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motivation

A primary motivation for this work is holography.

After all, the S-matrix is a boundary observable
encoding the overlap of |T = —o0) with | T = o0).

Broadly speaking, the “bulk” consists of off-shell
states which make locality and LI manifest:

S= / d*x L(x)



dual theory?

The price of locality and LI is redundancy:
» gauge + diffeomorphism invariance
» auxiliary fields in off-shell SUSY
» field reparameterization freedom

Is there an alternative to the QFT description?
Is there a theory dual to flat space?



on-shell methods
BCFW recursion relations construct the S-matrix
from purely on-shell data:
1) Define M3, the on-shell 3pt amplitude.
2) Recursively construct M, from M.

Caveats: BCFW only valid at tree-level and for
certain theories. And it is not a theory!



twistors — dual theory

Witten: the perturbative expansion of N’ = 4 SYM
is computed by a dual topological string theory in
twistor space.

Applying the same “data-driven” approach, we find
that the natural home for the S-matrix is in fact
ambi-twistor space.

“Data” in hand, we argue that there is a new rule
for building the S-matrix!



spinor helicity formalism

The S-matrix of massless particles in 4d is naturally
represented using the spinor helicity formalism.

The premise is to represent each null momentum
vector by a bi-spinor:

~

PMUZQ = Pai = Ao

where in (2,2) signature, A and ) are real and
independent spinors.



lorentz and little group

For particles {i} labeled by {);, \;}, the obvious LI
quantities are angle and square brackets:

AiaeaﬁAjﬂ' = (ij) = — (i)
)"aeaﬁ)‘jﬁ = [ij] = — ]

1
These are covariant under action of the little group:

Ai— B, A= 5

which by definition leaves p; = )\,-5\,- invariant.



on-shell amplitudes

For particles {/} of spin s and helicity {h;}, the
on-shell amplitude takes the form

M, Ny hi}) = M({i, Ni; hi})o (Z)\)\)

where under the little group

M({ti\i, t,'_lj\i; hi}) = t,-_25h’/\/7({)\i, Xii hi})



some example amplitudes

YM tree amplitudes:

gy (122 273y = L
M7273%) = oy MIT273) = B
e (24)*
M2 = Ty 123y (34 (a1)
M(17273"475%67) =
[13]°(46)°

[12][23](45) (56) (6]p1 + p2[3](4]p2 + ps|1](pr + p2 + p3)?

Hi—=i+2}+{i—i+4}



some more example amplitudes

There are closed formulae for all MHV (maximally
helicity violating) and anti-MHV amplitudes:

+o+ — ;= Ty = <ij>4
M@AT2T . i ..nT) = T (kk+1)

[]*
[Tjoilk k+1]

spinor helicity — no polarizations!

M@ 2. it jt.n) =




BCFW

BCFW constructs the S-matrix recursively. In (3, 1),
we shift / and j by a complex parameter z:

)\,’(Z) =\ + Z)\j, S\J'(Z) = S\J' — ZS\,’
M(z) is complexified. BCFW = Cauchy’s theorem:
M(ZP)

zp

ME) = ¢ Emz) =Y

zp

In YM and gravity, there is no pole at z = c¢ as
long as (hj, hj) # (—,+).



BCFW

Summing over zp yields the BCFW reduction of M:

P2

where the pole is at zp = __2[i|PLL|j)'

With maximal SUSY, all h are smoothly labeled by 7. For
BCFW, shift 1;(z) = n; + zn; and replace Y, with [ d¢Vn.



counting terms

Feynman diagrams are very redundant!

# of terms in the npt amplitude:

n legs 4151 6 7 8
Feynman diagrams 25 | 220 | 2485 | 34300
BCFW recursion |[1| 1 | 3 6 20

S

Real world calculations are much faster and the final
expressions are much more compact.



changing signatures

In (2,2), we instead shift by a real parameter 7:
)\/(T):)\i—l-T)\j, S\J'(T):S\J'—TS\,'
So 1/P? can be expressed in a fully on-shell form:

s T IS

where P = P, + 7')\,'5\]' on the support of M.



on-shell BCFW

In (2,2), there is a fully on-shell form of BCFW:

Momentum conservation is built into M, g.



wave mechanics 101

Since the BCFW momentum shift is real
MNi(T) = A + 71X, ;\j(T) = S\j — T
we know what to do from wave mechanics:
Flx —vt) — / dk 0 DF ()
f(t) = e ™F(0)

When you see a shifted variable, fourier transform it!



wave mechanics 101

A fourier transform from \; — ji; and /N\j — [4j IS
precisely a transform into ambi-twistor space!

M(Ai(1), \j(7)) = /dﬁidﬂjeiAi(T)ﬂ'eixj(T)“jM(ﬁi;Mj)

The shift becomes a phase:

M(r) = e P A(0) = e M4 (0)

where W;Z; is the natural LI in ambi-twistor space!



ambi-twistor space
Each particle is represented either by a twistor
{AA} = Ay =27
or by a dual twistor
{ANAY = {1, A} = Wy

which are both vectors of the SL(4,R) conformal
group. The natural invariant is

WaZA = WZ = i — M



ambi-twistor space

There is also the LI, conformal breaking quantity:
Z MagZ,® = (i), Wial®Wig = [if]
Under the little group Z and W transform as
Z—tZ, W-—t1w
while the amplitude transforms as

M(tZ; h) =t~ 2M(Z; h)
M(t7W; h) = t 22 M(W; h)



ambi-dexterity

We can “ambi-dextrously” transform between the Z
and W basis for any given particle:

M(W) = / d*Z eV M(2)

BCFW suggests {— <~ Z} and {+ < W}!

Before taking BCFW into twistor space, let’s first
see what some amplitudes look like in twistor space.



3pt YM

The anti-MHV YM 3pt amplitude is

MO = o (ZA"X’)

. [12]3 d4XaéeiX(Zi)\,’5\,—)

[23][31]

To go to twistor space, simply fourier transform:

MW, W2+,Z3’) = /d2)\1dz)\zd25\3ei(A1ﬂ1+/\2ﬁ2+f\3u3)M(1+2+3)



3pt YM

Two of the integrals are trivial:

MW, Wy, Z5) 127 [ a*x [ &%, Pt )
(Wi Wi Zy) = | ]/ / i

?(fin + X)\1)5 (fi2 + X/\z)

For the )3 integral define A3 = a\; + b),. Finally:
dadb
M( W1+7 W2+7 Z3 ) = sgn([lZ]) a b ’ (aW1 Z3+bW, Z3)
a

How do we regulate the divergence?



principle value prescription

To determine the regularization, use the little group:
Mt Wi 6 W' 6 25) = MWL, W', Z)

Thus, the only consistent prescription is PV:

1 1 1 1
- — = — + -
a 2\a+ie a—Ile

which means that [ da e /a = i,/7 sgn(x).




3pt YM

Thus, the 3pt amplitude becomes

M(W1+, W2+, 23_) = Sgﬂ( W1IW2)Sg11( leg)SgIl( W2Z3)
M(Zl_az2_> W3+) = Sgn(leZz)sgn(Zl W3)sgn(22 W3)

The 3pt amplitude in YM theory is 1 and -1.

All non-trivial dependence in momentum
space arises from a Jacobian!



4pt YM, 3pt gravity
The YM 4pt amplitude is:
MW Zy Wit Z;7) = sgn( Wi Zo)sgn( Wi Zy)sgn( Ws 2, )sgn( Wa Z,)
The gravity 3pt amplitudes are:

Meray (Wi W5 Z57) = |WLIWG || WA Z5| | W, Zs|
Mgy (Z1 Z5 W5") |Z112,|| 2y W3 || Z, W5|



the link representation

There is a convenient representation for amplitudes:

MW, Z,}) /(H dc,J> ({cii Ayy Aj}) e WiZs

For example:

~ 12
~ 1
M(17273"47) = ———
( ) C12C14C32C34
sgn([13](46))

M(172737475767) =

C12C32C14C54C36Cr6 ( C14C36 — Ci16 C34)



the link representation

Going back to momentum space yields

M = / <H dCIJ) /\A/I 52(>\/ — C/J>\J)52(;\J + C/JS\I)
1J

which is very reminiscent of the RSV formulal!
The 6* has been “factored” into §?'s.

BCFW = solving linear equations of the ¢'s.



N =4 SYM

N = 0 tree amplitudes are obtained from N = 4
tree amplitudes by fixing external legs to be gluons.

In maximal SUSY, every state is also labeled by an
on-shell superspace variable: 1, or 7/, 1 < | < N.

The super-twistor variables and LI invariants are:

A
2=(5 ) »= (%)
i n

WZ = WZ +im, WilW;=1[ijl, ZilZ; = (ij)



N =4 SYM

The MHV and anti-MHV 3pt amplitudes become:

M (Wi, Wa, Z3) = sgn(W1IW,) sgn(W; Z3) sgn(W, 23)
M_(Zl, Zz, W3) = sgn(le.Zz) sgn(ZlVV3) SgIl(ZQW3)

The full 3pt amplitude is the sum of these:

M(Zla ZZ) W3) = M_(Zl7 ZZ? W3) + M+(Zla 227 W3)



N =4 SYM

For NV = 4 SYM, BCFW becomes:
MO 2) = Y [ 10w 092, MW 2)Me(23, )
LUR

where the measure is integrals and sgn's:

[D¥w D z]. = DIW DMz sgn(Wz)

sgn(W; Z;)sgn(WIW;)sgn(Z12))

i

where [ ™% = sgn(W), Z)).



Hodges diagrams

We see that in N/ = 4 SYM, M; and BCFW consist
solely of sgn()’s and integrations over D34y D34z,

There is a natural diagrammatic representation
which has been studied for many years by Hodges.

In (3,1), Hodges diagrams involve complex integrals
with unknown contours. Not a problem in (2, 2).

Most importantly, we will never have to do
any actual integrals!



notation

sgn(W - Z)
Sgn(21122)

W Z

zZ@® w QO
® O
& -—-— @






some identities

The “scrunch” and “butterfly” identities can all be
proven straightforwardly in twistor space:




BCFW

Tree amplitudes in (S)YM take the form of disks:

. . -~ P :
/ (l—’\ 3 \
N/
M =) M xM
/ LR \‘\ i \‘\\
° el N\ /‘—‘Qi AL 4
i N j N 7 N
p . P
// \ \
=y m ! w
LR \\\ By ’_( 2 . /



3pt — 4pt

Two ways of computing the 4pt from BCFW:
P P 3 2
@
=< =] ]
3 2 3 2
O
4 1 4 1 4 1
o P
3> o /\//2_3\\\\ ////2_
4 1 4 1 4 1

Using sgn(x)? = 1 is important.



4pt, bpt, 6pt

3 2
4 1
3 2
Y
N
— AN
Ms iy — .
i, ()
4 5 1
4 ) 3
. . e
AY 7/
— AY 7/
Mg nmHy  — N .
- N /v/
5 6 1 2

+ (i—i+2) + (i—i+4)

These can all be written as products of M or M~ triangles!



triangulations
If M* triangles are “letters,” then let us define a
“word” to be a product of such triangles.

Every N =4 SYM amplitude is a “sentence” given
by a sum “words” in twistor space.

This is easily proven inductively.

But what does this mean in momentum space?



inverse soft factors

Multiplying by a triangle in twistor space means applying an
“inverse soft factor” in momentum space.

So M*(123)M(13...) in twistor space corresponds to adding
a (+) particle between 1 and 3 in momentum space:

G(12'3)M(13..) = —L _M(13...)|

where )\ 3 is shifted to conserve momentum:

50— Gletp 5 (Apa

ooy T T ()



building the 6pt NMHV

One word (of three) in M(17273%475%67) is

G(1273)G(6173)G(6 3T4)M(475767)
G(1273)G(61"3)M(3T475767)
G(12°3)M(1*3"475767)
M(17273%475%67)

Let us show this explicitly.



building the 6pt NMHV

N (7 (64)°
GO 3TMH576T) = e X (a5)(56)
gy
 (34)(45)(56)(63)
63 (46)*
GO IT)M(3T475767) = 31viier ¥ 1451 156)(63) (34)
(46)*

(13)(34)(45)(56) (61)



building the 6pt NMHV

(12 3)M(1+3+4 546 ) = L (46)°

T 20[23] (131 (3'4) (45)(56) (61')
where the primed spinors are

n_ [Hp2+psl oy _ Bl pof

This gives the correct answer:

[13]%(46)*
[12][23](45) (56) (6] p1 + p2[3](4]p2 + ps|1](pr + p2 + p3)?




the rule?

Every npt amplitude is a sentence of n-letter words.

Which words are allowed? Via identities, sentences
can be translated into alternative forms.

Without resorting to BCFW, is there a “grammar” ?

Number of BCFW terms = Catalan numbers.
Mapping to a combinatoric problem?



generating functionals

We can re-package the tree-level S-matrix of N' = 4 SYM into
a convenient generating functional:

Mgl = S22, L[ D™wi. .. D*MW, ¢ (W)... ¢(W,)
Mer C(wl...wn)

The “propagator” in a general background is:

0*MI¢]

POV 2) = (@)




* product = BCFW

Any two functionals F(W, Z) and G(W, Z) have a natural
product in twistor space

(FxG)(W, 2) = / [D3*W'D3* 2] w.z FOV. Z2GW', 2)

which is precisely the BCFW bridge. The 3pt amplitude can
also be repackaged as

d(W, Z) = / dW' Ms(W, 2, W p(W')



holographic equation

Tree-level SYM and supergravity is reformulated as

Pab — P« Pcb — g fabc b°
1

P—-PxP = —¢
Mp,
To extract M,, simply apply 5¢(W3(;.n._.;¢(wn)'

Leibnitz rule does the BCFW partition!

Can we find new solutions to this equation? O(h)?



conclusions

» Twistor space is the natural home for the S-matrix. M3
takes a striking form. BCFW reduces to [D*Z D*W];.

» Tree amplitudes are simply computed and compactly
represented using Hodges diagrams.

» There is evidence for a new rule that constructs the
S-matrix from inverse soft factors.

» The tree-level dynamics of SYM and supergravity can be
distilled into a holographic equation.



future directions

v

find the “grammar” for amplitudes

v

extend or solve the holographic equation

v

explore the gravity S-matrix in twistor space

v

better understand one-loop amplitudes in twistor space



