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Motivation

® The Higgs boson can act as a portal to a hidden-
sector of the SM (Schabinger,Wells; Patt,Wilczek)

. — .

® Higgs physics is yet to be explored therefore there
are very few constrains

® The Higgs forms the smallest dimension singlet
operator: |H|’




® We can then write the following operator:
k| H|*O

® Then we have different scenarios depending on the
nature of O:

® Multisinglets
® Hidden-valleys

® Unparticles
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® We can then write the following operator:
k| H|*O

® Then we have different scenarios depending on the
nature of O:
® Multisinglets

whole new particle sectors
(M. Strassler)

® Unparticles « what the heck is this?

® Hidden-valleys «
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What is an unparticle?

Conformal symmetries for dummies!

® Georgi reminded us that it is possible that a hidden
sector could be conformal

® But what is a conformal sector! what implications
will it have!?

® |nh general, a conformal theory, is one where there is
exact scale invariance (apart from more technical
aspects...)

® The first consequence is that on a conformal theory
there are no masses!!!
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® Coupling the SM directly to this conformal sector
goes at follows:

I”

- First we can imagine the following “norma
coupling between the SM and a hidden sector of

dimension d

1
WOSMOMOZ Onia = qq, AN, ... k=dsm*d

- Then we will suppose that the new sector,
through RGE evolution, will reach an IR conformal

fixed point

Ad—du Oonr) There is a change
ME - TPMEY on dimensions!
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® Through this flow, the dynamics of the hidden

sector are such that the operator acquires a big
anomalous dimension

® The theory is describe not in terms of particles but

in terms of operators like the one coupling to the
SM

® Because there is conformal symmetry in the theory
some correlation functions are exactly known:

1
iz — y[2dv

< Opy(x)Opy(y) >
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® From the structure of the correlator we
can see that it has the structure of d,
particles:
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® From the structure of the correlator we
can see that it has the structure of d,
particles:

)
P 2 _ U
u(p”) 2sin(mdy ) (—p? — i€)?~ v
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® From the structure of the correlator we
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® From the structure of the correlator we
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® From the structure of the correlator we
can see that it has the structure of d,
particles:

2sin(wdy ) (—p? — ig?fd_lf' phase

167°/2  T'(dy +1/2)
AdU — <«
(27)24v T'(dyy — 1)T(2dy)
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® From the structure of the correlator we
can see that it has the structure of d,

particles:
2sin(wdy ) (—p? — ig?fd_lf' phase
To match |-
1675/2  T'(dy + 1/2
Agy = —nt ldy +1/2) particle

U= (2m)2d0 T(dyr — D (2d)
(2m) (dy = T(2dv) propagator
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® Having a phase leads to new interference
patterns when dealing interactions of the

type: tuOy WU,01

® Finally let me plot the spectral function:
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® Having a phase leads to new interference
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Higgs-unparticle interaction

® | will focus in the case where Ou is a scalar
unparticle operator with |<d<2 and with the
following scalar potential:

Vo = m?|H|? + N H|* + ky|H|* Oy

® As shown in the previous slides, the Ou has the

following correlator:

Ag

)
P 2 _ U
U(P") = S in(mdy) (—p? — ie)—0

N 167°/2  T'(dy + 1/2)
T (27)2du T(dy — 1)T(2dy)

Tuesday, 10 March 2009



® Once the Higgs gets a vev it induces a tadpole for
Ou and the two fields will mix

® |t is convenient to use a deconstructed version for
the unparticles (van der Bij, Stephanov):
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® Once the Higgs gets a vev it induces a tadpole for
Ou and the two fields will mix

® |t is convenient to use a deconstructed version for
the unparticles (van der Bij, Stephanov):

g&n(n:(),,oo) M,,%ZAQ’R

" 2T

O = Z F,on F? — Ay A2(M§)dU_2
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® Once the Higgs gets a vev it induces a tadpole for
Ou and the two fields will mix

® |t is convenient to use a deconstructed version for
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g&n(n:(),,oo) M,,%ZAQ’R
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® Once the Higgs gets a vev it induces a tadpole for
Ou and the two fields will mix
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® Once the Higgs gets a vev it induces a tadpole for
Ou and the two fields will mix

® |t is convenient to use a deconstructed version for
the unparticles (van der Bij, Stephanov):

g&n(n:(),,oo) M,,%ZAQ’R

Aqg,
2T

O=) Fupn  Fl= 50N (M%7

(OO) —>
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® Once the Higgs gets a vev it induces a tadpole for
Ou and the two fields will mix

® |t is convenient to use a deconstructed version for
the unparticles (van der Bij, Stephanov):

g&n(n:(),,oo) M,,%ZAQ’R
O=) Fup g2 = Adv AZ (M=) —3
B - e " s "
<OO> —> <OUOU>

A — (
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® T[he potential nhow reads:
1
- 2 2 4 2 2 2
V =m*|H|* 4+ \H| +§ En M=oz + ky|H| En Fnon

® |mposing that EVWSB is broken gives the following
vev’s for the deconstructed fields:

2
KU
F

oM2Z "

Un = (n) =

® And in the continuous limit gives an IR divergence:

2 o0 2 2
(Op) = -2 / FAMT)
0

2 M~

Aq,;
27

F2(M2) _ (MZ)dU—Z
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® One way of solving this IR problem is to include the
following new term in the potential:

oV =(lH?Y

® Which in turn generates the following finite vev for
the unparticle operator (note the mass gap)
kvt [0 F?(M?)

dM?
2 Jo M?+ (v?

(Ov) =

® |t is interesting to point out that EVWSB exists even
when the origin is a minimum m° > 0

d
\ = m2 | SUAdUCdU T'(dy — 12 — dy) k3 w20 —*
v
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Pole structure & Spectral analysis

® Once the true vacuum is found the spectrum is
obtained diagonalizing the infinite matrix that mixes

h and ©n:
M7, = 2 \v* = m3,
M2
M7 = kyvF, M2 m2 mf] = (v°

® The inverse of the hh entry corresponds to the
propagator of the higgs in the interaction basis:

. _ vikE A
ZPhh(pQ) 1 = p2 _ m%LO 27(-‘{p = F(dU — 1)F(2 — dU)

< [(m2 = p?)" + dyp*(m2) =t — (m2)
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Parameter space
The Higgs can be embedded in the continuum!!!

dy=12
10

Ia : RU .

6 _— 11a __ 27ng

ITb

5 __ Tachyon _ T 0 =

| Ib

la. Single (complex) pole>mg Ib. Single (real) pole<mg
lla. Two (complex) poles>mg lIb. One (complex)>mg
One (real)<mg
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® |et’s examine a particular case with xo=5 and the
(complex) solutions of the pole equation for d,=1.2
mg=|
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® |et’s examine a particular case with xo=5 and the
(complex) solutions of the pole equation for d,=1.2
mg=|

Re[mh]
(with
width)

solution
of the

real part
of P!

A resonance is spit from the continuum (phantom)
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2 2
mh/mg

® The effect occurs for every xo>1 for xo<l|
there is always an isolated pole
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Spectral analysis

® VWe can try to capture better the structure of our
propagator calculating the spectral function

onn(s) = —%Im[—iPhh(s i)

® There are two pieces of the imaginary part of the
propagator

1 1
> P.V.— —inmd(x)

® isolated poles: _
T + 1€ X

® (m.—p°)" = (p° —m))*(cos(d,m) + isin(dy,m)) p > my
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® There are two forms for the spectral function
depending on whether there is an isolated pole:

Prh(8) = K2(1m%) o(s — m%) + 0(s — mg)pz(S)Tjgi)Tg(s)
prr(s) = 0(s — mE)DQ(S)T_S EjQ)T?](S)

® The spectral function is normalized to | and can be
interpreted as the projection of mass eigenstates
(H,U) into the higgs interaction state (h)

/ Prh(s)ds =1
0

prn(s) = (hls)(s|h) = [(H|h)["6(s — mp) + 0(s — mg)[{U, M|h)|*
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0.012F

0.008|
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0.004§
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0.3F
0.25}
0.2

0.1|

--------

These are two examples of
spectral functions for d,=1.2
one with an isolate pole
the second with the higgs

embedded in the continuum

it is a broad resonance

Note the mass gap
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® Evolution of the pole for large Ruand appearance
of the phantom higgs
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1 |
0.8 i —
0.6 —

'«
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0 | | | [
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® Projection onto the higgs interaction state
of the isolated pole for different masses
x=mn%/mg? it can be very diluted!!!
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Decays!

® |n the example | have been discussing until now
where the higgs mixes with an unparticle operator
there are decays but can be explained by the
normal decays of the higgs

® | would like to study the case where the unparticles
do not mixed but can decay

® | et’s start with the following (toy)-lagrangian:

1 1 1
L= 5 w PO o — im%gbz — iﬁfuﬂbQOU
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® |n order to avoid any problems with a

tadpole for the unparticle operator, the
following correlator will be supposed:

1 Ay
PO () — =
Ps) DO 2¢in(wd) (—s + m2 — ie)2—4

® On the other hand | will suppose that the

field ¢ will have m>0
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® There is a one loop contribution to the 2-
point function of the unparticles that can
be resumed in the following way:

1
_ap(1) _
1P BIOES>
K2 A K2 4m?
Yo~ U] L —% /1 O(s — 4m?
3272 05 m2 23271' S (s m’)
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® The consequences of that polarization are
as follows:

= A new isolated pole appears with a mass
less than mg

= |f mg>2 m this poles gets an imaginary
part proportional to the polarization

® Therefore unparticles can decay!!!
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1071 vvvvvvvvvvvvvvvv
09F
o.sf-
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du=1.25 K measures the normalization of the pole
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® The higgs provides us with a portal to new un
explored sectors

® |f a minimal coupling with unparticles is included the
vacuum structure is changed

® An IR regulator is needed to stabilize the unparticle
vev

® A mass gap is generated for the unparticles, the
higgs can appear as an isolated pole, be merged into
the continuum or phantom (diluted) higgs can be
obtained

® Unparticles can decay as resonances
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