The S-Matrix in Twistor Space

Clifford Cheung

Institute for Advanced Study (Princeton, NJ) Harvard University (Cambridge, MA)

N. Arkani-Hamed, F. Cachazo, C.C., J. Kaplan, **0903.2110** N. Arkani-Hamed, F. Cachazo, C.C., J. Kaplan, **09xx.xxxx**

outline

- motivation: holography + twistors
- review: spinor helicity + BCFW recursion
- tree amplitudes in twistor space
- ► Hodges diagrams + inverse soft factors
- the holographic equation

motivation

A primary motivation for this work is holography.

After all, the S-matrix is a boundary observable encoding the overlap of $|T = -\infty\rangle$ with $|T = \infty\rangle$.

Broadly speaking, the "bulk" consists of off-shell states which make locality and LI manifest:

$$S=\int d^4x \ \mathcal{L}(x)$$

dual theory?

The price of locality and LI is redundancy:

- gauge + diffeomorphism invariance
- auxiliary fields in off-shell SUSY
- field reparameterization freedom

Is there an alternative to the QFT description? Is there a theory dual to flat space? BCFW recursion relations construct the S-matrix from purely on-shell data:

1) Define M_3 , the on-shell 3pt amplitude.

2) Recursively construct M_n from $M_{m < n}$.

Caveats: BCFW only valid at tree-level and for certain theories. And it is not a theory!

twistors \rightarrow dual theory

Witten: the perturbative expansion of $\mathcal{N} = 4$ SYM is computed by a dual topological string theory in twistor space.

Applying the same "data-driven" approach, we find that the natural home for the S-matrix is in fact ambi-twistor space.

"Data" in hand, we argue that **there is a new rule** for building the S-matrix!

spinor helicity formalism

The S-matrix of massless particles in 4d is naturally represented using the spinor helicity formalism.

The premise is to represent each null momentum vector by a bi-spinor:

$$oldsymbol{p}_{\mu}\sigma^{\mu}_{lpha\dot{lpha}}=oldsymbol{p}_{lpha\dot{lpha}}=\lambda_{lpha} ilde{\lambda}_{\dot{lpha}}$$

where in (2,2) signature, λ and $\tilde{\lambda}$ are real and independent spinors.

lorentz and little group

For particles $\{i\}$ labeled by $\{\lambda_i, \tilde{\lambda}_i\}$, the obvious LI quantities are angle and square brackets:

$$\begin{array}{rcl} \lambda_{i\alpha}\epsilon^{\alpha\beta}\lambda_{j\beta} &=& \langle ij\rangle = -\langle ji\rangle\\ \tilde{\lambda}_{i}{}^{\dot{\alpha}}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\lambda}_{j}{}^{\dot{\beta}} &=& [ij] = -[ji] \end{array}$$

These are covariant under action of the little group:

$$\lambda_i \to t_i \lambda_i, \qquad \tilde{\lambda}_i \to t_i^{-1} \tilde{\lambda}_i$$

which by definition leaves $p_i = \lambda_i \tilde{\lambda}_i$ invariant.

on-shell amplitudes

For particles $\{i\}$ of spin *s* and helicity $\{h_i\}$, the on-shell amplitude takes the form

$$M(\{\lambda_i, \tilde{\lambda}_i; h_i\}) = \mathcal{M}(\{\lambda_i, \tilde{\lambda}_i; h_i\})\delta^4\left(\sum_i \lambda_i \tilde{\lambda}_i\right)$$

where under the little group

$$M(\{t_i\lambda_i, t_i^{-1}\tilde{\lambda}_i; h_i\}) = t_i^{-2sh_i}M(\{\lambda_i, \tilde{\lambda}_i; h_i\})$$

some example amplitudes

YM tree amplitudes:

$$\mathcal{M}(1^{-}2^{-}3^{+}) = \frac{\langle 12 \rangle^{3}}{\langle 23 \rangle \langle 31 \rangle}, \qquad \mathcal{M}(1^{+}2^{+}3^{-}) = \frac{[12]^{3}}{[23][31]}$$
$$\mathcal{M}(1^{+}2^{-}3^{+}4^{-}) = \frac{\langle 24 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$
$$\mathcal{M}(1^{+}2^{-}3^{+}4^{-}5^{+}6^{-}) = \frac{[13]^{4} \langle 46 \rangle^{4}}{[12][23] \langle 45 \rangle \langle 56 \rangle \langle 6|p_{1} + p_{2}|3] \langle 4|p_{2} + p_{3}|1](p_{1} + p_{2} + p_{3})^{2}}$$
$$+ \{i \to i+2\} + \{i \to i+4\}$$

some more example amplitudes

There are closed formulae for all MHV (maximally helicity violating) and anti-MHV amplitudes:

$$\mathcal{M}(1^+2^+ \dots i^- \dots j^- \dots n^+) = \frac{\langle ij \rangle^4}{\prod_{k=1}^n \langle k | k+1 \rangle}$$
$$\mathcal{M}(1^-2^- \dots i^+ \dots j^+ \dots n^-) = \frac{[ij]^4}{\prod_{k=1}^n [k | k+1]}$$

spinor helicity \rightarrow no polarizations!

BCFW

BCFW constructs the S-matrix recursively. In (3, 1), we shift *i* and *j* by a complex parameter *z*:

$$\lambda_i(z) = \lambda_i + z\lambda_j, \quad ilde{\lambda}_j(z) = ilde{\lambda}_j - z ilde{\lambda}_i$$

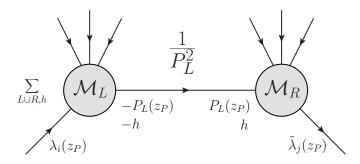
 $\mathcal{M}(z)$ is complexified. BCFW = Cauchy's theorem:

$$\mathcal{M}(0) = \oint \frac{dz}{z} \mathcal{M}(z) = \sum_{z_P} \frac{\mathcal{M}(z_P)}{z_P}$$

In YM and gravity, there is no pole at $z = \infty$ as long as $(h_i, h_j) \neq (-, +)$.

BCFW

Summing over z_P yields the BCFW reduction of \mathcal{M} :



where the pole is at $z_P = -\frac{P_L^2}{2[i|P_L|j\rangle}$.

With maximal SUSY, all *h* are smoothly labeled by η . For BCFW, shift $\eta_i(z) = \eta_i + z\eta_j$ and replace \sum_h with $\int d^N \eta$.

counting terms

Feynman diagrams are very redundant!

of terms in the *n*pt amplitude:

n legs	4	5	6	7	8
Feynman diagrams	4	25	220	2485	34300
BCFW recursion	1	1	3	6	20

Real world calculations are much faster and the final expressions are much more compact.

changing signatures

In (2,2), we instead shift by a real parameter τ :

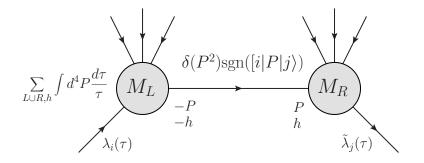
$$\lambda_i(au) = \lambda_i + au \lambda_j, \quad ilde{\lambda}_j(au) = ilde{\lambda}_j - au ilde{\lambda}_i$$

So $1/P_L^2$ can be expressed in a fully on-shell form: $\frac{M_L(\tau_P)M_R(\tau_P)}{P_L^2} = \int \frac{d\tau}{\tau} \delta(P^2) \operatorname{sgn}([i|P|j\rangle)M_L(\tau)M_R(\tau)$

where $P = P_L + \tau \lambda_i \tilde{\lambda}_j$ on the support of M_L .

on-shell BCFW

In (2, 2), there is a fully on-shell form of BCFW:



Momentum conservation is built into $M_{L,R}$.

wave mechanics 101

Since the BCFW momentum shift is real

$$\lambda_i(au) = \lambda_i + au \lambda_j, \quad ilde{\lambda}_j(au) = ilde{\lambda}_j - au ilde{\lambda}_i$$

we know what to do from wave mechanics:

$$f(x - vt) = \int dk \ e^{ik(x - vt)} \tilde{f}(k)$$
$$\tilde{f}(t) = e^{-ikvt} \tilde{f}(0)$$

When you see a shifted variable, fourier transform it!

wave mechanics 101

A fourier transform from $\lambda_i \to \tilde{\mu}_i$ and $\tilde{\lambda}_j \to \mu_j$ is precisely a transform into ambi-twistor space!

$$M(\lambda_i(au), ilde{\lambda}_j(au)) = \int d ilde{\mu}_i d\mu_j e^{i\lambda_i(au) ilde{\mu}_i} e^{i ilde{\lambda}_j(au)\mu_j} ilde{M}(ilde{\mu}_i,\mu_j)$$

The shift becomes a phase:

$$ilde{M}(au)=e^{i au(\lambda_{j} ilde{\mu}_{i}- ilde{\lambda}_{i}\mu_{j})} ilde{M}(0)=e^{i au W_{i}Z_{j}} ilde{M}(0)$$

where $W_i Z_j$ is the natural LI in ambi-twistor space!

ambi-twistor space

Each particle is represented either by a twistor

$$\{\lambda, \tilde{\lambda}\} \to \{\lambda, \mu\} \equiv Z^{\mathcal{A}}$$

or by a dual twistor

$$\{\lambda,\tilde{\lambda}\} \to \{\tilde{\mu},\tilde{\lambda}\} \equiv W_A$$

which are both vectors of the $SL(4, \mathbb{R})$ conformal group. The natural invariant is

$$W_A Z^A \equiv W Z = \lambda \tilde{\mu} - \tilde{\lambda} \mu$$

ambi-twistor space

There is also the LI, conformal breaking quantity:

$$Z_i^{A}I_{AB}Z_j^{B} = \langle ij \rangle, \quad W_{iA}I^{AB}W_{jB} = [ij]$$

Under the little group Z and W transform as

$$Z \to tZ, \quad W \to t^{-1}W$$

while the amplitude transforms as

$$M(tZ; h) = t^{-2sh-2}M(Z; h) \ M(t^{-1}W; h) = t^{-2sh+2}M(W; h)$$

ambi-dexterity

We can "ambi-dextrously" transform between the Z and W basis for any given particle:

$$M(W) = \int d^4 Z \ e^{iWZ} M(Z)$$

BCFW suggests $\{-\leftrightarrow Z\}$ and $\{+\leftrightarrow W\}$!

Before taking BCFW into twistor space, let's first see what some amplitudes look like in twistor space.

3pt YM

The anti-MHV YM 3pt amplitude is

$$\begin{aligned} M(1^+2^+3^-) &= \frac{[12]^3}{[23][31]} \delta^4 \left(\sum_i \lambda_i \tilde{\lambda}_i \right) \\ &= \frac{[12]^3}{[23][31]} \int d^4 X_{a\dot{a}} e^{i X(\sum_i \lambda_i \tilde{\lambda}_i)} \end{aligned}$$

To go to twistor space, simply fourier transform:

$$M(W_1^+, W_2^+, Z_3^-) = \int d^2 \lambda_1 d^2 \lambda_2 d^2 \tilde{\lambda}_3 e^{i(\lambda_1 \tilde{\mu}_1 + \lambda_2 \tilde{\mu}_2 + \tilde{\lambda}_3 \mu_3)} M(1^+ 2^+ 3^-)$$

3pt YM

Two of the integrals are trivial:

$$M(W_1^+, W_2^+, Z_3^-) = [12]^3 \int d^4 X \int d^2 \tilde{\lambda}_3 \frac{e^{i \tilde{\lambda}_3(\mu_3 + X \lambda_3)}}{[23][31]} \\ \delta^2(\tilde{\mu}_1 + X \tilde{\lambda}_1) \delta^2(\tilde{\mu}_2 + X \tilde{\lambda}_2)$$

For the $\tilde{\lambda}_3$ integral define $\tilde{\lambda}_3 = a \tilde{\lambda}_1 + b \tilde{\lambda}_2$. Finally:

$$M(W_1^+, W_2^+, Z_3^-) = \operatorname{sgn}([12]) \int \frac{da}{a} \frac{db}{b} e^{i(aW_1Z_3 + bW_2Z_3)}$$

How do we regulate the divergence?

principle value prescription

To determine the regularization, use the little group:

$$M(t_1^{-1}W_1^+, t_2^{-1}W_2^+, t_3Z_3^-) = M(W_1^+, W_2^+, Z_3^-)$$

Thus, the only consistent prescription is PV:

$$\frac{1}{a} \rightarrow \frac{1}{2} \left(\frac{1}{a+i\epsilon} + \frac{1}{a-i\epsilon} \right)$$

which means that $\int da \ e^{iax}/a = i\sqrt{\frac{\pi}{2}} \operatorname{sgn}(x)$.

3pt YM

Thus, the 3pt amplitude becomes

$$\begin{array}{lll} M(W_1^+, W_2^+, Z_3^-) &=& \operatorname{sgn}(W_1 I W_2) \operatorname{sgn}(W_1 Z_3) \operatorname{sgn}(W_2 Z_3) \\ M(Z_1^-, Z_2^-, W_3^+) &=& \operatorname{sgn}(Z_1 I Z_2) \operatorname{sgn}(Z_1 W_3) \operatorname{sgn}(Z_2 W_3) \end{array}$$

The 3pt amplitude in YM theory is 1 and -1.

All non-trivial dependence in momentum space arises from a Jacobian!

4pt YM, 3pt gravity

The YM 4pt amplitude is:

 $M(W_1^+Z_2^-W_3^+Z_4^-) = \operatorname{sgn}(W_1Z_2)\operatorname{sgn}(W_1Z_4)\operatorname{sgn}(W_3Z_2)\operatorname{sgn}(W_3Z_4)$

The gravity 3pt amplitudes are:

the link representation

There is a convenient representation for amplitudes:

$$M(\{W_I, Z_J\}) = \int \left(\prod_{IJ} dc_{IJ}\right) \hat{M}(\{c_{IJ}; \lambda_J, \tilde{\lambda}_I\}) e^{ic_{IJ}W_I Z_J}$$

For example:

$$\begin{split} \hat{M}(1^+2^+3^-) &= \frac{\operatorname{sgn}([12])}{c_{13}c_{23}}\\ \hat{M}(1^+2^-3^+4^-) &= \frac{1}{c_{12}c_{14}c_{32}c_{34}}\\ \hat{M}(1^+2^-3^+4^-5^+6^-) &= \frac{\operatorname{sgn}([13]\langle 46\rangle)}{c_{12}c_{32}c_{14}c_{54}c_{36}c_{56}(c_{14}c_{36}-c_{16}c_{34})} + \dots \end{split}$$

the link representation

Going back to momentum space yields

$$M = \int \left(\prod_{IJ} dc_{IJ}\right) \hat{M} \delta^2 (\lambda_I - c_{IJ}\lambda_J) \delta^2 (\tilde{\lambda}_J + c_{IJ}\tilde{\lambda}_I)$$

which is very reminiscent of the RSV formula!

The δ^4 has been "factored" into δ^2 's.

 $BCFW = solving linear equations of the c_{IJ}'s.$

$\mathcal{N}=4$ SYM

 $\mathcal{N}=0$ tree amplitudes are obtained from $\mathcal{N}=4$ tree amplitudes by fixing external legs to be gluons.

In maximal SUSY, every state is also labeled by an on-shell superspace variable: η_I or $\bar{\eta}^I$, $1 \leq I \leq \mathcal{N}$.

The super-twistor variables and LI invariants are:

$$\mathcal{Z} = \begin{pmatrix} Z^{A} \\ \eta_{I} \end{pmatrix}, \quad \mathcal{W} = \begin{pmatrix} W_{A} \\ \tilde{\eta}^{I} \end{pmatrix}$$
$$\mathcal{W}\mathcal{Z} = WZ + \tilde{\eta}\eta, \quad \mathcal{W}_{i}I\mathcal{W}_{j} = [ij], \quad \mathcal{Z}_{i}I\mathcal{Z}_{j} = \langle ij \rangle$$

$\mathcal{N}=4$ SYM

The MHV and anti-MHV 3pt amplitudes become:

$$\begin{array}{lll} M^+(\mathcal{W}_1,\mathcal{W}_2,\mathcal{Z}_3) &=& \operatorname{sgn}(\mathcal{W}_1I\mathcal{W}_2)\operatorname{sgn}(\mathcal{W}_1\mathcal{Z}_3)\operatorname{sgn}(\mathcal{W}_2\mathcal{Z}_3) \\ M^-(\mathcal{Z}_1,\mathcal{Z}_2,\mathcal{W}_3) &=& \operatorname{sgn}(\mathcal{Z}_1I\mathcal{Z}_2)\operatorname{sgn}(\mathcal{Z}_1\mathcal{W}_3)\operatorname{sgn}(\mathcal{Z}_2\mathcal{W}_3) \end{array}$$

The full 3pt amplitude is the sum of these:

 $M(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{W}_3) = M^-(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{W}_3) + \tilde{M}^+(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{W}_3)$

$\mathcal{N} = 4$ SYM

For
$$\mathcal{N} = 4$$
 SYM, BCFW becomes:

$$M(\mathcal{W}_i, \mathcal{Z}_j) = \sum_{L \cup R} \int \left[D^{3|4} \mathcal{W} \ D^{3|4} \mathcal{Z} \right]_{ij} M_L(\mathcal{W}_i, \mathcal{Z}) M_R(\mathcal{Z}_j, \mathcal{W})$$

where the measure is integrals and $\operatorname{sgn}\xspace$'s:

$$\begin{bmatrix} D^{3|4}\mathcal{W} \ D^{3|4}\mathcal{Z} \end{bmatrix}_{ij} = D^{3|4}\mathcal{W} \ D^{3|4}\mathcal{Z} \operatorname{sgn}(\mathcal{W}\mathcal{Z}) \\ \operatorname{sgn}(\mathcal{W}_i\mathcal{Z}_j) \operatorname{sgn}(\mathcal{W}I\mathcal{W}_i) \operatorname{sgn}(\mathcal{Z}I\mathcal{Z}_j) \end{bmatrix}$$

where $\int \frac{d\tau}{\tau} e^{i\tau W_i Z_j} = \operatorname{sgn}(W_i Z_j)$.

Hodges diagrams

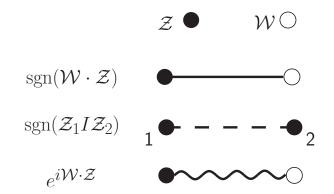
We see that in $\mathcal{N} = 4$ SYM, M_3 and BCFW consist solely of sgn()'s and integrations over $D^{3|4}\mathcal{W} D^{3|4}\mathcal{Z}$.

There is a natural diagrammatic representation which has been studied for many years by Hodges.

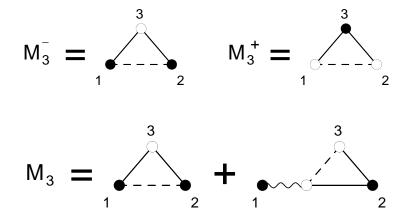
In (3, 1), Hodges diagrams involve complex integrals with unknown contours. Not a problem in (2, 2).

Most importantly, we will never have to do any actual integrals!

notation

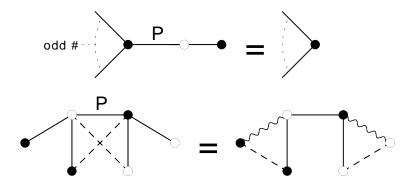


3pt



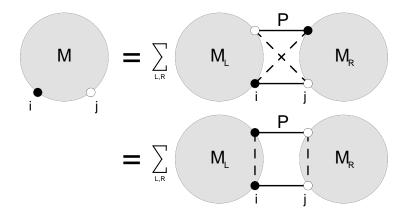
some identities

The "scrunch" and "butterfly" identities can all be proven straightforwardly in twistor space:



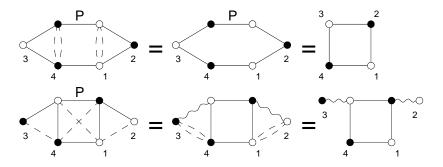
BCFW

Tree amplitudes in (S)YM take the form of disks:



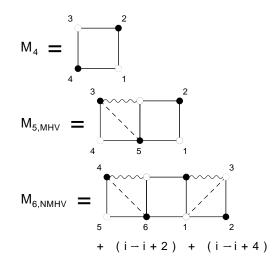
 $3pt \rightarrow 4pt$

Two ways of computing the 4pt from BCFW:



Using $sgn(x)^2 = 1$ is important.

4pt, 5pt, 6pt



These can all be written as products of M^+ or M^- triangles!

triangulations

If M^{\pm} triangles are "letters," then let us define a "word" to be a product of such triangles.

Every $\mathcal{N} = 4$ SYM amplitude is a "sentence" given by a sum "words" in twistor space.

This is easily proven inductively.

But what does this mean in momentum space?

inverse soft factors

Multiplying by a triangle in twistor space means applying an "inverse soft factor" in momentum space.

So $M^+(123)M(13...)$ in twistor space corresponds to adding a (+) particle between 1 and 3 in momentum space:

$$G(1\ 2^+3)\mathcal{M}(1\ 3\ldots) = rac{\langle 31
angle}{\langle 12
angle \langle 23
angle} \mathcal{M}(1\ 3\ldots) \Big|_{ ilde{\lambda}_{1,3} = ilde{\lambda}_{1,3}'}$$

where $\tilde{\lambda}_{1,3}$ is shifted to conserve momentum:

$$ilde{\lambda}_1^{'} = rac{\langle 3 | p_1 + p_2 |}{\langle 31
angle}, \quad ilde{\lambda}_3^{'} = rac{\langle 1 | p_2 + p_3 |}{\langle 13
angle}$$

building the 6pt NMHV

One word (of three) in $\mathcal{M}(1^+2^-3^+4^-5^+6^-)$ is

$$\begin{array}{c} G(1\ 2^{-}3)G(6\ 1^{+}3)G(6\ 3^{+}4)\mathcal{M}(4^{-}5^{+}6^{-})\\ G(1\ 2^{-}3)G(6\ 1^{+}3)\mathcal{M}(3^{+}4^{-}5^{+}6^{-})\\ G(1\ 2^{-}3)\mathcal{M}(1^{+}3^{+}4^{-}5^{+}6^{-})\\ \mathcal{M}(1^{+}2^{-}3^{+}4^{-}5^{+}6^{-})\end{array}$$

Let us show this explicitly.

building the 6pt NMHV

$$\begin{array}{lll} G(6\ 3^+4)\mathcal{M}(4^-5^+6^-) &=& \displaystyle\frac{\langle 64\rangle}{\langle 43\rangle\langle 36\rangle}\times \displaystyle\frac{\langle 64\rangle^3}{\langle 45\rangle\langle 56\rangle}\\ &=& \displaystyle\frac{\langle 46\rangle^4}{\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 63\rangle} \end{array}$$

$$\begin{array}{lll} G(6\ 1^+3)\mathcal{M}(3^+4^-5^+6^-) &=& \displaystyle\frac{\langle 63\rangle}{\langle 31\rangle\langle 16\rangle}\times \displaystyle\frac{\langle 46\rangle^4}{\langle 45\rangle\langle 56\rangle\langle 63\rangle\langle 34\rangle} \\ &=& \displaystyle\frac{\langle 46\rangle^4}{\langle 13\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle} \end{array}$$

building the 6pt NMHV

$$G(1\ 2^{-}3)\mathcal{M}(1^{+}3^{+}4^{-}5^{+}6^{-}) = \frac{[31]}{[12][23]} \times \frac{\langle 46 \rangle^{4}}{\langle 1'3' \rangle \langle 3'4 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61' \rangle}$$

where the primed spinors are

$$|3'
angle = rac{[1|
ho_2 +
ho_3|}{[13]}, \quad |1'
angle = rac{[3|
ho_1 +
ho_2|}{[31]}$$

This gives the correct answer:

 $\frac{[13]^4 \langle 46 \rangle^4}{[12][23] \langle 45 \rangle \langle 56 \rangle \langle 6 | p_1 + p_2 | 3] \langle 4 | p_2 + p_3 | 1] (p_1 + p_2 + p_3)^2}$

the rule?

Every *n*pt amplitude is a sentence of *n*-letter words.

Which words are allowed? Via identities, sentences can be translated into alternative forms.

Without resorting to BCFW, is there a "grammar"?

Number of BCFW terms = Catalan numbers. Mapping to a combinatoric problem?

generating functionals

We can re-package the tree-level S-matrix of $\mathcal{N}=4$ SYM into a convenient generating functional:

$$\mathbf{M}[\phi] = \sum_{n=3}^{\infty} \frac{1}{n!} \int D^{4|4} \mathcal{W}_1 \dots D^{4|4} \mathcal{W}_n \phi^{c_1}(\mathcal{W}_1) \dots \phi^{c_n}(\mathcal{W}_n)$$
$$M^{c_1 \dots c_n}(\mathcal{W}_1 \dots \mathcal{W}_n)$$

The "propagator" in a general background is:

$$\mathsf{P}^{ab}[\phi](\mathcal{W},\mathcal{Z}) = \frac{\delta^2 \mathsf{M}[\phi]}{\delta \phi^a(\mathcal{W}) \delta \tilde{\phi}^b(\mathcal{Z})}$$

$\star \text{ product} \equiv \text{BCFW}$

Any two functionals $F(\mathcal{W},\mathcal{Z})$ and $G(\mathcal{W},\mathcal{Z})$ have a natural product in twistor space

$$(\mathbf{F} \star \mathbf{G})(\mathcal{W}, \mathcal{Z}) = \int \left[D^{3|4} \mathcal{W}' D^{3|4} \mathcal{Z}' \right]_{\mathcal{W}, \mathcal{Z}} \mathbf{F}(\mathcal{W}, \mathcal{Z}') \mathbf{G}(\mathcal{W}', \mathcal{Z})$$

which is precisely the BCFW bridge. The 3pt amplitude can also be repackaged as

$$\mathbf{\Phi}(\mathcal{W},\mathcal{Z}) = \int d^{4|4} \mathcal{W}' \ M_3(\mathcal{W},\mathcal{Z},\mathcal{W}') \phi(\mathcal{W}')$$

holographic equation

Tree-level SYM and supergravity is reformulated as

$$\mathbf{P}^{ab} - \mathbf{P}^{ac} \star \mathbf{P}^{cb} = g f^{ab}_{\ c} \mathbf{\Phi}^{c}$$
 $\mathbf{P} - \mathbf{P} \star \mathbf{P} = \frac{1}{M_{
m Pl}} \mathbf{\Phi}$

To extract M_n , simply apply $\frac{\delta^{n-2}}{\delta\phi(W_3)\dots\delta\phi(W_n)}$.

Leibnitz rule does the BCFW partition!

Can we find new solutions to this equation? $\mathcal{O}(\hbar)$?

conclusions

- Twistor space is the natural home for the S-matrix. M₃ takes a striking form. BCFW reduces to [D⁴Z D⁴W]_{ij}.
- Tree amplitudes are simply computed and compactly represented using Hodges diagrams.
- There is evidence for a new rule that constructs the S-matrix from inverse soft factors.
- The tree-level dynamics of SYM and supergravity can be distilled into a holographic equation.

future directions

- ▶ find the "grammar" for amplitudes
- extend or solve the holographic equation
- explore the gravity S-matrix in twistor space
- better understand one-loop amplitudes in twistor space