D$	${}^{2}\!\!R^{\tau} \qquad \varphi^{2} R^{5} \qquad \qquad$	3 $\mathcal{G}^{4} D^{2} R^{7}$	$\varphi^4 R^8_{_{6\times N^4 MHV}}$	$\varphi^{6} D^{2} R^{7}_{8}$	$\varphi^6 R^8 = \varphi^8 B$ $\langle N^5 MHV$	${}^{2}\!\!R^{\tau} \qquad \varphi^{8} R^{8} = {}^{10 \times N^{6} MHV}$
		1	soft	∠ soft		∠ soft	1	soft	/ s	oft	∠ soft
70		$\varphi D^8 R^4$		$\varphi D^4\!R^6$	φF	8	$\varphi^3 R^8$		$\varphi^5 R^8$	φ^7 .	R^8
	2×		4× 6×		1	9×		$14 \times$	19	$19 \times$	
8-loop	4-pt	5-pt	6-pt	7-pt	8-pt	9-pt	10-pt	11-pt	12-pt	13-pt	14-pt
singlet	$D^{10}R^{4}$	$D^8 R^5$	D^6R^6	$D^{4}R^{7}$	$D^{2}R^{8}$	R^9	$\varphi^2 D^2 R^8$	$\varphi^2 R^9$	$\varphi^4 D^2 R^8$	$\varphi^4 R^9$	$\varphi^6 D^2 R^8$
	$1 \times \mathrm{MHV}$	$1 \times \mathrm{MHV}$	$3 \times \mathrm{NMHV}$	$3 \times \mathrm{NMHV}$	$_{8 \times \mathrm{N}^{2}\mathrm{MHV}}$	$8\!\times\!\mathrm{N}^{2}\mathrm{MHV}$	$25\!\times\!\mathrm{N}^3\mathrm{MHV}$	$22 \times N^3 MHV$	66×N ⁴ MHV	$51 \times N^4 MHV$	$153 \times N^5 MHV$
			/	1	/ ,	/ *	/ /			1	1
70		$\varphi D^{10}\!R^4$	$\varphi D^8 R^5$	$arphi D^6 \! R^6$	$\varphi D^4 R^7$	$\varphi D^2 R^8$	φR^9	$arphi^3 D^2 R^8$	$arphi^3 R^9$	$arphi^5 D^2 \! R^8$	
		3×	4×	$17 \times$	$16 \times$	$81 \times$	$63 \times$	$232 \times$	$211 \times$	$1033 \times$	

Multiplicities found using SU(2, 2|8).

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

For n > 4 none of the L = 7 operators respect $E_{7(7)}$ compatible. This means that the 4-graviton amplitude determines whether theory finite or not at L = 7. SUSY, SU(8), $E_{7(7)} \implies \mathcal{N} = 8$ supergravity in 4d finite up to 7-loop order.

First divergence at L = 7?

Candidate full superspace integral — but does is vanish?

First divergence at L = 8?

Candidate full superspace integral available [Kallosh (1981), Howe & Lindstrom (1981)]