R-Symmetry and Non-Perturbative QFT Rutgers NHETC Seminar

Matthew Buican

CERN PH-TH

I. Antoniadis, M. B.; 1102.2294 [hep-th], PRD;

S. Abel, M. B., Z. Komargodski; 1105.2885 [hep-th], PRD;

M. B.; 1109.3279 [hep-th];

October 25, 2011

Overview

- RG generalities.
- Operator mappings: from conserved currents and the chiral ring to long multiplets.
- R-symmetry, the R-current multiplet, the U multiplet, and the RG flow.
- Examples: SQCD, the Kutasov theory, and aSQCD.
- Correlation functions of the U multiplet and IR phases of gauge theories.
- IR interacting versus IR free.

RG Generalities

- All UV-complete QFTs can be understood as interpolations between UV and IR fixed points (may also be gapped and hence empty in IR).
- Given well-defined operators and correlation functions of the UV theory, can we say something about the corresponding objects in the IR?
- What are the emergent symmetries of the IR fixed points?
- In general, new internal and space-time symmetries. What are they? How do we get a handle on them?

RG Generalities (cont...)

• Non-perturbative dynamics along the RG flow make these questions hard to answer.

• We will specialize to four-dimensional R -symmetric theories.

• As we will see SUSY, and, in particular R -symmetry give us strong handles to use to answer a lot of these questions in controlled settings.

Mapping Operators

- Question: Given \mathcal{O}^{UV} , what is \mathcal{O}^{IR} ?
- Easy operators to map: short multiplets, like members of the chiral ring, conserved currents.
- Harder operators to map: long multiplets.
- Sometimes can embed these long multiplets inside short multiplets of higher spin and use these larger multiplets to gain traction.

Mapping Operators (cont...)

• Quantities of interest, real UV bilinears (and their generalizations):

$$
c_j^i \Phi_i^{\dagger} \Phi^j + \tilde{c}_j^i \tilde{\Phi}_i^{\dagger} \tilde{\Phi}^j \tag{1}
$$

Appropriate factors of e^V , etc.

- For generic c, \tilde{c} this defines a long multiplet, i.e., $\bar{D}^2 \left(c_j^i \Phi_i^\dagger \Phi^j + \tilde{c}_j^i \tilde{\Phi}_i^\dagger \tilde{\Phi}^j \right) = c \text{Tr} W_\alpha^2 + \dots$ (2)
- Can we map such an operator to the IR?

• To do that, we need a short multiplet in which to embed it. Natural candidates: symmetry currents of various kinds. R symmetry current a good option (if present).

The Role of the R -symmetry Current

• Since $[R,Q] \sim Q$, $\{Q,\bar{Q}\} \sim P$, the R-current transforms in a multiplet with $S_{\mu\alpha}$ and $T_{\mu\nu}$.

$$
\bar{D}^{\dot{\alpha}} \mathcal{R}_{\dot{\alpha}\alpha} = \chi_{\alpha} , \quad D^{\alpha} \chi_{\alpha} - \bar{D}_{\dot{\alpha}} \bar{\chi}^{\dot{\alpha}} = \bar{D}_{\dot{\alpha}} \chi_{\alpha} = 0 . \tag{3}
$$

When $\chi_{\alpha} = 0$, this is the superconformal R-symmetry.

• There is an ambiguity in the above equation under $\mathcal{R}_{\alpha\dot{\alpha}} \rightarrow$ $\mathcal{R}_{\alpha\dot{\alpha}}+[D_\alpha,\bar{D}_{\dot{\alpha}}]\,J$ and $\chi_\alpha\to \chi_\alpha+\frac{3}{2}\bar{D}^2D_\alpha J$ for conserved J , i.e., $\bar{D}^2J = 0$. This affects the supercurrent and stress tensor through improvements.

The Role of the R -symmetry Current (cont...)

• For the theories we will consider, can write

$$
\chi_{\alpha} = \bar{D}^2 D_{\alpha} U \tag{4}
$$

for a well-defined U .

• Solving the above equations in the UV, we find

$$
\mathcal{R}_{\alpha\dot{\alpha}}^{UV} = \sum_{i} \left(2D_{\alpha} \Phi_{i} \bar{D}_{\dot{\alpha}} \bar{\Phi}^{i} - r_{i} [D_{\alpha}, \bar{D}_{\dot{\alpha}}] \Phi_{i} \bar{\Phi}^{i} \right),
$$

\n
$$
U^{UV} = -\frac{3}{2} \sum_{i} \left(r_{i} - \frac{2}{3} \right) \bar{\Phi}^{i} \Phi_{i} .
$$
 (5)

More generally: $U_{\mu}^{UV} = \frac{3}{2}$ $\left(R_\mu^{UV}-\tilde{R}_\mu^{UV}\right.$.

• U fixed up to $U \rightarrow U + Y + \overline{Y}$. Will see later that such terms may appear in the IR.

The R-symmetry Current and the RG Flow

• Idea: Use the R-multiplet to follow U along the flow.

• Assumption: The UV and IR fixed points are SCFTs (this can be made rigorous in SQCD-like theories [1102.2294])

 \bullet At the IR fixed point, we know what should happen to $\mathcal{R}_{\alpha\dot{\alpha}}.$ Indeed, either this multiplet flows to the superconformal R -multiplet or to an object that can be improved to the superconformal R multiplet:

$$
\tilde{\mathcal{R}}_{\alpha\dot{\alpha}} = \mathcal{R}_{\alpha\dot{\alpha}}^{IR} - [D_{\alpha}, \bar{D}_{\dot{\alpha}}]J \; , \quad \tilde{U} = U^{IR} - \frac{3}{2}J = 0 \; . \tag{6}
$$

Determine $\tilde{\mathcal{R}}_{\alpha\dot{\alpha}}$ from duality or a-maximization.

 \bullet Upshot: Therefore, $U\rightarrow {3\over 2} J$, where $U^{IR}_\mu={3\over 2}$ $\left(R_\mu^{IR}-\tilde{R}_\mu^{IR}\right)$.

The R -symmetry Current and the RG Flow (cont...)

 \bullet J may be a conserved current of the full theory or an accidental symmetry of the IR. We will see an extreme version of this for SQCD in the free magnetic range.

• In the case that $U^{IR} = 0$, we can say a bit more using conformal perturbation theory. If approach is via a marginally irrelevant operator, we have $U \sim \gamma J$. Otherwise, we have $U \sim \Lambda^{2-d} \mathcal{O}$ for $d > 2$ (using unitarity).

• In the case of a free magnetic phase, we have

$$
U^{IR} = -\frac{3}{2} \sum_{i} \left(r_i - \frac{2}{3} \right) \bar{\phi}^i \phi_i , \qquad (7)
$$

for the "emergent" d.o.f's.

Example I: SQCD in the Free Magnetic Range

- Consider $SU(N_c)$ with $N_c + 1 < N_f \leq 3N_c/2$: this is a flow between Gaussian fixed points
- The UV (electric) theory:

 $SU(N_c)$ $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)_B$ $Q \qquad \mathbf{N_c} \qquad \qquad \mathbf{N_f} \times \mathbf{1} \qquad \qquad \mathbf{1} - \frac{N_c}{N_f}$ 1 $\begin{array}{llll} \tilde{Q} \qquad & \bar{\bf N}_{\bf C} \qquad & \qquad 1\times \bar{\bf N}_{\bf f} \qquad & \qquad 1-\frac{\dot{N_c}}{N_f} \end{array}$ −1 (8)

 \bullet Some bilinears that we can write are $c_i^j Q^i Q^{\dagger}_j + \tilde{c}_i^j \tilde{Q}^i \tilde{Q}^{\dagger}_j$ j . What are they in the IR?

Example I: SQCD in the Free Magnetic Range (cont...)

• We have the following IR (magnetic) theory

$$
SU(N_f - N_c) \quad SU(N_f) \times SU(N_f) \quad U(1)_R \quad U(1)_B
$$
\n
$$
q \quad N_f - N_c \quad \bar{N}_f \times 1 \quad \frac{N_c}{N_f} \quad \frac{N_c}{N_f - N_c}
$$
\n
$$
\bar{q} \quad \bar{N}_f - \bar{N}_c \quad 1 \times \bar{N}_f \quad \frac{N_c}{N_f} \quad -\frac{N_c}{N_f - N_c}
$$
\n
$$
M \quad 1 \quad N_f \times N_f \quad 2 - 2\frac{N_c}{N_f} \quad 0
$$
\n(9)

• Some objects are trivial to map, e.g. $QQ^{\dagger}-\tilde{Q}\tilde{Q}^{\dagger}\longrightarrow \frac{N_c}{N_c-1}$ $\overline{N_f\!\!-\!N_c}$ $(|q|^2 - |\tilde{q}|^2).$

Example I: SQCD in the Free Magnetic Range (cont...)

• But what about $J_A = QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger}$? It is not conserved:

$$
\bar{D}^2 J_A = \text{Tr} W_\alpha^2 \ . \tag{10}
$$

• Claim: We can follow this operator using the R multiplet. Indeed, using the R -charge assignments in the electric table, we find

$$
U^{UV} = \left(-\frac{1}{2} + \frac{3N_c}{2N_f}\right) \left(QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger}\right)
$$
 (11)

• Using the R -charge assignments in the IR, we find

$$
U^{IR} = \left(1 - \frac{3N_c}{2N_f}\right) \left(qq^{\dagger} + \tilde{q}\tilde{q}^{\dagger}\right) - \left(2 - \frac{3N_c}{N_f}\right) MM^{\dagger}
$$
 (12)

Example I: SQCD in the Free Magnetic Range (cont...)

• Therefore, we find

$$
QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger} \longrightarrow \frac{2N_f - 3N_c}{3N_c - N_f} \left(qq^{\dagger} + \tilde{q}\tilde{q}^{\dagger} - 2MM^{\dagger} \right) \tag{13}
$$

• Acting with \bar{D}^2 on both sides of the above equation, we find

$$
W_{\alpha,el}^2 \longrightarrow \frac{2N_f - 3N_c}{3N_c - N_f} W_{\alpha,\text{mag}}^2
$$
 (14)

Example II: The Deformed Moduli Space

• Consider
$$
SQCD
$$
 with $N_f = N_c > 2$

• The IR is described by M and B satisfying

$$
\det M - B\tilde{B} = \Lambda^{2N_c} \tag{15}
$$

Therefore some of the short distance symmetries are spontaneously broken.

• Will find some ambiguities in following U . In some vacua we will have enough (broken) symmetry to fix U . In others we won't, but we won't discuss these cases here.

Example II: The Deformed Moduli Space (cont...)

• Consider first the following vacuum

$$
M = 0 , \qquad B = \tilde{B} = \Lambda^{N_c} . \tag{16}
$$

• In this vacuum the symmetry is broken as follows

 $SU(N_f)_L\times SU(N_f)_R\times U(1)_B\times U(1)_R \hookrightarrow SU(N_f)_L\times SU(N_f)_R\times U(1)_R$ (17)

• We can use our previous techniques to fix U as follows:

$$
U = \delta M \delta M^{\dagger} + \delta b \delta b^{\dagger} \tag{18}
$$

where δb is the Goldstone superfield for the $U(1)_B$ breaking.

Example II: The Deformed Moduli Space (cont...)

• Demanding invariance under the (non-linearly realized) $U(1)_B$ symmetry requires

$$
QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger} \longrightarrow \text{Tr}\left(\delta M \delta M^{\dagger}\right) + \frac{1}{2}(\delta b + \delta b^{\dagger})^2 \ . \tag{19}
$$

• Note that this fixes the holomorphic $+$ anti-holomorphic ambiguity.

Example III: The Kutasov Theory

- \bullet We consider the following electric theory with $\frac{N_c}{k} < N_f < \frac{2N_c}{2k-1}$ $SU(N_c)$ $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)_B$
	- $Q \qquad \mathbf{N_c} \qquad \qquad \mathbf{N_f} \times 1 \qquad \qquad 1-\frac{2}{k+1}$ $\frac{N_c}{N_c}$ $\overline{N_f}$ 1 $\begin{array}{llll} \tilde{Q} \qquad & {\bf \bar{N}_{c}} \qquad & \qquad 1 \times \bar{\bf N}_{\bf f} \qquad & \qquad 1 - \frac{2}{k+1} \end{array}$ $\frac{\dot{N_c}}{N_c}$ $\overline{N_f}$ −1 X N_c^2-1 1×1 $\frac{2}{k+1}$ 0 (20)

and the following superpotential

$$
W = s_0 \operatorname{Tr}(X^{k+1}) \tag{21}
$$

Example III: The Kutasov Theory (cont...)

- And the following magnetic theory
	- $SU(kN_f N_c)$ $SU(N_f) \times SU(N_f)$ $U(1)_R$

q kN_f – N_c $\bar{N}_f \times 1$ $f \times 1$ 1 - $\frac{2}{k+1}$

 $\begin{array}{ccc} \tilde{q} & \overline{k N_f - N_c} \end{array} \qquad \qquad \mathbf{1} \times \mathbf{N_f}$ $Y = (kN_f - N_c)^2 - 1$ 1×1

 M_j 1 $N_f \times \bar{N}_f$ f $2 - \frac{4}{k+1}$

and the following superpotential

$$
W_{\text{mag}} = -\frac{s_0}{k+1} \text{Tr } Y^{k+1} + \frac{s_0}{\mu^2} \sum_{j=1}^k M_j \tilde{q} Y^{k-j} q \ . \tag{23}
$$

19

 kN_f-N_c

 $\overline{N_f}$

 kN_f − N_c

 $\overline{N_f}$

 $\frac{2}{k+1}$

 $+\frac{2}{k+1}(j-1)$

 (22)

 $\overline{k+1}$

 N_{c} $\overline{N_f}$

 \overline{l}

 $\overline{}$

Example III: The Kutasov Theory (cont...)

• The UV superpotential breaks the symmetry associated with the current

$$
J_X = \frac{N_c}{N_f} \left(Q Q^\dagger + \tilde{Q} \tilde{Q}^\dagger \right) - X X^\dagger \ . \tag{24}
$$

- Using baryon matching we can fix the coefficient of YY^{\dagger} in the IR.
- This operator cannot be followed using the R -multiplet
- But, using our previous tricks, there is another interesting long multiplet that we can follow

$$
U^{UV} = \left(-\frac{1}{2} + \frac{3}{k+1} \frac{N_c}{N_f}\right) \left(QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger}\right) + \left(1 - \frac{3}{k+1}\right)XX^{\dagger}.\tag{25}
$$

Example III: The Kutasov Theory (cont...)

• Using the R multiplet we find that in the IR

$$
U^{IR} = \left(-\frac{1}{2} + \frac{3}{k+1} \frac{kN_f - N_c}{N_f}\right) \left(qq^{\dagger} + \tilde{q}\tilde{q}^{\dagger}\right) + \left(1 - \frac{3}{k+1}\right) Y Y^{\dagger} + \sum_{j} \left(-2 + \frac{6}{k+1} \frac{N_c}{N_f} - \frac{3(j-1)}{k+1}\right) M_j M_j^{\dagger}.
$$
 (26)

• Therefore:

$$
\begin{aligned}&\left(-\frac{1}{2}+\frac{3}{k+1}\frac{N_c}{N_f}\right)\left(QQ^\dagger+\tilde{Q}\tilde{Q}^\dagger\right)+\left(1-\frac{3}{k+1}\right)XX^\dagger\rightarrow\\ &\left(-\frac{1}{2}+\frac{3}{k+1}\frac{kN_f-N_c}{N_f}\right)\left(qq^\dagger+\tilde{q}\tilde{q}^\dagger\right)+\left(1-\frac{3}{k+1}\right)YY^\dagger\end{aligned}
$$

21

$$
+\sum_{j} \left(-2 + \frac{6}{k+1} \frac{N_c}{N_f} - \frac{3(j-1)}{k+1}\right) M_j M_j^{\dagger} \tag{27}
$$

Example IV: Adjoint SQCD

• We have focused mostly on theories with a free IR description. Here we will discuss adjoint SQCD. It is believed to flow to an interacting IR SCFT.

 $SU(N_c)$ $SU(N_f) \times SU(N_f)$ $U(1)_R$ $U(1)'$ $U(1)_B$

• Don't know much about the IR, but we can infer when some Fields $M^{i} = Q X^{i} \tilde{Q}$ become free—e.g. for $N_f/N_c < (3 + \sqrt{7})^{-1}$, $M_0 = Q\overline{Q}$ becomes free.

Example IV: Adjoint SQCD (cont...)

• Using out techniques, we can map

$$
\begin{aligned}\n\left(-\frac{1}{2} + \frac{N_c}{N_f}\right) \left(QQ^{\dagger} + \tilde{Q}\tilde{Q}^{\dagger}\right) &\longrightarrow &\sum_{j=0}^{P(N_f/N_c)} \left(1 - \frac{3R(M_j)}{2}\right) M_j M_j^{\dagger} + \dots \\
&= - \sum_{i=0}^{P(N_f/N_c)} \left(j + 2 - 2\frac{N_c}{N_f}\right) M_j M_j^{\dagger} + 29\n\end{aligned}
$$

The R-current Multiplet and IR Phases of Gauge Theories

- We have seen that the R-current multiplet gives us a handle on a particular long (spin zero) multiplet, U .
- Question: Does it also contain some global information? Encodes the phase of the IR theory? Is the deep IR an interacting or a free SCFT (perhaps below some confining scale, Λ)?
- Claim: There is strong evidence that suggests the answer is yes!

The R-current Multiplet and IR Phases of Gauge Theories (cont...)

• To support this claim, we will study $\langle U(x)U(0)\rangle$.

• It turns out that we will be able to make more explicit statements, with less information, about (strongly) interacting theories than we could when studying the mapping of the full U operator along the RG flow.

- But which U (and R_{μ})? This is ambiguous.
- We will study the one defined (up to some exceptions) by a -maximization in the deformed UV theory, $(\mathcal{R}_{\mu,\mathsf{vis}}^{UV},U_{\mathsf{vis}}^{UV}) .$

The R-current Multiplet and IR Phases of Gauge Theories (cont...)

• We will study τ_U :

$$
\langle U_{\mu,\text{vis}}^{UV,IR}(x)U_{\nu,\text{vis}}^{UV,IR}(0)\rangle = \frac{\tau_U^{UV,IR}}{(2\pi)^4} \left(\partial^2 \eta_{\mu\nu} - \partial_\mu \partial_\nu\right) \frac{1}{x^4} \,. \tag{30}
$$

- Note that in theories without accidental symmetries, $\tau_U^{UV} >$ $0=\tau^{IR}_{II}$ $lR \over U$.
- Conjecture: $\tau_U^{UV} > \tau_U^{IR}$ more generally (new information not contained in $a_{UV} > a_{IR}$).

The R-current Multiplet and IR Phases of Gauge Theories (cont...)

• We will provide strong evidence (although not a conclusive proof) in support of the above conjecture.

•This conjecture implies a UV bound on accidental symmetries.

• If true, this conjecture will resolve a longstanding problem: the IR phase of the ISS theory.

 \bullet τ_U^{UV} U^V_U is a quantity in the UV SCFT, although it is not intrinsically defined in it (only defined once have in mind an R -symmetric relevant deformation and/or R -symmetry-preserving vev).

Defining τ_U

• We start by using a -maximization to find the UV superconformal R-current; consider $\mathcal{R}_{\mu,UV}^{t*} = \mathcal{R}_{\mu,UV}^{(0)*} + \sum_i t^i J_{\mu,i}^{UV*}$, where $J_{\mu,i}^{UV*}$ $\mu{,}i$ are the full set of non-R symmetries of the UV SCFT.

 \bullet Taking $\tilde{a}^t_{UV} =$ 3Tr $\left({\cal R}^{t*}_{UV} \right)^3$ — Tr ${\cal R}^{t*}_{UV}$, solve $\partial_{t^i} \tilde{a}^t_{UV}\vert_{t^i=t^i_*}$ ∗ = 0, ∂_{ii}^2 $t^2_{t^i t^j} \tilde{a}^t_{UV}\big|_{t^i, j=t^{i,j}_*}$ ∗ $<$ 0. This defines $\tilde{R}_{\mu}^{UV}.$

• Deform the theory by turning on an R -symmetry-preserving relevant deformation and/or an R -symmetry-preserving vev. Now only $\left\{ \widehat{J}_{\mu,a}^{UV*}\right\} \subset\left\{ J_{\mu,i}^{UV*}\right\}$ are still conserved currents that respect the vacuum.

• Maximizing $\tilde a$ over this subset yields ${\cal R}_{\mu}^{UV}={\cal R}_{\mu}^{(0),UV}+\sum_a \hat t^a_*\hat J^{UV}_{\mu,a}.$ This operator and U^{UV} partner descend from a corresponding pair in the undeformed UV SCFT, $(\mathcal{R}_{\mu,\mathsf{vis}}^{UV},U_{\mathsf{vis}}^{UV}).$

Defining τ_U (cont...)

• Sometimes this procedure is not sufficient to fix some of the \widehat{t}_{*}^{A} $^{\mathcal{A}}$. This may happen in the presence of massive particles or more generally.

• In such a case, we can then fix the corresponding mixing with $\left\{\tilde{J}^{UV}_{\mu,A}\right\}\subset\left\{\tilde{J}^{UV}_{\mu,a}\right\}$ by demanding

$$
\langle U_{\mu,\text{vis}}^{UV}(x)\tilde{J}_{\nu,A}^{UV*}(0)\rangle = 0.
$$
 (31)

• For free UV (IR) theories, we find

$$
\tau_U^{UV,IR} = \text{Tr} \left(U_{\text{vis}}^{UV,IR} \right)^2 \tag{32}
$$

Defining τ_U (cont...)

• More generally, can sometimes use

$$
\tau_U^{UV,IR} = -3\text{Tr}\tilde{\mathcal{R}}_p^{UV,IR} U_{\text{vis,p}}^{UV,IR} U_{\text{vis,p}}^{UV,IR} \,,\tag{33}
$$

and 't Hooft anomaly matching to obtain explicit expressions.

- In the IR (and also in the UV), sometimes one needs more complicated generalizations (for example, when the IR is an interacting SCFT with some decoupled fields and accidental symmetries).
- Won't discuss these cases in the talk (see [1109.3279] for further discussion).

Two Simple Examples

• As a simple sanity check (and important result), consider a free chiral multiplet, Φ and the deformation $W = m\Phi^2$.

• There is a unique R-symmetry; therefore, $\mathcal{R}_{\text{vis}}^{UV}(\Phi) = 1$ and $U^{UV}(\Phi)=1/2.$ As a result, $\tau^{UV}_{U}=1/4.$ The theory is trivial in the IR and so

$$
\tau_U^{UV} = 1/4 > 0 = \tau_U^{IR} \ . \tag{34}
$$

• Slight complication with two free chiral superfields, $\Phi_{1,2}$ and $W = m\Phi_1\Phi_2$. This preserves a non-R symmetry, J, under which the Φ_i transform with opposite charges. Need to impose $\langle U^{UV}_{\mu,\textsf{\scriptsize vis}}(x) J^{UV*}_{\nu}$ $\langle V^V{}^*(0) \rangle = 0$. Find $\tau^{UV}_U = 1/2 > 0 = \tau^{IR}_U$ $lR \over U$.

SQCD

- \bullet Our procedure fixes $\mathcal{R}_{\mathsf{vis}}^{UV}(Q) = \mathcal{R}_{\mathsf{vis}}^{UV}(\tilde{Q}) = 1-\frac{N_c}{N_f}$ and $U^{UV}_{\mathsf{vis}}(Q) =$ $U_{\mathsf{vis}}^{UV}(\tilde{Q}) = \frac{1}{2} - \frac{3N_c}{2N_f}$.
- Consider $N_f < 3N_c$, and start from the free UV theory.

• Begin with $N_f = N_c$ and work our way up. All the subtleties we have discussed in this talk are present in this class of theories (accidental symmetries, Goldstone bosons, interacting fixed points etc.).

• $N_f = N_c$; $\tau_U^{UV} = 2N_c^2$; in the IR have a deformed moduli space det $M + B\tilde{B} = \Lambda^{2N_c}$ with $\langle N_c^2 + 2$ mesons, M , and baryons, $B, \tilde{B}.$

• Since
$$
\mathcal{R}_{\text{vis}}^{IR}(M) = \mathcal{R}_{\text{vis}}^{IR}(B) = \mathcal{R}_{\text{vis}}^{IR}(\tilde{B}) = 0
$$
 and $U_{\text{vis}}^{IR}(M) = U_{\text{vis}}^{IR}(\tilde{B}) = U_{\text{vis}}^{IR}(\tilde{B}) = -1$, we have $\tau_U^{IR} < N_c^2 + 2$.

$$
\tau_U^{UV} = 2N_c^2 > N_c^2 + 2 > \tau_U^{IR}.\tag{35}
$$

• $N_f = N_c + 1$; $\tau_U^{UV} = \frac{N_c(1-2N_c)^2}{2(1+N_c)}$ $\overline{2(1{+}N_c)}$; confinement without chiral symmetry breaking, $(N_c+1)^2$ mesons, M, and $2(N_c+1)$ baryons B and \tilde{B} .

• Have
$$
\mathcal{R}_{\text{vis}}(M) = \frac{1-2N_c}{1+N_c}
$$
, $\mathcal{R}_{\text{vis}}(B) = \mathcal{R}_{\text{vis}}(\tilde{B}) = \frac{N_c}{2} \frac{1-2N_c}{1+N_c}$, $U(M) = -1 + \frac{3}{N_c+1}$, $U(B) = U(\tilde{B}) = \frac{N_c-2}{2(N_c+1)}$. Therefore, $\tau_U^{IR} = \frac{(N_c-2)^2(3+2N_c)}{2(1+N_c)}$ and

$$
\tau_U^{UV} = \frac{N_c (1 - 2N_c)^2}{2(1 + N_c)} > \frac{(N_c - 2)^2 (3 + 2N_c)}{2(1 + N_c)} = \tau_U^{IR} \ . \tag{36}
$$

• Can see that fully conserved current two-point functions have no definite behavior along the RG flow. Therefore, a -maximization picks out a current, U , that has nice properties.

 \bullet $N_f=N_c+2$, confining description breaks down; $\tau^{UV}_U=$ $2N_c(N_c-1)^2$ N_c+2 while $\tau^{\mathsf{conf}}_U =$ $\frac{5N_c^3-10N_c^2-4N_c+36}{N_c+2}$, and so conjecture would be violated in a hypothetical confining phase.

• Luckily, correct description is free magnetic with $\mathcal{R}_{\textsf{vis}}^{IR}(M) =$ 2 $\left(1-\frac{N_c}{N_c}\right)$ $\overline{N_f}$ $\left(\begin{smallmatrix} \mathcal{R}^{IR}_{\mathsf{VIS}}(q) = \mathcal{R}^{IR}_{\mathsf{vis}}(\tilde{q}) = \frac{N_c}{N_f} \end{smallmatrix} \right)$ and $U^{IR}_{\mathsf{vis}}(M)=2{-} \frac{3N_c}{N_f}$, $U_{\text{vis}}^{IR}(q) =$ $U^{IR}_{\mathsf{vis}}(\tilde{q}) = -1 + \frac{3N_c}{2N_f}$. Therefore:

$$
\tau_U^{UV} = \frac{N_c (N_f - 3N_c)^2}{2N_f} > \frac{(3N_f - N_c)(3N_c - 2N_f)^2}{2N_f} = \tau_U^{IR} \ . \tag{37}
$$

35

• The above expressions are valid for $N_c + 1 < N_f \leq 3N_c/2$. The inequality holds up to $N_f \sim 1.79 N_c$ (where the theory flows to an interacting conformal fixed point, and the above expressions don't apply). Comes close to predicting onset of conformal window.

• In conformal window, $3N_c/2 < N_f < 3N_c$, trivially have (from assumed lack of accidental symmetries)

$$
\tau_U^{UV} > 0 = \tau_U^{IR} \tag{38}
$$

• Can do some more complicated tests of conformal window.

• Start from the interacting fixed point and turn on $W = \lambda Q_a \tilde{Q}^a$, $a=1,\cdot\cdot\cdot,k.$ Need to use $\langle U^{UV}_{\mu,\text{vis}}(x)\tilde{J}^{UV\ast}_{\nu,A}(0)\rangle=0$ for conserved currents that act non-trivially on the \ddot{Q}_a, \tilde{Q}^a .

• If $k \le N_f - \frac{3}{2}N_c$, the theory flows to another theory in the conformal window. Trivially satisfy $\tau_U^{UV} > 0 = \tau_U^{IR}$ U^{R} . Same for $k = N_f - \frac{3}{2}N_c.$

• For $N_f - N_c - 1 > k > N_f - \frac{3}{2}N_c$, the IR phase is free magnetic. We find

$$
\tau_U^{UV} = \frac{27kN_c^4}{2(N_f - k)N_f^2} > \frac{(3(N_f - k) - N_c)(3N_c - 2(N_f - k))^2}{2(N_f - k)} = \tau_U^{IR}.
$$
\n(39)

• Can also verify the inequality for $k = N_f - N_c - 1, N_f - N_c$. 37

 \bullet Can also consider RG flows with Higgsing. Take $\langle Q_a^a\rangle = \langle \tilde{Q}_a^a\rangle = 0$ v_a , for $a = 1, \dots k$. Suppose all v_a distinct. Find $SU(N_c-k)$ SQCD with N_f-k flavors, \mathcal{Q}_A^i , $\tilde{\mathcal{Q}}_i^A$, k^2 singlets, S_I , k gauge singlets Φ_a and k gauge gauge singlets, $\tilde{\Phi}^a$, transforming under $\mathbf{N_f}-\mathbf{k}$ and $\overline{N_f-k}$ of $SU(N_f-k)_{L,R}$ respectively.

• We find $\mathcal{R}_{\text{vis}}(\mathcal{Q}) = \mathcal{R}_{\text{vis}}(\tilde{\mathcal{Q}}) = \mathcal{R}_{\text{vis}}(\Phi) = \mathcal{R}_{\text{vis}}(\tilde{\Phi}) = 1 - \Phi$ $\frac{N_c-k}{N_c}$ $\frac{N_c-k}{N_f-k},$ $\mathcal{R}_\mathsf{vis}(S)$ $=$ 0 (note that for the case $k\,=\,N_c$ we use $\langle U_{\mu,\text{vis}}^{UV}(x)\tilde{J}_{\nu,A}^{UV*}(0)\rangle = 0$.

 \bullet Trivially true that $\tau^{UV}_U > \tau^{IR}_U$ for flows starting from the free UV fixed point. Consider now flows starting from an interacting fixed point.

 \bullet If $k<\mathsf{min}\left((3N_c-N_f)/2,N_c-1\right)$, theory flows to a more weakly coupled interacting fixed point. Find that

$$
\tau_U^{UV} = \frac{27kN_c^2(N_c - N_f)^2}{2(N_f - k)N_f^2}
$$

>
$$
\frac{k(2k^2 + N_f^2(1 - 3N_c/N_f)^2 + 6kN_f(1 - 2N_c/N_f))}{2(N_f - k)}
$$

=
$$
\tau_U^{IR}
$$
 (40)

• If $(3N_c - N_f)/2 \le k \le N_c$, the IR endpoint is free. We find

$$
\tau_U^{IR} = -\frac{1}{2(N_f - l)} \cdot (2k^3 - N_f^3 (1 - 3N_c/N_f)^2 (N_c/N_f) + 4kN_f N_c (3N_c/N_f - 1) - 2k^2N_f (1 + 2N_c/N_f)) , \text{ (41)}
$$
\nwhich still satisfies

\n
$$
\tau_U^{UV} > \tau_U^{IR}
$$

39

- Easy to generalize the above discussion to $SO(N_c)$ and $Sp(N_c)$ gauge groups
- Also other more exotic s-confining theories; SCFTs with accidental symmetries; $\mathcal{N} = 2$ SYM; Kutasov and Brodie theories; See [1109.3279] for details.

The IR Phase of ISS

• Intriligator, Seiberg, and Shenker consider an $SU(2)$ gauge theory with a single field, Q , in the isospin 3/2 representation.

• They conjectured that the IR theory at the origin is described by a confined $u = Q^4$ field (classically, the Kähler potential is singular at the origin); indeed, since $\mathcal{R}_{\textsf{vis}}^{UV}(Q) \;=\; 3/5$ and $R_{\text{vis}}^{UV}(u) = 12/5$, the $U(1)_R$ and $U(1)_R^3$ anomalies match.

• If the confining description is correct, then, upon deforming the theory by $W = \lambda u$, we would find a simple model of (dynamical) SUSY breaking. In this vacuum, there would be a preserved R symmetry that is a mixture of the accidental non- R symmetry under which u transforms and \mathcal{R}_{vis} .

The IR Phase of ISS (cont...)

- Subsequently, other techniques have pointed to the opposite conclusion—namely, that the IR is interacting conformal.
- Our criterion also suggests this is the case. Indeed, $U_{\text{vis}}^{UV}(Q) =$ $-\frac{1}{10}$, $U_{\text{vis}}^{IR}(u) = \frac{13}{5}$ and so

$$
\tau_U^{UV} = \frac{1}{25}, \quad \tau_U^{IR, \text{contining}} = \frac{169}{25},\tag{42}
$$

and so $\tau^{UV}_U<\tau^{IR, \mathsf{contining}}_U$. This conflicts with our conjecture.

- Conjecture formalizes the intuition that the theory is too weak to produce confined d.o.f's (the 1-loop beta fn is $b = 6 - 5 = 1$).
- Can also check that our procedure is consistent with better understood misleading anomaly matchings.

Conclusions

- We have seen that the (\mathcal{R}_{μ},U) multiplets contain a great deal of physics.
- We can use this pair to learn things about operator mappings, accidental symmetries, and IR phases.
- Can we extend duality mapping to other non-conserved quantities (as in the case of a UV superpotential)?
- Can we prove that $\tau^{UV}_U > \tau^{IR}_U$? Can define another $\tau^{\'}_U$ $_U^{\prime}$ using a minimization procedure. Does this quantity also decrease?