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motivation

A primary motivation for this work is holography.

After all, the S-matrix is a boundary observable
encoding the overlap of |T = −∞〉 with |T = ∞〉.

Broadly speaking, the “bulk” consists of off-shell
states which make locality and LI manifest:

S =

∫
d4x L(x)



dual theory?

The price of locality and LI is redundancy:

I gauge + diffeomorphism invariance

I auxiliary fields in off-shell SUSY

I field reparameterization freedom

Is there an alternative to the QFT description?
Is there a theory dual to flat space?



on-shell methods

BCFW recursion relations construct the S-matrix
from purely on-shell data:

1) Define M3, the on-shell 3pt amplitude.

2) Recursively construct Mn from Mm<n.

Caveats: BCFW only valid at tree-level and for
certain theories. And it is not a theory!



twistors → dual theory

Witten: the perturbative expansion of N = 4 SYM
is computed by a dual topological string theory in
twistor space.

Applying the same “data-driven” approach, we find
that the natural home for the S-matrix is in fact
ambi-twistor space.

“Data” in hand, we argue that there is a new rule
for building the S-matrix!



spinor helicity formalism

The S-matrix of massless particles in 4d is naturally
represented using the spinor helicity formalism.

The premise is to represent each null momentum
vector by a bi-spinor:

pµσ
µ
αα̇ = pαα̇ = λαλ̃α̇

where in (2, 2) signature, λ and λ̃ are real and
independent spinors.



lorentz and little group

For particles {i} labeled by {λi , λ̃i}, the obvious LI
quantities are angle and square brackets:

λiαεαβλjβ = 〈ij〉 = −〈ji〉
λ̃ α̇

i εα̇β̇λ̃
β̇

j = [ij ] = −[ji ]

These are covariant under action of the little group:

λi → tiλi , λ̃i → t−1
i λ̃i

which by definition leaves pi = λi λ̃i invariant.



on-shell amplitudes

For particles {i} of spin s and helicity {hi}, the
on-shell amplitude takes the form

M({λi , λ̃i ; hi}) = M({λi , λ̃i ; hi})δ4

(∑

i

λi λ̃i

)

where under the little group

M({tiλi , t
−1
i λ̃i ; hi}) = t−2shi

i M({λi , λ̃i ; hi})



some example amplitudes

YM tree amplitudes:

M(1−2−3+) =
〈12〉3
〈23〉〈31〉 , M(1+2+3−) =

[12]3

[23][31]

M(1+2−3+4−) =
〈24〉4

〈12〉〈23〉〈34〉〈41〉

M(1+2−3+4−5+6−) =

[13]4〈46〉4
[12][23]〈45〉〈56〉〈6|p1 + p2|3]〈4|p2 + p3|1](p1 + p2 + p3)2

+{i → i + 2}+ {i → i + 4}



some more example amplitudes

There are closed formulae for all MHV (maximally
helicity violating) and anti-MHV amplitudes:

M(1+2+ . . . i− . . . j− . . . n+) =
〈ij〉4∏n

k=1〈k k + 1〉
M(1−2− . . . i+ . . . j+ . . . n−) =

[ij ]4∏n
k=1[k k + 1]

spinor helicity → no polarizations!



BCFW

BCFW constructs the S-matrix recursively. In (3, 1),
we shift i and j by a complex parameter z :

λi(z) = λi + zλj , λ̃j(z) = λ̃j − z λ̃i

M(z) is complexified. BCFW = Cauchy’s theorem:

M(0) =

∮
dz

z
M(z) =

∑
zP

M(zP)

zP

In YM and gravity, there is no pole at z = ∞ as
long as (hi , hj) 6= (−, +).



BCFW
Summing over zP yields the BCFW reduction of M:

ML MR

h

1

P 2
L∑

L∪R,h

λi(zP ) λ̃j(zP )

−PL(zP ) PL(zP )

−h

where the pole is at zP = − P2
L

2[i |PL|j〉 .

With maximal SUSY, all h are smoothly labeled by η. For

BCFW, shift ηi(z) = ηi + zηj and replace
∑

h with
∫

dNη.



counting terms

Feynman diagrams are very redundant!

# of terms in the npt amplitude:

n legs 4 5 6 7 8
Feynman diagrams 4 25 220 2485 34300
BCFW recursion 1 1 3 6 20

Real world calculations are much faster and the final
expressions are much more compact.



changing signatures

In (2, 2), we instead shift by a real parameter τ :

λi(τ) = λi + τλj , λ̃j(τ) = λ̃j − τ λ̃i

So 1/P2
L can be expressed in a fully on-shell form:

ML(τP)MR(τP)

P2
L

=

∫
dτ

τ
δ(P2)sgn([i |P |j〉)ML(τ)MR(τ)

where P = PL + τλi λ̃j on the support of ML.



on-shell BCFW

In (2, 2), there is a fully on-shell form of BCFW:

ML MR

h

δ(P 2)sgn([i|P |j〉)∑
L∪R,h

∫
d4P

dτ

τ

λi(τ) λ̃j(τ)

−P P
−h

Momentum conservation is built into ML,R .



wave mechanics 101

Since the BCFW momentum shift is real

λi(τ) = λi + τλj , λ̃j(τ) = λ̃j − τ λ̃i

we know what to do from wave mechanics:

f (x − vt) =

∫
dk e ik(x−vt)f̃ (k)

f̃ (t) = e−ikvt f̃ (0)

When you see a shifted variable, fourier transform it!



wave mechanics 101

A fourier transform from λi → µ̃i and λ̃j → µj is
precisely a transform into ambi-twistor space!

M(λi(τ), λ̃j(τ)) =

∫
d µ̃idµje

iλi (τ)µ̃ie i λ̃j(τ)µjM̃(µ̃i , µj)

The shift becomes a phase:

M̃(τ) = e iτ(λj µ̃i−λ̃iµj)M̃(0) = e iτWiZjM̃(0)

where WiZj is the natural LI in ambi-twistor space!



ambi-twistor space

Each particle is represented either by a twistor

{λ, λ̃} → {λ, µ} ≡ ZA

or by a dual twistor

{λ, λ̃} → {µ̃, λ̃} ≡ WA

which are both vectors of the SL(4,R) conformal
group. The natural invariant is

WAZA ≡ WZ = λµ̃− λ̃µ



ambi-twistor space

There is also the LI, conformal breaking quantity:

Z A
i IABZ B

j = 〈ij〉, WiAIABWjB = [ij ]

Under the little group Z and W transform as

Z → tZ , W → t−1W

while the amplitude transforms as

M(tZ ; h) = t−2sh−2M(Z ; h)

M(t−1W ; h) = t−2sh+2M(W ; h)



ambi-dexterity

We can “ambi-dextrously” transform between the Z
and W basis for any given particle:

M(W ) =

∫
d4Z e iWZM(Z )

BCFW suggests {− ↔ Z} and {+ ↔ W }!

Before taking BCFW into twistor space, let’s first
see what some amplitudes look like in twistor space.



3pt YM

The anti-MHV YM 3pt amplitude is

M(1+2+3−) =
[12]3

[23][31]
δ4

(∑
i

λi λ̃i

)

=
[12]3

[23][31]

∫
d4Xaȧe

iX (
∑

i λi λ̃i )

To go to twistor space, simply fourier transform:

M(W +
1 , W +

2 , Z−
3 ) =

∫
d2λ1d

2λ2d
2λ̃3e

i(λ1µ̃1+λ2µ̃2+λ̃3µ3)M(1+2+3−)



3pt YM

Two of the integrals are trivial:

M(W +
1 , W +

2 , Z−
3 ) = [12]3

∫
d4X

∫
d2λ̃3

e i λ̃3(µ3+Xλ3)

[23][31]

δ2(µ̃1 + X λ̃1)δ
2(µ̃2 + X λ̃2)

For the λ̃3 integral define λ̃3 = aλ̃1 + bλ̃2. Finally:

M(W +
1 , W +

2 , Z−
3 ) = sgn([12])

∫
da

a

db

b
e i(aW1Z3+bW2Z3)

How do we regulate the divergence?



principle value prescription

To determine the regularization, use the little group:

M(t−1
1 W +

1 , t−1
2 W +

2 , t3Z
−
3 ) = M(W +

1 , W +
2 , Z−

3 )

Thus, the only consistent prescription is PV:

1

a
→ 1

2

(
1

a + iε
+

1

a − iε

)

which means that
∫

da e iax/a = i
√

π
2 sgn(x).



3pt YM

Thus, the 3pt amplitude becomes

M(W +
1 , W +

2 , Z−
3 ) = sgn(W1IW2)sgn(W1Z3)sgn(W2Z3)

M(Z−
1 , Z−

2 , W +
3 ) = sgn(Z1IZ2)sgn(Z1W3)sgn(Z2W3)

The 3pt amplitude in YM theory is 1 and -1.

All non-trivial dependence in momentum
space arises from a Jacobian!



4pt YM, 3pt gravity

The YM 4pt amplitude is:

M(W +
1 Z−

2 W +
3 Z−

4 ) = sgn(W1Z2)sgn(W1Z4)sgn(W3Z2)sgn(W3Z4)

The gravity 3pt amplitudes are:

Mgrav(W
+
1 W +

2 Z−
3 ) = |W1IW2||W1Z3||W2Z3|

Mgrav(Z
−
1 Z−

2 W +
3 ) = |Z1IZ2||Z1W3||Z2W3|



the link representation

There is a convenient representation for amplitudes:

M({WI , ZJ}) =

∫ (∏

IJ

dcIJ

)
M̂({cIJ ; λJ , λ̃I}) e icIJWI ZJ

For example:

M̂(1+2+3−) =
sgn([12])

c13c23

M̂(1+2−3+4−) =
1

c12c14c32c34

M̂(1+2−3+4−5+6−) =
sgn([13]〈46〉)

c12c32c14c54c36c56(c14c36 − c16c34)
+ . . .



the link representation

Going back to momentum space yields

M =

∫ (∏

IJ

dcIJ

)
M̂ δ2(λI − cIJλJ)δ

2(λ̃J + cIJ λ̃I )

which is very reminiscent of the RSV formula!

The δ4 has been “factored” into δ2’s.

BCFW = solving linear equations of the cIJ ’s.



N = 4 SYM

N = 0 tree amplitudes are obtained from N = 4
tree amplitudes by fixing external legs to be gluons.

In maximal SUSY, every state is also labeled by an
on-shell superspace variable: ηI or η̄I , 1 ≤ I ≤ N .

The super-twistor variables and LI invariants are:

Z =

(
ZA

ηI

)
, W =

(
WA

η̃I

)

WZ = WZ + η̃η, Wi IWj = [ij ], Zi IZj = 〈ij〉



N = 4 SYM

The MHV and anti-MHV 3pt amplitudes become:

M+(W1,W2,Z3) = sgn(W1IW2) sgn(W1Z3) sgn(W2Z3)

M−(Z1,Z2,W3) = sgn(Z1IZ2) sgn(Z1W3) sgn(Z2W3)

The full 3pt amplitude is the sum of these:

M(Z1,Z2,W3) = M−(Z1,Z2,W3) + M̃+(Z1,Z2,W3)



N = 4 SYM

For N = 4 SYM, BCFW becomes:

M(Wi ,Zj) =
∑

L∪R

∫ [
D3|4W D3|4Z]

ij
ML(Wi ,Z)MR(Zj ,W)

where the measure is integrals and sgn’s:

[
D3|4W D3|4Z]

ij
= D3|4W D3|4Z sgn(WZ)

sgn(WiZj)sgn(W IWi)sgn(ZIZj)

where
∫

dτ
τ e iτWiZj = sgn(WiZj).



Hodges diagrams

We see that in N = 4 SYM, M3 and BCFW consist
solely of sgn()’s and integrations over D3|4W D3|4Z.

There is a natural diagrammatic representation
which has been studied for many years by Hodges.

In (3, 1), Hodges diagrams involve complex integrals
with unknown contours. Not a problem in (2, 2).

Most importantly, we will never have to do
any actual integrals!



notation

Z W

sgn(W · Z)

e
iW·Z

sgn(Z1IZ2)
21



3pt

1 2

3

= =
1

3

2

M   3
   _

M   3
    +

1 2

3

M   3 = +
1

3

2



some identities

The “scrunch” and “butterfly” identities can all be
proven straightforwardly in twistor space:

=

=
P

odd #
P



BCFW

Tree amplitudes in (S)YM take the form of disks:

MRML

P

ML MR

P

   L,R

   L,R

 M =

=

i

ji

ji
j



3pt → 4pt

Two ways of computing the 4pt from BCFW:

== 3 2

4 1

P

3 2

4 1

3 2

4 1

= =

3

4 1

2P

3 2

4 1

P

3 2

4 1

Using sgn(x)2 = 1 is important.



4pt, 5pt, 6pt

3 2

4 1

M   4 =

5

4 3

26 1

3 2

4 15

=

=M   5,MHV

M   6,NMHV

+   ( i    i + 2 )   +   ( i    i + 4 )

These can all be written as products of M+ or M− triangles!



triangulations

If M± triangles are “letters,” then let us define a
“word” to be a product of such triangles.

Every N = 4 SYM amplitude is a “sentence” given
by a sum “words” in twistor space.

This is easily proven inductively.

But what does this mean in momentum space?



inverse soft factors

Multiplying by a triangle in twistor space means applying an
“inverse soft factor” in momentum space.

So M+(123)M(13 . . .) in twistor space corresponds to adding
a (+) particle between 1 and 3 in momentum space:

G (1 2+3)M(1 3 . . .) =
〈31〉

〈12〉〈23〉M(1 3 . . .)
∣∣∣
λ̃1,3=λ̃

′
1,3

where λ̃1,3 is shifted to conserve momentum:

λ̃
′
1 =

〈3|p1 + p2|
〈31〉 , λ̃

′
3 =

〈1|p2 + p3|
〈13〉



building the 6pt NMHV

One word (of three) in M(1+2−3+4−5+6−) is

G (1 2−3)G (6 1+3)G (6 3+4)M(4−5+6−)

G (1 2−3)G (6 1+3)M(3+4−5+6−)

G (1 2−3)M(1+3+4−5+6−)

M(1+2−3+4−5+6−)

Let us show this explicitly.



building the 6pt NMHV

G (6 3+4)M(4−5+6−) =
〈64〉

〈43〉〈36〉 ×
〈64〉3
〈45〉〈56〉

=
〈46〉4

〈34〉〈45〉〈56〉〈63〉

G (6 1+3)M(3+4−5+6−) =
〈63〉

〈31〉〈16〉 ×
〈46〉4

〈45〉〈56〉〈63〉〈34〉
=

〈46〉4
〈13〉〈34〉〈45〉〈56〉〈61〉



building the 6pt NMHV

G (1 2−3)M(1+3+4−5+6−) =
[31]

[12][23]
× 〈46〉4
〈1′3′〉〈3′4〉〈45〉〈56〉〈61′〉

where the primed spinors are

|3′〉 =
[1|p2 + p3|

[13]
, |1′〉 =

[3|p1 + p2|
[31]

This gives the correct answer:

[13]4〈46〉4
[12][23]〈45〉〈56〉〈6|p1 + p2|3]〈4|p2 + p3|1](p1 + p2 + p3)2



the rule?

Every npt amplitude is a sentence of n-letter words.

Which words are allowed? Via identities, sentences
can be translated into alternative forms.

Without resorting to BCFW, is there a “grammar”?

Number of BCFW terms = Catalan numbers.
Mapping to a combinatoric problem?



generating functionals

We can re-package the tree-level S-matrix of N = 4 SYM into
a convenient generating functional:

M[φ] =
∑∞

n=3
1
n!

∫
D4|4W1 . . . D4|4Wn φc1(W1) . . . φcn(Wn)

Mc1...cn(W1 . . .Wn)

The “propagator” in a general background is:

Pab[φ](W ,Z) =
δ2M[φ]

δφa(W)δφ̃b(Z)



? product ≡ BCFW

Any two functionals F(W ,Z) and G(W ,Z) have a natural
product in twistor space

(F ? G)(W ,Z) =

∫ [
D3|4W ′D3|4Z ′]

W,Z F(W ,Z ′)G(W ′,Z)

which is precisely the BCFW bridge. The 3pt amplitude can
also be repackaged as

Φ(W ,Z) =

∫
d4|4W ′ M3(W ,Z,W ′)φ(W ′)



holographic equation

Tree-level SYM and supergravity is reformulated as

Pab − Pac ? Pcb = g f ab
c Φc

P− P ? P =
1

MPl
Φ

To extract Mn, simply apply δn−2

δφ(W3)...δφ(Wn)
.

Leibnitz rule does the BCFW partition!

Can we find new solutions to this equation? O(~)?



conclusions

I Twistor space is the natural home for the S-matrix. M3

takes a striking form. BCFW reduces to [D4Z D4W ]ij .

I Tree amplitudes are simply computed and compactly
represented using Hodges diagrams.

I There is evidence for a new rule that constructs the
S-matrix from inverse soft factors.

I The tree-level dynamics of SYM and supergravity can be
distilled into a holographic equation.



future directions

I find the “grammar” for amplitudes

I extend or solve the holographic equation

I explore the gravity S-matrix in twistor space

I better understand one-loop amplitudes in twistor space


