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1. Motivation

Is N' = 8 supergravity perturbatively finite? )

Explicit calculations of loop amplitudes:

Use generalized unitarity cuts [Bern, Dixon, Kosower, ...]
to construct loop amplitudes from products of on-shell tree amplitudes.

Example:

tree tree
- Zintermediate states A"1 x Aﬂz

Our work focuses on developing efficient calculational methods for
explicit construction of any on-shell n-point tree amplitudes in A = 4
super Yang-Mills theory and N = 8 supergravity.

— Generating functions.

Applications to intermediate state sums in unitarity cuts.
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How to calculate on-shell tree level scattering amplitudes

@ Feynman rules «<— very many, very complicated diagrams

@ On-shell recursion relations «— very useful

Get n-point amplitudes from k-point amplitudes with k < n.

@ Generating functions «—— very efficient
Idea: all n-point tree amplitudes of ' =4 SYM encoded in a

set of simple Grassmann functions ZMHV  ZNMHV =
MIV.
ZMHV.

An(X1, X2, ..., Xn) = Dx,Dx, - - - Dx, Z,

with differential operators Dy, in 1-1 correspondence with the
states X;.

Advantage: obtain amplitude directly without having to first
compute set of lower-point amplitudes.
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MHYV sector and beyond

SUSY = helicity violating n-gluon amplitudes vanish:

An(+,+, ..., +) = An(—,+,...,+) =0.

@ The simplest amplitudes are MHV (maximally helicity violating)
— n-gluon amplitude A,(—, —, +,...,+)
MHYV sector: amplitudes related to A, via SUSY Ward
identities.

@ The next-to-simplest amplitudes are Next-to-MHV
— n-gluon amplitude A,(—, —, —,+,...,+)

NMHYV sector: SUSY related (but much harder to solve SUSY
Ward identities).
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Properties of the generating function

— Generating functions developed for MHV, NMHV amplitudes
+ for anti-MHV and anti-NMHV.

—— Precise characterization of MHV and NMHV sectors,
eg As(Ar A A Ay ¢ @) is MHV in N =4 SYM.

— Counts distinct processes in each sector:
MHV  NMHV
N =4 15 34
N =8 186 919
counting < partitions of integers!

— Simple relationship ZN=8 o« ZN=4 x ZN=% (MHV)
clarifies SUSY and global symmetries in map
[V =8] =[N =4], ® [N = 4]r of states
and KLT relations M, = > (k, A, AL).

—— Evaluation of state sums in unitarity cuts of loop amplitudes.

v
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Notation

| will use spinor helicity formalism:
e If momentum p, null, i.e. p? =0, then

Pop = Pu(@) = |p)*[p)’

with bra and kets being 2-component commuting spinors
which are solutions to the massless Dirac eqn, pa5|p)5 =0.

e Spinor products (12) = (p1]s |p2) and [12] = [p1]®|p2]a are
just \/\512| = \/\2p1 - p2| up to a complex phase.

e Note [ij]=—[ji] and (ij) = = i).
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2. MHV generating function — A/ = 4 SYM

States X; « differential operators Dx.
1 !
Amplitude A,,(Xl X5 ... X,,) = DX1 sz oo DX,, Zn

First need (state < diff op) correspondence.
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N =4 SYM

N =4 SYM has 2* massless states:

1+1 gluons B~, B:
4+4 gluini Fr, Fi

a

6 self-dual scalars

b _ 1 _abcd
B2 7§EQCBCd

a,b=1,2,34 € SU(4) global sym

4 supercharges (N?a = edéf and Q2 = @j act on annihilation operators:

[Q:.Bi(p)] = O,

[Qa, F2(P)] = (ep)ShBi(p),

[Q,B*(p)] = (ep) (65 FE(p) — 85 F2(p)),
[Qa, Boc(P)] = (€p) €avca FE(P),
(@, Fy (P)] = (ep) Ban(P),

[Q:,B=(P)] = —(ep)Fa (p)
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N =4 SYM (state « diff op) correspondence

Introduce auxiliary Grassman variable 7;,
i momentum label p;, a=1,...,4is SU(4) index.

Associate to each state Grassman diff ops 07 = %:
Bi(pi) < 1
Fi(pi) < OF
BE(p) © 070

Fr(p) = —3 canea 0P 05 0F

B~(pi) < 007070}

This is our (state « diff op) correspondence.
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SUSY generators @, = .7, (ei) nia and Q% = >7_ [i €] % give
correct SUSY algebra

(@2, Qo] = 67 Yo7 [exiliea) = 07 07y €f P& — 0 (mom. cons.),

and
[Q, diff op] = (ep)(diff op)

produces correct algebra on states.
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The MHV generating function is

L An(17,27,3" ... n" .
er1v74(77ia) = ( <12>4 ) 5(8)(2 |’>77ia) )

where  6®) (32, [i)mip) =274 Hi:l Zﬁj:1<ij> Mia Nja -

[Nair (1988)] [GGK (2004)]
(6-function of Grassman variables 6, is []6,)

Nia — auxilliary Grassman variables
a=1,223,4 —  SU(4) indices
i,j=1,2,...,n — momentum labels

Claim: any 8th order derivative operator built from (state < diff op)
correspondence gives an MHV amplitude when applied to Z,/,V:“:

AMBV (X, . X,) = Dx, ---Dx, ZN=*.

Let's prove this!
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_ 23t .
Proof: ZN=4 () = % 5O (32 1ima)

° Z,/,v:4 reproduces pure MHV gluon amplitude
An(17, ..., n") correctly:
0 018364)(82828382)6<8 (3;1ivma)

= (01030707)(03050303) (2~ T, S i1 i d) miamja)
= (12)%.
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_ 23t .
Proof: ZN=4 () = % 5O (32 1ima)

° Z,/,v:4 reproduces pure MHV gluon amplitude
An(17, ..., n") correctly:

0 018384)(82628382)6(8 (Z | >7713)
= (01020308) (03030305 (27* T1amy 327y (i ) mia mja)
= (12)%

o Q. Z) =" o< (g 1) mia) 6® (X 11)mia) = 0

Henriette Elvang (IAS) Generating tree amplitudes in A’ = 4 SYM and N/ = 8 SG



_ — o= 3t gt .
Proof: ZN=4 () = % 5O (32 1ima)

° Z,/,v:4 reproduces pure MHV gluon amplitude
An(17, ..., n") correctly:

(01 018384)(82828382)6(8 (21 >7713)
= (01030707)(03050303) (2~ T, S i1 i d) miamja)
= (12)%.

° Qaz}/:v:‘l X (Z?:l "> 77/'3) 5(8)(Zi|i>77ia) =0

° [@av D(g)] er7\/:4 =0
encode the MHV SUSY Ward identities:
0= [QavD(g]ZN ‘= Zt DX1 [éaaDXr]"'DXn Z:j1v:4v

0=([Qs Xp ... Xa]) = 3 (X1 [Qay Xe] ... Xi)
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— — o= 3t gt i
Proof: ZN " (i) = 220t ) 5O (5 (i)

° Z,/,v:4 reproduces pure MHV gluon amplitude
An(17, ..., n") correctly:

(01 618384)(82028382)6(8 (21 >7713)
= (01030707)(03050303) (2% ., S i1 i d) miamja)
= (12)%.

o Qs ZV= o (X7 11) 1) 0O (X, liymis) = 0
o [, DI ZN=4=0
encode the MHV SUSY Ward identities:
0= [Qs, DO ZN=* =37, Dx; -+~ [Qs, Dx] - -~ Dx, Z2 4,
0= ([Qa; X1 Xa]) = 2, (X1 [Qay Xe] . X
e MHV SUSY Ward identities have unique solutions.
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_ — o= 3t ot .
Proof: ZN " (i) = 220t ) 5O (5 (i)

° Z,/,v:4 reproduces pure MHV gluon amplitude
An(17, ..., n") correctly:

(01 618334)(82025352)5(8 (21 >7713)
= (01030707)(03050303) (2% ., S i1 i d) miamja)
= (12)%.

o Qs ZV= o (X7 11) 1) 0O (X, liymis) = 0
o [, DI ZN=4=0
encode the MHV SUSY Ward identities:
0=[Q,, DO ZN=* =3, Dx, - [Qa, Dx] - - - Dx, ZN=4,
0= ([Qa; X1 Xa]) = 2, (X1 [Qay Xe] . X
e MHV SUSY Ward identities have unique solutions.

= Z,ﬁv:“ produces all MHV amplitudes correctly.
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Characterizing amplitudes in the MHV sector of ' = 4 SYM:
D(®) ZN=4 — MHV amplitude

hence

# MHV amplitudes = 4+ partitions of 8 with ny. = 4. J

MHYV amplitudes:

8 = 4—|—4 — <BiBiB+...B+>
= 4+3+1 — <B_F3_F_f_B+B+>

= 14+.---4+1 < <F_T_1...F_T_SB+...B+>

Total of 15 MHV amplitudes in N' = 4 SYM.
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Example:

Calculate (B~ (p1) F1(p2) F2(p3) F3(pa) F$(ps) B (ps))

(81518164)(32)(83 (94 55 Z| 7713
= (0103)(0303)(0303) (010 6®( Z 17)77ia)

= (12)(13)(14)(15)

using 5(®) ( > |i>7lia) = (2_4 ngl Z?,j:l(ij> Tia TIja),
SO
(B~ (p1) Fi(p2) F3(p3) F3(pa) F(ps) B (ps))

12)(13)(14 _
( )(<1>2<> (1 )A (1 2— 3+ 4_+ 5+ 6+)
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3. Intermediate state sum

Example: One-loop MHV amplitude

Use MHV generating function to compute intermediate state sum of
unitarity cut:

D,(14) p® [5(8)(/) 5(8)(_])

[

Dy, and D, distribute themselves between §()(/) and 6()(J).
This automatically takes care of the intermediate state sum.
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How to evaluate the spin sum: D,(14) D,(24) 5@ (1,)5®)(J4,)

by = |h)ma—|k)12a + D e i l)Mia
—|h)ma + [2)m2a + D e j i) Mja

e
I

Use §-function identity §®)(1,) 6®)(J,) = 6@ (I, + J,) §®)(J,) and note
that

e 5@ (I, 4+ J,) = 6@ (ext) is independent of loop momenta.

° 6(8)(*]3) =27* H2:1 Zj,j/eJUjImjanj/a = Hizl (</1/2>771a7723 + .. )
So

DY DM [60(1,) 6@ (L) = 6@ (ext) DY DM 6@ (4,) = 6®)(ext) (hh)*.

Include prefactors and you have a generating function for the cut
amplitude!
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3. Intermediate state sum

Example: One-loop MHV amplitude

Use MHV generating function to compute intermediate state sum of
unitarity cut:

D/(14) p® [5(8)(/) 5@ ()

b

Dy, and D, distribute themselves between §()(/) and () (J).
This automatically takes care of the intermediate state sum.

Have done 1-, 2-, 3-, and 4-loop state sums involving MHV, NMHYV,
MHV, and NMHV generating functions in A = 4.
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4. Recursion relations <+ MHV vertex expansion

@ Recursion relations: express on-shell n-point amplitude in terms of
k-point on-shell sub-amplitudes with k < n.

@ Even better if sub-amplitudes are MHV
— MHYV vertex expansion.

For gluons:

[Britto, Cachazo, Feng (2004)] [Britto, Cachazo, Feng, Witten
(2005)] [Cachazo, Svrcek, Witten (2004)] [Risager (2005)]

For general A/ = 4 external state:
[Bianchi, Freedman, HE (May 2008)]
[Freedman, Kiermaier, HE (Aug 2008)]

[Cheung (2008)] [—,anything)-shift OK

[Arkani-Hamed, Cachazo, Kaplan (2008)] new 2-line SUSY shift.
[Brandhuber, Heslop, Travaglini (2008)]

[Drummond, Henn (2008)]

Henriette Elvang (IAS) Generating tree amplitudes in A’ = 4 SYM and N/ = 8 SG



3-line shift recursion relations

» Analytically continue amplitudes to complex values by shifts
of 3 external momenta:

pl = pl=p'+zq!, for i=1,2,3.
where
Y+ah+ 45 = <> momentum conservation

q,- =0=gqj-pi <« on-shell ;“9,-2 = 0.

Achieved by [1] — [1] = 1] + z(23)|X] (4 cyclic)
with | X] arbitrary “reference spinor”.

» The tree amplitude A,(z) has only simple poles,
so if A,(z) — 0 for z — oo, then

o- 24D~ A0 - Y e

z#0
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3-line shift recursion relations — NMHV gen func

» Result is on-shell recursion relation

1
A,,(O):ZA,,IEA,D, m-+nmn=n+2
! )

The special 3-line shift ensures that the sub-amplitudes are
both MHV if A, is NMHV. [Risager (2005)]

/
NHT\% N Z/: %3: e

\X" MHV

— Now use this to get NMHV gen func.
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5. Next-to-MHV generating functions — A = 4 SYM

e

N\
» Consider a single MHV vertex diagram: ﬂ})—*—\<*

» Apply MHV gen func to each vertex to derive (details omitted)

gluons 4
oMt = 2 581, 4 R,)
! (m1P)*(mams)* " 31;[1

where [, = ZieL |V nia and R, = ZjeR L) nja-
[Georgio, Glover and Khoze (2004)]

» Each term in Q{Y,:“ is order 12 in n;,'s

» Value of diagram is D(1?) Q{,\[,:‘* with D(*2) built from the
external states.

» Sum all diagram gen func's to get full NMHV gen func:
Q= =3, @
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Example:
NMHYV gluon amplitude

An(17,27,37,4% . nt) = DY DM DM =4
Partition 12 = 4-+4+4.

N =4 SYM:
# NMHV amplitudes = # partitions of 12 with Ny = 4.
Total of 34.
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But. ..

We used MHYV vertex expansion from 3-line shift recursion
relations, which assumed

An(z) -0 for z— 0. J

Is this OK?
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But. ..

We used MHYV vertex expansion from 3-line shift recursion
relations, which assumed

An(z) -0 for z— 0. J

Is this OK?

YES! [Freedman, Kiermaier, HE (Aug 2008)] .

— provided the three lines share a common (upper) SU(4) index.
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In N =4SYM, A,(1,...,7,...,/,...) — 0 for z — oo when the 3
shifted states 1,/,j share a common (upper) SU(4) index.

Outline of proof:
@ Consider first amplitude A, with state 1 a —ve helicity gluon.

@ Use [Cheung (2008)]1's result that [17, k)-shift gives valid BCFW
2-line shift recursion relations

A=Y 7\%\// > ﬁé

/ MHV  MHV\ /NMH\ \\ MHV

@ Perform subsequent [1, i, j|-shift: The as z — oo:

diagrams MHV x MHV — O(2)

diagrams NMHV,,_; x MHV3 — O(1) using inductive assumption.
@ Basis of induction established by careful examination of n = 6 cases.
@ So A,,(i’,...,?,...,j,...) — 1/z for large z.

@ Use SUSY Ward identities to generalize state 1 to any N = 4 state
sharing a common index with / and j.
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Summary — N =4 SYM

This proves the validity of the NMHV generating function in
N =4 SYM. It also shows that the MHV vertex expansion is valid
for all external states.

o’

Also, the generating function is unique: once established, it does
not know which valid 3-line shift it came from!

Anti-(N)MHV: The generating function for (N)MHV can be
obtained from that of (N)MHV by a Grassman Fourier transform.

v

We have succesfully applied our generating functions to the
evaluation of several 1-, 2-, 3-, and 4-loop intermediate state sums.

v
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6. From N =4 SYM to N = 8 SG

@ N =8 SG has 28 massless states:
1 graviton®, 8 gravitinos®, 28 gravi-photons¥,
56 gravi-photinos®, 70 self-dual scalars ¢aped.
Global SU(8) symmetry.
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6. From N =4 SYM to N = 8 SG

@ N =8 SG has 2% massless states:
1 graviton®, 8 gravitinos®, 28 gravi-photons¥,
56 gravi-photinos®, 70 self-dual scalars ¢aped.
Global SU(8) symmetry.

@ MHYV generating function generalizes directly.
— Useful for testing map
V=4 x [N =4 =[N =8

at tree level

— Relationship between global symmetries
SU(4) x SU(4) — SU(8)

included in map and generating functions.
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6. From N =4 SYM to N = 8 SG

@ N =8 SG has 2% massless states:
1 graviton®, 8 gravitinos®, 28 gravi-photons¥,
56 gravi-photinos®, 70 self-dual scalars ¢aped.
Global SU(8) symmetry.

@ MHYV generating function generalizes directly.
— Useful for testing map
V=4 x [N =4 =[N =8

at tree level

— Relationship between global symmetries
SU(4) x SU(4) — SU(8)

included in map and generating functions.

@ Natural implementation of NMHV generating function.
— but it doesn't work for all possible external states
of =8 SG!
— because the MHV vertex expansion fails in these cases!
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From N =4 SYM to N = 8 SG (cont'd)

Large z for pure graviton n-point amplitude:
M,(17,27,37,4%,....n") = 2" for z—

Numerically verified for n =5,...,11.

@ When the M,(z) does not vanish for large z the O(1)-term
contributes as the residue of the pole at infinity. No (known)

amplitude factorization that allows systematic calculation of this
part.

@ Also "bad” large z behavior for lower point amplitudes, for instance
no good 3-line shifts for <¢1234 ¢1358 ¢1278 ¢5678 @2467 ¢3456>_

@ Intermediate state sums in unitarity cuts of N' = 8 SG loop
amplitudes performed in terms of N’ =4 SYM via the KLT
(Kawai-Lewellen-Tye) relations M, ~ > (k.f.)A,A},.
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7. Outlook

Loops in N/ = 8 supergravity

Is there are connection between “bad” large z behavior in supergravity
tree amplitudes and potential UV divergencies?

Role of E7 77

@ 70 scalars of A/ = 8 SG are Goldstone bosons of spontaneously
broken E7’7 — SU(8)

@ How will E7 7 reveal itself?
— soft-scalar limits of amplitudes
(analogous to soft-pion low-energy theorems of Adler).

@ We find that 1-soft-“pion” limits of A/ = 8 tree amplitudes vanish.

@ Note that in pion physics 1-pion soft limits do not necessarily
vanish, even in models with pions and nucleons both massless.

@ Since our May paper: new results by [Arkani-Hamed, Cachazo,
Kaplan (2008)]

o’
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