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Overview
e RG generalities.

e Operator mappings: from conserved currents and the chiral
ring to long multiplets.

o R-symmetry, the R-current multiplet, the U multiplet, and the
RG flow.

e Examples: SQCD, the Kutasov theory, and aSQCD.

e Correlation functions of the U multiplet and IR phases of gauge
theories.

e IR interacting versus IR free.



RG Generalities

e All UV-complete QFTs can be understood as interpolations
between UV and IR fixed points (may also be gapped and hence
empty in IR).

e Given well-defined operators and correlation functions of the
UV theory, can we say something about the corresponding ob-
jects in the IR?

e What are the emergent symmetries of the IR fixed points?

e In general, new internal and space-time symmetries. What are
they? How do we get a handle on them?



RG Generalities (cont...)

e Non-perturbative dynamics along the RG flow make these ques-
tions hard to answer.

e \We will specialize to four-dimensional R-symmetric theories.
e As we will see SUSY, and, in particular R-symmetry give us

strong handles to use to answer a lot of these questions in con-
trolled settings.



Mapping Operators
e Question: Given OUVV what is O1£7?

e Easy operators to map: short multiplets, like members of the
chiral ring, conserved currents.

e Harder operators to map: long multiplets.
e Sometimes can embed these long multiplets inside short mul-

tiplets of higher spin and use these larger multiplets to gain
traction.



Mapping Operators (cont...)

e Quantities of interest, real UV bilinears (and their generaliza-
tions):
. _'_ . . ~_‘_~ .
cjP; P+ &P P, (1)
Appropriate factors of ¢V, etc.

e For generic c,c this defines a long multiplet, i.e.,

D? (il + EB[PI) = cTrwZ + ... (2)
e Can we map such an operator to the IR?

e o do that, we need a short multiplet in which to embed
it. Natural candidates: symmetry currents of various kinds. R-
symmetry current a good option (if present).



The Role of the R-symmetry Current

e Since [R,Q] ~ Q, {Q,Q} ~ P, the R-current transforms in a
multiplet with S, and T}, .
Ddea =Xa, D%%a-— Dé&zd — Dd{XOé = 0. (3)

When xqo = 0, this is the superconformal R-symmetry.

e There is an ambiguity in the above equation under R,; —
Raa + [Da, Dg) J and xa — xa + 3D%DqoJ for conserved J, i.e.,
D?2J = 0. This affects the supercurrent and stress tensor through
improvements.



The Role of the R-symmetry Current (cont...)

e For the theories we will consider, can write

Yo = D?DaU (4)
for a well-defined U.

e Solving the above equations in the UV, we find

Rgg = Z <2Da¢iDdCT>i — TZ'[D@, Da] CDZCT)Z> ,

7
3 2\ —.
vtV = ——Z(ri——> DD, . (5)
2 < 3
More generally: UV = 3 (Rf{v — Rf{v)

o U fixeduptoU - U+Y 4+ Y. Will see later that such terms
may appear in the IR.



The R-symmetry Current and the RG Flow
e Idea: Use the R-multiplet to follow U along the flow.

e Assumption: The UV and IR fixed points are SCFTs (this
can be made rigorous in SQCD-like theories [1102.2294])

e At the IR fixed point, we know what should happen to R ;. In-
deed, either this multiplet flows to the superconformal R-multiplet
or to an object that can be improved to the superconformal R-
multiplet:

~ _ ~ 3
Roi = Req — [Da, s, T=U"-ZJ=0.  (6)
Determine R,; from duality or a-maximization.

. 3 IR _ 3 (pIR ®HIR
e Upshot: Therefore, U — §J, where Uu =3 (Ru — Ru )
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The R-symmetry Current and the RG Flow (cont...)

e J may be a conserved current of the full theory or an accidental
symmetry of the IR. We will see an extreme version of this for
SQCD in the free magnetic range.

e In the case that U2 = 0, we can say a bit more using conformal
perturbation theory. If approach is via a marginally irrelevant
operator, we have U ~ ~J. Otherwise, we have U ~ A2~%0O for
d > 2 (using unitarity).

e In the case of a free magnetic phase, we have
3 2\ —;
TR = =25 (ri=5) 86 (7)
i

for the “emergent” d.o.f’s.
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Example I. SQCD in the Free Magnetic Range

e Consider SU(N¢) with Ne+ 1 < Ny < 3N¢/2: this is a flow

between Gaussian fixed points

e The UV (electric) theory:
SU(Nc) SU(Ny) x SU(Ng) U(1)g

Q Nec Ny x 1 —%Jg
Q Nec 1 x N¢ —%;

U(1)g
1 (8)

—1

e Some bilinears that we can write are c{QiQ} + EfQZQ';f What

are they in the IR?
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Example I: SQCD in the Free Magnetic Range (cont...)

e We have the following IR (magnetic) theory

SU(Nf—Ne) SU(Ny) x SU(Ng)  U(1)g
Nf — NC Nf X 1 Ne

q N/

~ < < < NC

M 1 Ne x N 2 — 25¢
f f Ny

(9)

e Some objects are trivial to map, e.g. QQT—OOT

ey (el — 13%)
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Example I: SQCD in the Free Magnetic Range (cont...)

e But what about J4 = QQT 4+ QQT? It is not conserved:
D?J = Trw2 . (10)

e Claim: We can follow this operator using the R multiplet.
Indeed, using the R-charge assignments in the electric table, we
find

ov — (1 3Ne 4 607
U _< 2+2Nf>(QQ +QqT) (11)

e Using the R-charge assignments in the IR, we find

| ZIR — C T I ~~1‘ C -i—
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Example I: SQCD in the Free Magnetic Range (cont...)

e [ herefore, we find
2Nf — 3Ne

T 1 OO0t
Q" +Q0" — Sy—1

(q¢" +ag" —2MMT)  (13)

e Acting with D2 on both sides of the above equation, we find
2Ny —3Ne_ 5

> %%
3N, — Nf a,madg

2
W el (14)
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Example II: The Deformed Moduli Space
e Consider SQCD with Nf = N¢ > 2

e The IR is described by M and B satisfying
det M — BB = N?Ne (15)

Therefore some of the short distance symmetries are sponta-
neously broken.

e Will find some ambiguities in following U. In some vacua we
will have enough (broken) symmetry to fix U. In others we won't,
but we won't discuss these cases here.
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Example II: The Deformed Moduli Space (cont...)

e Consider first the following vacuum
M=0, B=B=AnNe. (16)

e In this vacuum the symmetry is broken as follows

SU(Nf)LXSU(Nf)RXU(l)BXU(].)R% SU(Nf)LXSU(Nf)RXU(].)R
(17)
e \We can use our previous techniques to fix U as follows:

U=05MSM' + 6b5bT (18)
where 6b is the Goldstone superfield for the U(1)p breaking.
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Example II: The Deformed Moduli Space (cont...)

e Demanding invariance under the (non-linearly realized) U(1)p
symmetry requires

QO + 00T — Tr (5M5MT) + %(519 + 6612 . (19)

e Note that this fixes the holomorphic 4+ anti-holomorphic am-
biguity.
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Example III: The Kutasov Theory

e We consider the following electric theory with 4¢ < N; < 54

SU(N:.) SU(N,) x SU(N;) — UQQ)g  U()g

N
Q N 1 x N¢ 1-— %% ~1
X N2Z2_-1 1x1 T 0
and the following superpotential
(21)

W = sgTr(XFt1) .
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Example III: The Kutasov Theory (cont...)

e And the following magnetic theory

SU(ka — N¢) SU(Nf) X SU(Nf) U(l)pg
- kN —N¢
q kN¢ — N Ng x 1 e = 7
- kN — N,
G ENf — Ne 1 x Ng e = 7
Y  (kNy—N¢)2 -1 1x1 k%l
N 4 Ne 2
and the following superpotential
k
S S i
Wimag = ———>—Tr YFHL 4 2 5™ agvk—ig (23)

kE—+1 ne =
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Example III: The Kutasov Theory (cont...)

e [ he UV superpotential breaks the symmetry associated with
the current

=, (0@t +aaT) - xxT. (24)

e Using baryon matching we can fix the coefficient of YYTin the
IR.

e [ his operator cannot be followed using the R-multiplet

e But, using our previous tricks, there is another interesting long
multiplet that we can follow

1, 3 N - 3
Ut = <_§ T 1Nf> (QQ"+0a) + <1 - W) Xx1. (29)
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Example III: The Kutasov Theory (cont...)

e Using the R multiplet we find that in the IR

R _ (1 3 kNy—Nc P st _ 3 f
v S ( > T kr1 N, (a2 +qq)+(1 k:—i—l)YY
6 Ne 3(—1)

_ _ RVl
T Zj:( 2+k—|—1Nf k+1 )MJMJ' (26)

e | herefore:

1 3 Ne¢ ~ ~ 3
(i) e o+ o 3w

1 3 kNf— N¢ — 3
<_§+k—|—1 ];vf )(qq““qu)J“<1_k+—1>YYJr
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B 6 Nc_3(j_1) BVl
T ;< STREIN T ket )M"Mj 20
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Example IV: Adjoint SQCD

e We have focused mostly on theories with a free IR description.

Here we will discuss adjoint SQCD. It is believed to flow to an
interacting IR SCFT.

SU(N:) SU(Ny) x SU(Ny) U)p UQ) U1)p

2N¢
? T-C Nf X_]_ 1 —ﬁ 1 1
Q N¢ 1 x N¢ 1 -3y 1 —1
X N2-1 1x1 2/3 ~1 0
(28)

e Don't know much about the IR, but we can infer when some
fields M* = QX'Q become free—e.g. for N;/Ne < (3+ vV7)7L,
Mgy = QQ becomes free.
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Example IV: Adjoint SQCD (cont...)

e Using out techniques, we can map

P(Ny/Ne)
1 N, o 3R(M)
_ -4 e t Yy _ J RVl
( 2 T Nf> <QQ o0 ) jgo <1 2 ) MJMJ T
— Z (g + 2 — Q—N ) Mij 429)

i=0 f
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The R-current Multiplet and IR Phases of Gauge T heories

e \We have seen that the R-current multiplet gives us a handle
on a particular long (spin zero) multiplet, U.

e Question: Does it also contain some global information? En-
codes the phase of the IR theory? Is the deep IR an interacting
or a free SCFT (perhaps below some confining scale, A)7?

e Claim: There is strong evidence that suggests the answer is
yes!
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The R-current Multiplet and IR Phases of Gauge
Theories (cont...)

e ToO support this claim, we will study (U(z)U(0)).

e It turns out that we will be able to make more explicit state-
ments, with less information, about (strongly) interacting the-
ories than we could when studying the mapping of the full U
operator along the RG flow.

e But which U (and Ry,)? This is ambiguous.

e We will study the one defined (up to some exceptions) by

Cizatian i Uv.  pUv
a-maximization in the deformed UV theory, (Rmvis, Ujic ).

25



The R-current Multiplet and IR Phases of Gauge
Theories (cont...)

e \We will study 7;:
UVIR

(2 )4

(Ui W)U, i T (0)) =

(020 — 0,00) :%4 . (30)

e Note that in theories without accidental symmetries, /" >

1R
0 =7/~

e Conjecture: 77V > 71 more generally (new information not
contained in agy > argr)-
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The R-current Multiplet and IR Phases of Gauge
Theories (cont...)

e We will provide strong evidence (although not a conclusive
proof) in support of the above conjecture.

e [ his conjecture implies a UV bound on accidental symmetries.

e If true, this conjecture will resolve a longstanding problem: the
IR phase of the ISS theory.

° T((]]V IS a quantity in the UV SCF T, although it is not intrinsically
defined in it (only defined once have in mind an R-symmetric
relevant deformation and/or R-symmetry-preserving vev).
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Defining 7;

e We start by using a-maximization to find the UV superconfor-
mal R-current: consider Rt*UV — R( ()]V—I—ZZ tZJUV* where Jﬂ/*
are the full set of non-R symmetnes of the UV SCFT

3
Taki ~1 — 3T t T ~1 —

0, at%tjaw|t” g < 0. Thls defines R" .
e Deform the theory by turning on an R-symmetry-preserving rel-
evant deformation and/or an R-symmetry-preserving vev. Now
only {ff[}{*} C {Jf{}/*} are still conserved currents that respect
the vacuum.

e Maximizing @ over this subset vields RUV (0) UVys tﬁf]}[)v
This operator and UYV partner descend from a corresponding

Uv
pair in the undeformed UV SCFT, (Ru v UEY.
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Defining r;; (cont...)

e Sometimes this procedure is not sufficient to fix some of the
f;f‘. This may happen in the presence of massive particles or more
generally.

e In such a case, we can then fix the corresponding mixing with
{JEK} C {fg}{} by demanding

(Ufvis(@) T, 4*(0)) =0 . (31)

e For free UV (IR) theories, we find

UV.IR UV.IR\2
™ = Tr (UViS ) . (32)
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Defining r;; (cont...)

e More generally, can sometimes use

((]]VIR _3—|—rRUVIRUUVIRUUVIR

VIS, P VIS, P ’

(33)

and 't Hooft anomaly matching to obtain explicit expressions.

e In the IR (and also in the UV), sometimes one needs more
complicated generalizations (for example, when the IR is an in-
teracting SCFT with some decoupled fields and accidental sym-
metries).

e Won't discuss these cases in the talk (see [1109.3279] for
further discussion).
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Two Simple Examples

e As a simple sanity check (and important result), consider a
free chiral multiplet, ® and the deformation W = m®?2.

e [here is a unique R-symmetry; therefore, RVIS () =1 and
UYV () =1/2. As a result, 74V = 1/4. The theory is trivial in
the IR and so

4V =1/4>0 =1, (34)

e Slight complication with two free chiral superfields, ®; > and
W = m®diP,. This preserves a non-R symmetry, J, under
which the &, transform with opposite charges. Need to impose

(Ug\‘//ls(:z;)JUV*(O» = 0. Find 75V =1/2> 0= 7}

31



SQCD

e Our procedure fixes RUY (Q) = RUY(Q) = 1- N; and ULY(Q) =

Vis
Uv 1 3N¢
UVIS (Q) - 2 2N,

e Consider Nf < 3N., and start from the free UV theory.

e Begin with Ny = Ne¢ and work our way up. All the subtleties
we have discussed in this talk are present in this class of theo-
ries (accidental symmetries, Goldstone bosons, interacting fixed
points etc.).
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SQCD (cont...)

e Ny = Ne; 7V = 2N2; in the IR have a deformed moduli space

det M + BB = A?Ne with < N2 4 2 mesons, M, and baryons,
B, B.

e Since RIZ(M) = RIE(B) = RLXB) = 0 and ULE(M) =

IR Vi?R / Vis \jis Vis
UIE(B) =UIE(B) = —1, we have 7}f* < N2 + 2.
3V =2N2 > N2 +2 > & (35)
UV _ N(1—2N.)2.

confinement without chiral

symmetry breaking, (N¢+ 1)2 mesons, M, and 2(N.-+ 1) baryons
B and B.
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SQCD (cont...)

e Have Ris(M) = 11_—2]\7NC>Rvis(B) — Rvis(g) — ]\27011_2]@70, U(M) =
+Ne +1Ne

> 92
1527, UB) = U(B) = 5 =25, Therefore, rjft = (Nez2)(3+2Ne)

D2(Ne+1) 2(1+Ne)
and

oy Ne(1—2Ng)? o (Ne— 2)°(3+2Ne) _ ;g
T T2+ N 21+N)

(36)

e Can see that fully conserved current two-point functions have
no definite behavior along the RG flow. Therefore, a-maximization
picks out a current, U, that has nice properties.
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SQCD (cont...)

_UV _— 2Ne(Ne—1)2

° Nf Nq~+2, confining description breaks down; T = Not?
3 2
while (CJO“‘C — SN 10]@;24%4_36, and so conjecture would be vi-

olated in a hypothetical confining phase.

e Luckily, correct description is free magnetic with RIE(M) =

IR — pIR — Nc IR — 3Nc IR —
2(1- R ) RUo) = RIE@ = §: and () = 2-3, UJE () =
IR —_ 3NC
Usic(@) = =1+ 5 T herefore:
_ Ne(Ny — 3N, 2 (3N;— N.)(3N,— 2N )2

v 2N 2N v
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SQCD (cont...)

e The above expressions are valid for N, + 1 < Ny < 3N:/2.
The inequality holds up to Ny~ 1.79N, (where the theory flows
to an interacting conformal fixed point, and the above expres-
sions don't apply). Comes close to predicting onset of conformal
window.

e In conformal window, 3N./2 < Nf < 3N, trivially have (from
assumed lack of accidental symmetries)

5V >0 =i, (38)

e Can do some more complicated tests of conformal window.

36



SQCD (cont...)

e Start from the interacting fixed point and turn on W = \Q.Q¢%,
a=1,--- k. Need to use <U;€J,\‘//is(x)j£{}4/*(9)> — 0 for conserved
currents that act non-trivially on the Qq, Q%.

o If k£ < Nf — %NC, the theory flows to another theory in the
conformal window. Trivially satisfy 7/" > 0 = /. Same for
_ 3

e For Ny — N.— 1>k > Ny — 3N, the IR phase is free magnetic.
We find

UV _ 27kNZ . (3(Nf — k) — Ne)(3Ne — 2(Ny — k))? _ IR
u 2(Ny — k)N? 2(Ny — k) v
(39)

e Can also verify the inequality for k = Nf — N¢ — 1,Nf — Ne.
37



SQCD (cont...)

e Can also consider RG flows with Higgsing. Take (Q%) = (Q%) =
vg, fOora =1,---k. Suppose all v, distinct. Find SU(N.—k) SQCD
with Nf — k flavors, Q%,, Q{‘, k2 singlets, Sy, k£ gauge singlets ®,
and k gauge gauge singlets, ®%, transforming under N¢ — k and
m of SU(N; — k)1, respectively.

e We find Ryis(Q) = Ryis(Q) = Ryis(P) = Ryis(P) = 1 —

]]\\,[;:’,z, Ryis(S) = 0 (note that for the case kK = N, we use
(Upvis(®) T, 1*(0)) = 0).

e Trivially true that /¥ > 7/t for flows starting from the free
UV fixed point. Consider now flows starting from an interacting
fixed point.
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SQCD (cont...)

o If £ < min ((3NC — Nf)/2, Ne¢ — 1), theory flows to a more weakly
coupled interacting fixed point. Find that

v _ 27kNZ(Ne — Ny)?

v 2(Ny — k)N?

g k(2k2 + N]%(l — 3N¢/N)2 4+ 6kN(1 — 2N¢/Ny))
2(Ns — k)
= 7 (40)
o If (BNc— Ny)/2 <k < Ng, the IR endpoint is free. We find
1
IR __ 3 3 2
T = TN, — 1) - (2k® — N¥(1 — 3N¢/N)“(Ne/Ny)

+ 4kNyNe(3Ne/Nj— 1) — 2k*Ny(1 4+ 2Ne/Np)) , (41)
which still satisfies 7V > r{ft.
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SQCD (cont...)

e Easy to generalize the above discussion to SO(N.) and Sp(N¢)
gauge groups

e Also other more exotic s-confining theories; SCFTs with acci-

dental symmetries; NN = 2 SYM; Kutasov and Brodie theories;
See [1109.3279] for details.
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The IR Phase of ISS

e Intriligator, Seiberg, and Shenker consider an SU(2) gauge
theory with a single field, @Q, in the isospin 3/2 representation.

e [ hey conjectured that the IR theory at the origin is described

by a confined u = Q4 field (classically, the Kahler potential
is singular at the origin); indeed, since RLUY(Q) = 3/5 and

RUY (u) = 12/5, the U(1)g and U(1)3 anomalies match.
e If the confining description is correct, then, upon deforming the
theory by W = A\u, we would find a simple model of (dynamical)
SUSY breaking. In this vacuum, there would be a preserved R-
symmetry that is a mixture of the accidental non-R symmetry
under which u transforms and Rjs.
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The IR Phase of ISS (cont...)

e Subsequently, other techniques have pointed to the opposite
conclusion—namely, that the IR is interacting conformal.

e Our criterion also suggests this is the case. Indeed, UVY (Q) =

VIS
—4s, ULB(w) = 22 and so
1 i 169
Uuv I R,confining
- ’ = 42
U T oy U 25 (42)

and so 77V < 7 IR ,CcoNnfining  rnis conflicts with our conjecture.

e Conjecture formalizes the intuition that the theory is too weak
to produce confined d.o.f's (the 1-loop beta fnisb=6-5=1).

e Can also check that our procedure is consistent with better
understood misleading anomaly matchings.
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Conclusions

e \We have seen that the (R,,U) multiplets contain a great deal
of physics.

e \We can use this pair to learn things about operator mappings,
accidental symmetries, and IR phases.

e Can we extend duality mapping to other non-conserved quan-
tities (as in the case of a UV superpotential)?

e Can we prove that 7/V > 72 Can define another 7{; using a
minimization procedure. Does this quantity also decrease?
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