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Introduction and Overview

A vague phylosophy,

“Interactions are more important than elementary degrees of
freedom,”

and its technical implementation: BOND ALGEBRAS.

Exact solvability (Lie bond algebras)
Nussinov and Ortiz Phys. Rev. B 79, 214440 (2009)

Dualities
Perturbation theory for strongly coupled systems
Symmetries, transition points and boundaries of phase diagrams

1 Unified, generalized theory of quantum and classical dualities
2 Systematic derivation of topological degrees of freedom
3 Fermionization as a duality: derivation of the JW mapping
4 Gauge theories and TQO
5 Numerical applications: simplified STL for quantum Monte

Carlo, dual boundary conditions,...

Cobanera et. al., PRL 104, 020402 (2010), Adv. Phys. 60, 679 (2011)
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Introduction and Overview

Exact and Effective Dimensional
reduction (holographic
correspondences)

1 Exact dimensional reduction as a
duality

2 Tensor networks (DMRG) for two
and three dimensional systems ?

3 When is a system ”quasi” lower
dimensional? Dim-red inequalities
symmetry principles for dimensional
reduction

Cobanera et. al. arXiv:1110.2179v1

[cond-mat.stat-mech]
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Introduction and Overview

Non-Abelian dualities

1 The character of a
duality is not determined
by the group of
symmetries

2 New dualities for the
S = 1/2 Heisenberg
model in any number of
dimensions

3 Self-duality, Non-abelian
and emergent
symmetries, and novel
topological excitation in
the p-clock model, Nuc.

Phys. B 854 (2012), 780
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Bonds

Model Building in Quantum Mechanics

EDFs ⇒ basic interactions {hΓ}Γ ⇒

⇒ H =
∑

Γ

λΓhΓ ⇒ Emergent EDFs

The BONDS hΓ are the “atomic constituents” of the Hamiltonian.

Example:

σx
i , σ

z
i ⇒ {σx

i , σ
z
i σ

z
i+1}i ⇒ HI =

∑
i

[hσx
i + Jσz

i σ
z
i+1] ⇒ Kinks

Bonds are SPARSE: [hΓ, hΓ′ ] = 0 for most Γ′

Typically a consecquence of LOCALITY
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Bond Algebra = Algebra of Interactions

Our Philosophy: Interactions are more important than elementary
degrees of freedom.

What are the EDFs? ↔ What is the algebra of the EDFs?

1 fermionic or bosonic algebra?

2 SU(N) spins, “Hopf spins”? etc. etc. etc. ...

What are the interactions? ↔ What is the algebra of interactions?

Definition

The bond algebra of H =
∑

Γ λΓhΓ is the von Neumann algebra of
operators AH generated by the set of bonds {hΓ}Γ.
(Cobanera et. al., PRL 104, 020402 (2010))

AH = Linear Span {1, hΓ, h
†
Γ, hΓhΓ′ , h

†
ΓhΓ′ , h

†
Γ′hΓ, h

†
Γ′h
†
Γ, hΓhΓ′hΓ′′ , · · · }
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Bond Algebras and Dualities

Idea: Use bond algebras to compare Hamiltonians

Φ : AH1 → AH2 one-to-one and onto

Φ(1) = 1, Φ(O†) = Φ(O)†,

Φ(O1O2) = Φ(O1)Φ(O2), Φ(O1 + λO2) = Φ(O1) + λΦ(O2).

Definition

Φ is a duality, and H1 is dual to H2, if Φ(H1) = H2

Theorem

Φ(O) = UOU† Dualities are unitary equivalences!!!

Either UU† = U†U = 1 , or UU† = 1 and U†U = P = P2 .
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Transmutation of statistics I

HF =
N−1∑
i=1

λ(c†i ci+1 + c†i+1ci )

Bonds:
{c†i+1ci |i = 1, · · · ,N − 1}

HXY =
N−1∑
i=1

λ(σ+
i σ
−
i+1+σ+

i+1σ
−
i )

Bonds:
{σ+

i+1σ
−
i |i = 1, · · · ,N − 1}

Very different EDFs, but isomorphic bond algebras:

c†i+1ci
Φd−→ σ+

i+1σ
−
i HF is dual (unitarily equivalent!) to HXY

Dual Fermions: ci
Φd−→ ???
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Transmutation of statistics II: Fermions as dual topological
collective modes

1 Enlarge AF by adding c1 to the set of bonds

⇒ c2 = [c1, c
†
1 c2], c3 = [c2, c

†
2 c3], · · · , cN = [cN−1, c

†
N−1cN ]

2 Extend Φd so that all algebraic relations are preserved

⇒ c1
Φd−→ σ−1 . Then, for i = 2, · · · ,N

3 Φd(c2) = [Φd(c1),Φd(c†1 c2)] = [σ−1 , σ
+
1 σ
−
2 ] = −σz

1σ
−
2 , and so on...

4

ci
Φd−→

i−1∏
j=1

(−σz
j )σ−i ≡ ĉi JW transformation = dual fermions
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Dualities and Fermionization

Fermionization can be understood as a duality in any number of
dimensions, and

the corresponding JW transformation can be derived as a fermionic
topological excitation

Bond algebras can be used to
1 show that fermionization is not possible under certain conditions
2 look for dual representations of a model that are better suited for

fermionization. Example: Two-dimensional Ising model in a
transverse field

(Cobanera et. al., Adv. Phys 60, 679 (2011))
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Are we really talking of dualities here? The quantum Ising
chain

HI[h, J] =
∑

i

[
hσx

i + Jσz
i σ

z
i+1

]

An infinite quantum Ising Chain
0

symmetric phase

broken−

symmetry

phase

?

J

h

Bond anticommutes with Bond2

σx
i σz

i−1σ
z
i σz

i σ
z
i+1 1

σz
i σ

z
i+1 σx

i σx
i+1 1

σx
i

Φd−→ σz
i σ

z
i+1

σz
i σ

z
i+1

Φd−→ σx
i+1

HI[h, J] is dual (unitarily equivalent!) to HI[J, h]

⇒ E (J, h) = E (h, J) ⇒ J = h transition line
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Self-duality and kinks

Duality Mapping

σx
i

Φd−→ σz
i σ

z
i+1 σz

i σ
z
i+1

Φd−→ σx
i+1

Φ

A duality is a mapping of bonds that preserves the algebra of interactions

µx
i ≡ Φd(σx

i ) = σz
i σ

z
i+1

µz
i ≡ Φd(σz

i ) = Φd(σz
i σ

z
i+1 × σz

i+1σ
z
i+2 × · · · ) = σx

i+1σ
x
i+1σ

x
i+2 · · ·

(Fradkin and Susskind, Phys. Rev. D 17 (1978) 2637)
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Dualities and TQO: The one-dimensional extended toric
code

(i , 1) = link connecting site i and i + 1

HETC =
∑
i

[
hzσ

z
(i,1) + hxσ

x
(i,1) + Jxσ

x
(i,1)σ

x
(i+1,1)

]
σx

(i,1)σ
x
(i+1,1) ≡ Ai+1

i−1 i+1 i+2i

(i,1)

Bond anticommutes with Bond2

σz
(i,1) σx

(i,1) σx
(i−1,1)σ

x
(i,1) σx

(i,1)σ
x
(i+1,1) 1

σx
(i,1)σ

x
(i+1,1) σz

(i,1) σz
(i+1,1) 1

σz
(i,1) σx

(i,1) 1

(Tupitsyn et. al., Phy. Rev. B 82, 8 (2012); two dimensions)
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Dualities and TQO

HD
ETC =

∑
i

[
Jxσ

x
i + hzσ

z
i σ

z
(i,1)σ

z
i+1 + hxσ

x
(i,1)

]
Duality Mapping:

σx
i

Φd−→ σx
(i−1,1)σ

x
(i,1) ≡ Ai , σz

i σ
z
(i,1)σ

z
i+1

Φd−→ σz
(i,1) σx

(i,1)
Φd−→ σx

(i,1)

Have we lost degrees of freedom???
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Dualities and Gauge Symmetries

HD
ETC =

∑
i

[
Jxσ

x
i + hzσ

z
i σ

z
(i,1)σ

z
i+1 + hxσ

x
(i,1)

]
Z2 Higgs model

(Fradkin and Shenker, Phys. Rev. D 19, 3682 (1979))

Gauge Symmetries: σx
i Ai = σx

(i−1,1)σ
x
i σ

x
(i,1)

A state ρ is physical if and only if [ρ, σx
i Ai ] = 0

NOTICE: σx
i Ai

Φd−→ AiAi = 1

The duality changes the number of EDFs because it eliminates all the
gauge symmetries.

Φd(O) = UdOU†d UdU†d = 1 U†d Ud = PGI
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Topological quantum order in the Higgs model:
Generalizations

Both the Z2 Higgs model and (extended) toric code model have
natural (canonical) generalizations to any number of dimensions and
arbitrary Abelian group G . If the group if continous we may be able
to take the continuum limit.

They are always dual, and the phase diagrams of some of these
generalizations are under investigation. In two dimensions, the
continuum limit of the ETC model with group R is the Stückelberg
model of mass generation.

In two dimension, the duality still holds on more general lattices like
the honeycomb lattice. It suggests some interesting questions
on the stability of some string-net topological phases.

The Big Challenge: What if G is non-Abelian?
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Strong Coupling/Weak Coupling

STL decomposition/Feynmann’s path integral

ZE =
∑

{φ1},··· ,{φN}

〈φ1|e
−1
N H |φ2〉〈φ2|e

−1
N H |φ3〉 · · · 〈φN |e

−1
N H |φ1〉 = Tr (e

−1
N H)N

ZE = Tr (e
−1
N H)N = Tr (e

−1
N HD

)N = ZD
E

Bond-Algebraic Classical Dualities

Z = Tr (T1 · · ·Ts)N Ti =
∏

Γ tiΓ

Bond algebra AZ : algebra generated by the {tiΓ}
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Strong Coupling/Weak Coupling

Strong Coupling/Weak Coupling dualities are “classical”
descendants of quantum dualities

ZI(K , h̃) =
∑
{σi}

exp

[
N∑
i=1

(Kσiσi+1 + h̃σi )

]
= Tr (T1T2)N

T1 = eK + e−K σx , T2 = e h̃ σz

= cosh(h̃) + sinh(h̃) σz ,

TD
1 = eK + e−K σz = A e h̃∗σz

, TD
2 = e h̃ σx

= B(eK∗ + e−K
∗
σx),

sinh(2K ) sinh(2h̃∗) = 1, sinh(2K∗) sinh(2h̃) = 1
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Strong Coupling/Weak Coupling

Bond-algebraic dualities are unitary transformations

ZI(K , h̃)

(2 sinh(2h̃))N/2
=

Tr (T1T2)N

(2 sinh(2h̃))N/2
=

Tr (TD
2 TD

1 )N

(2 sinh(2h̃))N/2
=

ZI(K∗, h̃∗)

(2 sinh(2h̃∗))N/2

Classical self-dual line defined by h̃∗ = h̃ and K∗ = K

sinh(2K ) sinh(2h̃) = 1

Can only be critical if h̃ = 0 ⇒ K →∞, i.e., at zero temperature.
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Strong Coupling/Weak Coupling

Quantum dualities are “mapped” to strong coupling/weak coupling
dualities of partition functions/Euclidean path integrals

Many possible dualities! Only one corresponds to the standard
classical duality based on the Fourier transform
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Holographies and dualities

Dimensional reduction and holographic correspondences qualify
those situations when the “apparent”, geometric dimension of a
system is not the dimension that best characterizes its response to
probes and information-theoretic aspects.

1 Restricted dynamics from conservation laws (sliding dynamics)
2 Restricted dynamics from special couplings and interactions

(layered systems)
3 Kaluza-Klein compactification (string theory)
4 Gauge-gravity dualities (AdS-CFT correspondence)

Bond algebras display an internal connectivity that may or may not
reflect the apparent geometric connectivity of the model.

Bond-algebraic dualities can change the dimension of a
system.
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Topological quantum order and dimensional reduction

An fcc lattice has exactly one octahedron per lattice site. Define the
“octahedron operator”

Om = σx
m+a1−a2

σx
m+a3

σy
mσ

y
m+e2

σz
m+a3−a2

σz
m+a1

e
3

e
1

e
2

a
3

a
2

a
1

m+e
2

m+a
3

m

Hxyz = −J
∑

m Om Chamon, PRL 94, 040402 (2005)

displays topological quantum order. Its bond algebra is commutative.
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The XYZ model

The fcc lattice is
quadripartite. If it satisfies
periodic boundary conditions,
then (i = 1, 2)∏

m∈Ai

Om =
∏

m∈Bi

Om = 1 .

These constraints further
structure the commutative
bond algebra of the model.

B
1

B
2A

1

A
2

The XYZ model is dual to four decoupled, periodic, Ising chains.
(Cobanera et. al. arXiv:1110.2179v1 [cond-mat.stat-mech])
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Some Consequences for the Storage of Quantum
Information

Many models of TQO are dual to one dimensional models. This is
not because their bond algebra is commutative, but rather because
the constraints are simple. We can add non-commutativity and
preserve dimensional reduction.

Thermal fragility: a periodic Ising chains display short
autocorrelation times at any finite temperature, regardless of its size.
Models of TQO that display this type of dimensional reduction may
not be good quantum memories. Most famously,

1 The Toric Code, Honeycomb toric code, topological color codes, and
2 the XYZ model just discussed

But, exact dimensional reduction is a rare. How can we quantify and
exploit approximate or effective dimensional reduction?

Cobanera et. al., arXiv:1110.2179v1 [cond-mat.stat-mech]
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Effective Dimensional Reduction in Classical Systems

(Batista and Nussinov, Phys. Rev. B 72, 045137 (2005))

φ(x) =

{
φ0(x) if x ∈ Γ
ψ(x) if x ∈ Λ̄

.

f [φ] = f [φ0] localized observable

Λ

Γ

〈f 〉D =
∑
{ψ}

∑
{φ0}

f [φ0]
e−βE [φ0,ψ]

Z =
∑
{ψ}

z[ψ]

Z

∑
{φ0} f (φ0)e−βE [φ0,ψ]

z[ψ]

〈f 〉dl ≡ minψ 〈f 〉d [ψ] = 〈f 〉d [ψmin], 〈f 〉du ≡ maxψ 〈f 〉d [ψ] = 〈f 〉d [ψmax]

〈f 〉dl ≤ 〈f 〉D ≤ 〈f 〉du

〈f 〉dl : El [φ0, ψmin] and 〈f 〉du : Eu[φ0, ψmax] LOCAL effective theories

Emilio Cobanera Dualities



Effective Dimensional Reduction and Holographies: a new
approach through inequalities

Consider a system on a volume Λ with
distinguishable bulk Λ̄ and boundary Γ:

HΛ = HΓ ⊗HΛ̄

We can write an arbitrary state as

ρ =
∑
i

λi ρΓi⊗ρΛ̄i , λi ∈ R,
∑
i

λi = 1.

If the λi are all positive, the state is
separable (unentangled).

Λ

Γ

f = fΓ ⊗ 1Λ̄

Localized observable
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Entanglement-based Effective Dimensional Reduction

Arbitrary state ρ =
∑

i λi ρΓi ⊗ ρΛ̄i , λi ∈ R,
∑

i λi = 1.

f = fΓ ⊗ 1Λ̄ localized on the boundary

Theorem

L+〈f 〉+l − L−〈f 〉−l ≤ Tr Λ(ρf ) ≤ L+〈f 〉+u − L−〈f 〉−u .

Where L+ =
∑

i+
λi+ , L− =

∑
i−
|λi− | are both positive,

〈f 〉+u ≡ maxi+ Tr Γ(ρΓi+ fΓ), 〈f 〉−u ≡ mini−Tr Γ(ρΓi− fΓ),

〈f 〉+l ≡ mini+ Tr Γ(ρΓi+ fΓ), 〈f 〉−l ≡ maxi−Tr Γ(ρΓi− fΓ).

If state ρ is unentangled, then L− = 0 and L+ = 1:

〈f 〉+l ≤ Tr Λ(ρf ) ≤ 〈f 〉+u
Cobanera et. al., arXiv:1110.2179v1 [cond-mat.stat-mech]
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Effective Dimensional Reduction

Entanglement-based inequalities are ideal to establish a connection
to classical notions of effective dimensional reduction

There are other inequalities that are better suited to purely
quantum-mechanical investigations (Cobanera et. al.

arXiv:1110.2179v1 [cond-mat.stat-mech]).

Effective dimensional reduction combined with low dimensional
gauge like symmetries and results like Elitzur’s or
Mermin-Wagner-Coleman theorem can put strong constraints on
symmetry breakdown in higher dimensions.

Effective dimensional reduction may help to asses the viability of
realistic proposals for topological quantum memories.
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Summary and conclusions

1 Bond algebras are useful!!!

2 Bond-Algebraic dualities are one of the best developed applications
bond algebras. They work well with TQO because they can handle
gauge symmetries easily.

3 Bond algebras encode the “true” dimensionality of a system as
witnessed by its interactions, and a duality can then unveil exact
dimensional reduction

4 Exact dimensional reduction is rare, so we propose a set
inequalitiesto quantify effective dimensional reduction. They may
may be of consequence to quantum information processing.
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Appendix: Bond algebras for classical dualities

ZI[K ] =
∑
σr

exp
[
K
∑

r

∑
ν=1,2

σr+eν
σr

]
K = −βJ = −J/kBT ≥ 0, ferromagnetic

One discrete global symmetry

σr 7→ −σr

that can be broken. What is the critical
temperature?

J

J

0

β
paramagnetic

ferromagnetic

Emilio Cobanera Dualities



Bond algebras for classical dualities

If we introduce the row-to-row transfer matrices

T0 =
∏
i

exp[Kσz
i σ

z
i+1], T1 =

∏
i

(
eK + e−Kσx

i

)
then we can write

ZI[K ] = Tr [T1T0T1T0 · · ·T1T0] = Tr [(T1T0)N ]

provided we agree to compute the trace in the diagonal basis for the σz
i .

N determines the height (number of rows) of the system. The bond
algebra is the same as before!

|σ        >i−1,j+1 |σ     > |σ         >

T T1,i+11,i1,i−1T

row j

row j+1

i+1,j+1i,j+1

|σ   >i,j |σ      >i+1,j|σ      >i−1,j

=
∏
i

exp[−βJσi,jσi,j+1]
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The self-duality of Kramers and Wannier and the critical
temperature of the Ising model

T0
Φd−→ TD

0 =
∏
i

exp[Kσx
i ], T1

Φd−→ TD
1 =

∏
i

(
eK + e−Kσz

i σ
z
i+1

)
This is a UNITARY TRANSFORMATION. Hence

ZI[K ] = Tr [(T1T0)]N ] = Tr [(TD
1 TD

0 )] ≡ ZD
I

Next, a little bit of math shows that

ZI[K ] = ZD
I ∝ ZI[K

∗], K∗ = −1

2
ln tanh(K )

A weak coupling-strong coupling transformation has emerged! If there is
only one critical point, then its value must be

Kc =
1

2
ln(1 +

√
2)
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Symmetries and dualities

1 Dualities are not symmetries, but

2 they are not unique and thus may reveal hidden symmetries. If

UdH1U†d = H2 and ŨdH1Ũ†d = H2

then

(U†d Ũd) H1 (U†d Ũd)† = H1 and (UdŨ†d ) H2 (UdŨ†d )† = H2

3 Self-dualities

UdH[λ1, λ2 · · · ]U†d = H[λ∗1 , λ
∗
2 , · · · ]

become extra, discrete, non-trivial symmetries at self-dual points
where λi = λ∗i .
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become extra, discrete, non-trivial symmetries at self-dual points
where λi = λ∗i .
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Symmetries and Dualities II: An example

The self-duality of the Ising model is the square-root of a translation by
one unit to the right, U2

d = T (1):

Φ

translation

Φ

It becomes an extra symmetry of the model’s self-dual point

UdHI[h, J = h]U†d = HI[h, J = h]

where the phase transition occurs.
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Confinement and topological quantum order: The new
face of an old phase diagram

The Z2 Higgs model (B(r,3) ≡ σz
(r,1)σ

z
(r+e1,2)σ

z
(r+e2,1)σ

z
(r,2)):

HAH =
∑

r

(
Jxσ

x
r + JzB(r,3)

)
+
∑

r

∑
ν=1,2

(
hzσ

z
r σ

z
(r,ν)σ

z
r+eν

+ hxσ
x
(r,ν)

)

ν=2

ν=1r

ν=2

ν=1r
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Symmetries and phase diagram of the Z2 Higgs model

The gauge symmetries are
Gr ≡ σx

r Ar, with

Ar ≡ σx
(r,1)σ

x
(r,2)σ

x
(r−e1,1)σ

x
(r−e2,2)

the star operator.
ν=2

ν=1

A
r

r

h
z

h
x

multicritical
point

secondorder line

first orer line

self−dual
line

Higgs

0

Coulomb

(free charge)

Confinement

There can be no spontaneous breakdown of gauge symmetries
(Elitzur’s theorem). But we can try to get rid of them to have easier
access to the model’s phase diagram. Dualities!
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Topological quantum order in the Higgs model

The bond algebra of the Z2 Higgs model has at least one dual
representation that “leaps to the eye:”

σx
r

Φd−→ Ar

σz
r σ

z
(r,ν)σ

z
r+eν

Φd−→ σz
(r,ν)

B(r,3)
Φd−→ B(r,3)

σx
(r,ν)

Φd−→ σx
(r,ν)

The Dual Hamiltonian

HAH
Φd−→ HETC =

∑
r

[(
JxAr + JzB(r,3)

)
+
∑
ν=1,2

(
hzσ

z
(r,ν) + hxσ

x
(r,ν)

)]
The Higgs model is dual to he Toric Code model in a magnetic field.
But this extended toric code has no gauge symmetries !!!! Where did
they go?

Gr = σx
r Ar

Φd−→ ArAr = 1

The duality has solved completely the gauge constraints!!!!
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A Symmetry Principle for Dimensional Reduction and
TQO

What is the link between TQO and dimensional reduction?

Models of TQO tipically display d-dimensional gauge-like
symmetries, that combined with dimensional-reduction techniques
can yield important information about phase diagrams.

HPOC = −
∑

r

(J1 σ
x
r σ

x
r+e1

+ J2 σ
y
r σ

y
r+e2

)

Xi1 =
∏
i2

σx
i1,i2 Yi2 =

∏
i1

σy

i1,i2

d gauge-like symmetries have been
proposed to be the symmetry principle
underlying both TQO and dimensional
reduction. (Cobanera et. al.
arXiv:1110.2179v1 [cond-mat.stat-mech])

,i )(i
1 2

Y
i
2

X
i
1
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Dualities in numerical simulations: Dual boundary
conditions for finite systems

Exact dualities for finite systems require special boundary
condision, called dual boundary conditions.

Dual boundary conditions are model-specific, and can be computed
on a case-by-case basis straight from the bond algebra of the finite
systems under consideration.

HN
I = hσx

i +
∑N

i=2[Jσz
i−1σ

z
i + hσx

i ]

HN
I

NOT Self-Dual, E (h, J) 6= E (J, h)

HN
I + Jσz

1

Self-Dual, E (h, J) = E (J, h)
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