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Overview

• RG generalities.

• Operator mappings: from conserved currents and the chiral
ring to long multiplets.

• R-symmetry, the R-current multiplet, the U multiplet, and the
RG flow.

• Examples: SQCD, the Kutasov theory, and aSQCD.

• Correlation functions of the U multiplet and IR phases of gauge
theories.

• IR interacting versus IR free.
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RG Generalities

• All UV-complete QFTs can be understood as interpolations

between UV and IR fixed points (may also be gapped and hence

empty in IR).

• Given well-defined operators and correlation functions of the

UV theory, can we say something about the corresponding ob-

jects in the IR?

• What are the emergent symmetries of the IR fixed points?

• In general, new internal and space-time symmetries. What are

they? How do we get a handle on them?
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RG Generalities (cont...)

• Non-perturbative dynamics along the RG flow make these ques-

tions hard to answer.

• We will specialize to four-dimensional R-symmetric theories.

• As we will see SUSY, and, in particular R-symmetry give us

strong handles to use to answer a lot of these questions in con-

trolled settings.
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Mapping Operators

• Question: Given OUV , what is OIR?

• Easy operators to map: short multiplets, like members of the

chiral ring, conserved currents.

• Harder operators to map: long multiplets.

• Sometimes can embed these long multiplets inside short mul-

tiplets of higher spin and use these larger multiplets to gain

traction.
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Mapping Operators (cont...)

• Quantities of interest, real UV bilinears (and their generaliza-
tions):

cijΦ
†
iΦ

j + c̃ijΦ̃
†
iΦ̃

j , (1)

Appropriate factors of eV , etc.

• For generic c, c̃ this defines a long multiplet, i.e.,

D̄2
(
cijΦ

†
iΦ

j + c̃ijΦ̃
†
iΦ̃

j
)

= cTrW2
α + ... (2)

• Can we map such an operator to the IR?

• To do that, we need a short multiplet in which to embed
it. Natural candidates: symmetry currents of various kinds. R-
symmetry current a good option (if present).
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The Role of the R-symmetry Current

• Since [R,Q] ∼ Q, {Q, Q̄} ∼ P , the R-current transforms in a

multiplet with Sµα and Tµν.

D̄α̇Rα̇α = χα , Dαχα − D̄α̇χ̄α̇ = D̄α̇χα = 0 . (3)

When χα = 0, this is the superconformal R-symmetry.

• There is an ambiguity in the above equation under Rαα̇ →
Rαα̇ +

[
Dα, D̄α̇

]
J and χα → χα + 3

2D̄
2DαJ for conserved J, i.e.,

D̄2J = 0. This affects the supercurrent and stress tensor through

improvements.
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The Role of the R-symmetry Current (cont...)

• For the theories we will consider, can write

χα = D̄2DαU , (4)

for a well-defined U .

• Solving the above equations in the UV, we find

RUVαα̇ =
∑
i

(
2DαΦiD̄α̇Φ̄i − ri[Dα, D̄α̇]ΦiΦ̄

i
)
,

UUV = −
3

2

∑
i

(
ri −

2

3

)
Φ̄iΦi . (5)

More generally: UUVµ = 3
2

(
RUVµ − R̃UVµ

)
.

• U fixed up to U → U + Y + Ȳ . Will see later that such terms
may appear in the IR.
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The R-symmetry Current and the RG Flow

• Idea: Use the R-multiplet to follow U along the flow.

• Assumption: The UV and IR fixed points are SCFTs (this
can be made rigorous in SQCD-like theories [1102.2294])

• At the IR fixed point, we know what should happen to Rαα̇. In-
deed, either this multiplet flows to the superconformal R-multiplet
or to an object that can be improved to the superconformal R-
multiplet:

R̃αα̇ = RIRαα̇ − [Dα, D̄α̇]J , Ũ = UIR −
3

2
J = 0 . (6)

Determine R̃αα̇ from duality or a-maximization.

• Upshot: Therefore, U → 3
2J, where UIRµ = 3

2

(
RIRµ − R̃IRµ

)
.
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The R-symmetry Current and the RG Flow (cont...)

• J may be a conserved current of the full theory or an accidental

symmetry of the IR. We will see an extreme version of this for

SQCD in the free magnetic range.

• In the case that UIR = 0, we can say a bit more using conformal

perturbation theory. If approach is via a marginally irrelevant

operator, we have U ∼ γJ. Otherwise, we have U ∼ Λ2−dO for

d > 2 (using unitarity).

• In the case of a free magnetic phase, we have

UIR = −
3

2

∑
i

(
ri −

2

3

)
φ̄iφi , (7)

for the “emergent” d.o.f’s.
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Example I: SQCD in the Free Magnetic Range

• Consider SU(Nc) with Nc + 1 < Nf ≤ 3Nc/2: this is a flow

between Gaussian fixed points

• The UV (electric) theory:

SU(Nc) SU(Nf)× SU(Nf) U(1)R U(1)B

Q Nc Nf × 1 1− Nc
Nf

1

Q̃ N̄c 1× N̄f 1− Nc
Nf

−1

(8)

• Some bilinears that we can write are c
j
iQ

iQ
†
j + c̃

j
i Q̃

iQ̃
†
j. What

are they in the IR?
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Example I: SQCD in the Free Magnetic Range (cont...)

• We have the following IR (magnetic) theory

SU(Nf −Nc) SU(Nf)× SU(Nf) U(1)R U(1)B
q Nf −Nc N̄f × 1 Nc

Nf
Nc

Nf−Nc
q̃ N̄f − N̄c 1× N̄f

Nc
Nf

− Nc
Nf−Nc

M 1 Nf ×Nf 2− 2NcNf
0

(9)

• Some objects are trivial to map, e.g. QQ†−Q̃Q̃† −→ Nc
Nf−Nc

(
|q|2 − |q̃|2

)
.
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Example I: SQCD in the Free Magnetic Range (cont...)

• But what about JA = QQ†+ Q̃Q̃†? It is not conserved:

D̄2JA = TrW2
α . (10)

• Claim: We can follow this operator using the R multiplet.
Indeed, using the R-charge assignments in the electric table, we
find

UUV =

(
−

1

2
+

3Nc
2Nf

)(
QQ†+ Q̃Q̃†

)
(11)

• Using the R-charge assignments in the IR, we find

UIR =

(
1−

3Nc
2Nf

)(
qq†+ q̃q̃†

)
−
(

2−
3Nc
Nf

)
MM† (12)
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Example I: SQCD in the Free Magnetic Range (cont...)

• Therefore, we find

QQ†+ Q̃Q̃† −→
2Nf − 3Nc

3Nc −Nf

(
qq†+ q̃q̃† − 2MM†

)
(13)

• Acting with D̄2 on both sides of the above equation, we find

W2
α,el −→

2Nf − 3Nc

3Nc −Nf
W2
α,mag (14)
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Example II: The Deformed Moduli Space

• Consider SQCD with Nf = Nc > 2

• The IR is described by M and B satisfying

detM −BB̃ = Λ2Nc . (15)

Therefore some of the short distance symmetries are sponta-

neously broken.

• Will find some ambiguities in following U . In some vacua we

will have enough (broken) symmetry to fix U . In others we won’t,

but we won’t discuss these cases here.
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Example II: The Deformed Moduli Space (cont...)

• Consider first the following vacuum

M = 0 , B = B̃ = ΛNc . (16)

• In this vacuum the symmetry is broken as follows

SU(Nf)L×SU(Nf)R×U(1)B×U(1)R ↪→ SU(Nf)L×SU(Nf)R×U(1)R
(17)

• We can use our previous techniques to fix U as follows:

U = δMδM†+ δbδb† , (18)

where δb is the Goldstone superfield for the U(1)B breaking.
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Example II: The Deformed Moduli Space (cont...)

• Demanding invariance under the (non-linearly realized) U(1)B
symmetry requires

QQ†+ Q̃Q̃† −→ Tr
(
δMδM†

)
+

1

2
(δb+ δb†)2 . (19)

• Note that this fixes the holomorphic + anti-holomorphic am-

biguity.

17



Example III: The Kutasov Theory

• We consider the following electric theory with Nc
k < Nf <

2Nc
2k−1

SU(Nc) SU(Nf)× SU(Nf) U(1)R U(1)B

Q Nc Nf × 1 1− 2
k+1

Nc
Nf

1

Q̃ N̄c 1× N̄f 1− 2
k+1

Nc
Nf

−1

X N2
c − 1 1× 1 2

k+1 0

(20)

and the following superpotential

W = s0Tr(Xk+1) . (21)
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Example III: The Kutasov Theory (cont...)

• And the following magnetic theory

SU(kNf −Nc) SU(Nf)× SU(Nf) U(1)R U(1)B

q kNf −Nc N̄f × 1 1− 2
k+1

kNf−Nc
Nf

Nc
kNf−Nc

q̃ kNf −Nc 1×Nf 1− 2
k+1

kNf−Nc
Nf

− Nc
kNf−Nc

Y (kNf −Nc)2 − 1 1× 1 2
k+1 0

Mj 1 Nf × N̄f 2− 4
k+1

Nc
Nf

+ 2
k+1(j − 1) 0

(22)

and the following superpotential

Wmag = −
s0

k + 1
Tr Y k+1 +

s0

µ2

k∑
j=1

Mj q̃Y
k−jq . (23)
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Example III: The Kutasov Theory (cont...)

• The UV superpotential breaks the symmetry associated with
the current

JX =
Nc

Nf

(
QQ†+ Q̃Q̃†

)
−XX† . (24)

• Using baryon matching we can fix the coefficient of Y Y † in the
IR.

• This operator cannot be followed using the R-multiplet

• But, using our previous tricks, there is another interesting long
multiplet that we can follow

UUV =

(
−

1

2
+

3

k + 1

Nc

Nf

)(
QQ†+ Q̃Q̃†

)
+
(

1−
3

k + 1

)
XX†. (25)
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Example III: The Kutasov Theory (cont...)

• Using the R multiplet we find that in the IR

UIR =

(
−

1

2
+

3

k + 1

kNf −Nc
Nf

)(
qq†+ q̃q̃†

)
+
(

1−
3

k + 1

)
Y Y †

+
∑
j

(
−2 +

6

k + 1

Nc

Nf
−

3(j − 1)

k + 1

)
MjM

†
j . (26)

• Therefore:(
−

1

2
+

3

k + 1

Nc

Nf

)(
QQ†+ Q̃Q̃†

)
+
(

1−
3

k + 1

)
XX† →(

−
1

2
+

3

k + 1

kNf −Nc
Nf

)(
qq†+ q̃q̃†

)
+
(

1−
3

k + 1

)
Y Y †
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+
∑
j

(
−2 +

6

k + 1

Nc

Nf
−

3(j − 1)

k + 1

)
MjM

†
j (27)
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Example IV: Adjoint SQCD

• We have focused mostly on theories with a free IR description.

Here we will discuss adjoint SQCD. It is believed to flow to an

interacting IR SCFT.

SU(Nc) SU(Nf)× SU(Nf) U(1)R U(1)′ U(1)B

Q Nc Nf × 1 1− 2Nc
3Nf

1 1

Q̃ N̄c 1× N̄f 1− 2Nc
3Nf

1 −1

X N2
c − 1 1× 1 2/3 −1 0

(28)

• Don’t know much about the IR, but we can infer when some

fields M i = QXiQ̃ become free—e.g. for Nf/Nc < (3 +
√

7)−1,

M0 = QQ̃ becomes free.
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Example IV: Adjoint SQCD (cont...)

• Using out techniques, we can map(
−

1

2
+
Nc

Nf

)(
QQ†+ Q̃Q̃†

)
−→

P (Nf/Nc)∑
j=0

(
1−

3R(Mj)

2

)
MjM

†
j + ...

= −
P (Nf/Nc)∑

i=0

(
j + 2− 2

Nc

Nf

)
MjM

†
j + · · ·(29)
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The R-current Multiplet and IR Phases of Gauge Theories

• We have seen that the R-current multiplet gives us a handle

on a particular long (spin zero) multiplet, U .

• Question: Does it also contain some global information? En-

codes the phase of the IR theory? Is the deep IR an interacting

or a free SCFT (perhaps below some confining scale, Λ)?

• Claim: There is strong evidence that suggests the answer is

yes!
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The R-current Multiplet and IR Phases of Gauge

Theories (cont...)

• To support this claim, we will study 〈U(x)U(0)〉.

• It turns out that we will be able to make more explicit state-

ments, with less information, about (strongly) interacting the-

ories than we could when studying the mapping of the full U

operator along the RG flow.

• But which U (and Rµ)? This is ambiguous.

• We will study the one defined (up to some exceptions) by

a-maximization in the deformed UV theory, (RUVµ,vis, U
UV
vis ).
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The R-current Multiplet and IR Phases of Gauge

Theories (cont...)

• We will study τU :

〈UUV,IRµ,vis (x)UUV,IRν,vis (0)〉 =
τ
UV,IR
U

(2π)4

(
∂2ηµν − ∂µ∂ν

) 1

x4
. (30)

• Note that in theories without accidental symmetries, τUVU >

0 = τ IRU .

• Conjecture: τUVU > τ IRU more generally (new information not

contained in aUV > aIR).
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The R-current Multiplet and IR Phases of Gauge

Theories (cont...)

• We will provide strong evidence (although not a conclusive

proof) in support of the above conjecture.

•This conjecture implies a UV bound on accidental symmetries.

• If true, this conjecture will resolve a longstanding problem: the

IR phase of the ISS theory.

• τUVU is a quantity in the UV SCFT, although it is not intrinsically

defined in it (only defined once have in mind an R-symmetric

relevant deformation and/or R-symmetry-preserving vev).

27



Defining τU

• We start by using a-maximization to find the UV superconfor-
mal R-current; consider Rt∗µ,UV = R(0)∗

µ,UV +
∑
i t
iJUV ∗µ,i , where JUV ∗µ,i

are the full set of non-R symmetries of the UV SCFT.

• Taking ãtUV = 3Tr
(
Rt∗UV

)3
− Tr Rt∗UV , solve ∂tiã

t
UV |ti=ti∗

=

0, ∂2
titj
ãtUV |ti,j=t

i,j
∗
< 0. This defines R̃UVµ .

• Deform the theory by turning on an R-symmetry-preserving rel-
evant deformation and/or an R-symmetry-preserving vev. Now
only

{
ĴUV ∗µ,a

}
⊂
{
JUV ∗µ,i

}
are still conserved currents that respect

the vacuum.

•Maximizing ã over this subset yields RUVµ = R(0),UV
µ +

∑
a t̂
a
∗Ĵ

UV
µ,a .

This operator and UUV partner descend from a corresponding
pair in the undeformed UV SCFT, (RUVµ,vis, U

UV
vis ).
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Defining τU (cont...)

• Sometimes this procedure is not sufficient to fix some of the

t̂A∗ . This may happen in the presence of massive particles or more

generally.

• In such a case, we can then fix the corresponding mixing with{
J̃UVµ,A

}
⊂
{
ĴUVµ,a

}
by demanding

〈UUVµ,vis(x)J̃UV ∗ν,A (0)〉 = 0 . (31)

• For free UV (IR) theories, we find

τ
UV,IR
U = Tr

(
U
UV,IR
vis

)2
. (32)
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Defining τU (cont...)

• More generally, can sometimes use

τ
UV,IR
U = −3TrR̃UV,IRp U

UV,IR
vis,p U

UV,IR
vis,p , (33)

and ’t Hooft anomaly matching to obtain explicit expressions.

• In the IR (and also in the UV), sometimes one needs more

complicated generalizations (for example, when the IR is an in-

teracting SCFT with some decoupled fields and accidental sym-

metries).

• Won’t discuss these cases in the talk (see [1109.3279] for

further discussion).
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Two Simple Examples

• As a simple sanity check (and important result), consider a

free chiral multiplet, Φ and the deformation W = mΦ2.

• There is a unique R-symmetry; therefore, RUVvis (Φ) = 1 and

UUV (Φ) = 1/2. As a result, τUVU = 1/4. The theory is trivial in

the IR and so

τUVU = 1/4 > 0 = τ IRU . (34)

• Slight complication with two free chiral superfields, Φ1,2 and

W = mΦ1Φ2. This preserves a non-R symmetry, J, under

which the Φi transform with opposite charges. Need to impose

〈UUVµ,vis(x)JUV ∗ν (0)〉 = 0. Find τUVU = 1/2 > 0 = τ IRU .
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SQCD

•Our procedure fixes RUVvis (Q) = RUVvis (Q̃) = 1−NcNf and UUVvis (Q) =

UUVvis (Q̃) = 1
2 −

3Nc
2Nf

.

• Consider Nf < 3Nc, and start from the free UV theory.

• Begin with Nf = Nc and work our way up. All the subtleties

we have discussed in this talk are present in this class of theo-

ries (accidental symmetries, Goldstone bosons, interacting fixed

points etc.).
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SQCD (cont...)

• Nf = Nc; τUVU = 2N2
c ; in the IR have a deformed moduli space

detM + BB̃ = Λ2Nc with < N2
c + 2 mesons, M , and baryons,

B, B̃.

• Since RIRvis(M) = RIRvis(B) = RIRvis(B̃) = 0 and UIRvis (M) =

UIRvis (B) = UIRvis (B̃) = −1, we have τ IRU < N2
c + 2.

τUVU = 2N2
c > N2

c + 2 > τ IRU . (35)

• Nf = Nc + 1; τUVU = Nc(1−2Nc)2

2(1+Nc)
; confinement without chiral

symmetry breaking, (Nc+1)2 mesons, M , and 2(Nc+1) baryons

B and B̃.
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SQCD (cont...)

• Have Rvis(M) = 1−2Nc
1+Nc

,Rvis(B) = Rvis(B̃) = Nc
2

1−2Nc
1+Nc

, U(M) =

−1+ 3
Nc+1, U(B) = U(B̃) = Nc−2

2(Nc+1). Therefore, τ IRU = (Nc−2)2(3+2Nc)
2(1+Nc)

and

τUVU =
Nc(1− 2Nc)2

2(1 +Nc)
>

(Nc − 2)2(3 + 2Nc)

2(1 +Nc)
= τ IRU . (36)

• Can see that fully conserved current two-point functions have

no definite behavior along the RG flow. Therefore, a-maximization

picks out a current, U , that has nice properties.
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SQCD (cont...)

• Nf = Nc+2, confining description breaks down; τUVU = 2Nc(Nc−1)2

Nc+2

while τconf
U = 5N3

c −10N2
c −4Nc+36

Nc+2 , and so conjecture would be vi-

olated in a hypothetical confining phase.

• Luckily, correct description is free magnetic with RIRvis(M) =

2
(

1− Nc
Nf

)
,RIRvis(q) = RIRvis(q̃) = Nc

Nf
and UIRvis (M) = 2−3Nc

Nf
, UIRvis (q) =

UIRvis (q̃) = −1 + 3Nc
2Nf

. Therefore:

τUVU =
Nc(Nf − 3Nc)2

2Nf
>

(3Nf −Nc)(3Nc − 2Nf)2

2Nf
= τ IRU . (37)
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SQCD (cont...)

• The above expressions are valid for Nc + 1 < Nf ≤ 3Nc/2.

The inequality holds up to Nf ∼ 1.79Nc (where the theory flows

to an interacting conformal fixed point, and the above expres-

sions don’t apply). Comes close to predicting onset of conformal

window.

• In conformal window, 3Nc/2 < Nf < 3Nc, trivially have (from

assumed lack of accidental symmetries)

τUVU > 0 = τ IRU . (38)

• Can do some more complicated tests of conformal window.
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SQCD (cont...)

• Start from the interacting fixed point and turn on W = λQaQ̃a,
a = 1, · · ·, k. Need to use 〈UUVµ,vis(x)J̃UV ∗ν,A (0)〉 = 0 for conserved
currents that act non-trivially on the Qa, Q̃a.

• If k < Nf − 3
2Nc, the theory flows to another theory in the

conformal window. Trivially satisfy τUVU > 0 = τ IRU . Same for
k = Nf − 3

2Nc.

• For Nf −Nc− 1 > k > Nf − 3
2Nc, the IR phase is free magnetic.

We find

τUVU =
27kN4

c

2(Nf − k)N2
f

>
(3(Nf − k)−Nc)(3Nc − 2(Nf − k))2

2(Nf − k)
= τ IRU .

(39)

• Can also verify the inequality for k = Nf −Nc − 1, Nf −Nc.
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SQCD (cont...)

• Can also consider RG flows with Higgsing. Take 〈Qaa〉 = 〈Q̃aa〉 =

va, for a = 1, ···k. Suppose all va distinct. Find SU(Nc−k) SQCD

with Nf − k flavors, QiA, Q̃Ai , k2 singlets, SI, k gauge singlets Φa

and k gauge gauge singlets, Φ̃a, transforming under Nf − k and

Nf − k of SU(Nf − k)L,R respectively.

• We find Rvis(Q) = Rvis(Q̃) = Rvis(Φ) = Rvis(Φ̃) = 1 −
Nc−k
Nf−k

, Rvis(S) = 0 (note that for the case k = Nc we use

〈UUVµ,vis(x)J̃UV ∗ν,A (0)〉 = 0).

• Trivially true that τUVU > τ IRU for flows starting from the free

UV fixed point. Consider now flows starting from an interacting

fixed point.
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SQCD (cont...)

• If k < min
(
(3Nc −Nf)/2, Nc − 1

)
, theory flows to a more weakly

coupled interacting fixed point. Find that

τUVU =
27kN2

c (Nc −Nf)2

2(Nf − k)N2
f

>
k(2k2 +N2

f (1− 3Nc/Nf)2 + 6kNf(1− 2Nc/Nf))

2(Nf − k)

= τ IRU (40)

• If (3Nc −Nf)/2 ≤ k ≤ Nc, the IR endpoint is free. We find

τ IRU = −
1

2(Nf − l)
· (2k3 −N3

f (1− 3Nc/Nf)2(Nc/Nf)

+ 4kNfNc(3Nc/Nf − 1)− 2k2Nf(1 + 2Nc/Nf)) , (41)

which still satisfies τUVU > τ IRU .
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SQCD (cont...)

• Easy to generalize the above discussion to SO(Nc) and Sp(Nc)

gauge groups

• Also other more exotic s-confining theories; SCFTs with acci-

dental symmetries; N = 2 SYM; Kutasov and Brodie theories;

See [1109.3279] for details.
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The IR Phase of ISS

• Intriligator, Seiberg, and Shenker consider an SU(2) gauge

theory with a single field, Q, in the isospin 3/2 representation.

• They conjectured that the IR theory at the origin is described

by a confined u = Q4 field (classically, the Kähler potential

is singular at the origin); indeed, since RUVvis (Q) = 3/5 and

RUVvis (u) = 12/5, the U(1)R and U(1)3
R anomalies match.

• If the confining description is correct, then, upon deforming the

theory by W = λu, we would find a simple model of (dynamical)

SUSY breaking. In this vacuum, there would be a preserved R-

symmetry that is a mixture of the accidental non-R symmetry

under which u transforms and Rvis.
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The IR Phase of ISS (cont...)

• Subsequently, other techniques have pointed to the opposite
conclusion—namely, that the IR is interacting conformal.

• Our criterion also suggests this is the case. Indeed, UUVvis (Q) =
− 1

10, U
IR
vis (u) = 13

5 and so

τUVU =
1

25
, τ

IR,confining
U =

169

25
, (42)

and so τUVU < τ
IR,confining
U . This conflicts with our conjecture.

• Conjecture formalizes the intuition that the theory is too weak
to produce confined d.o.f’s (the 1-loop beta fn is b = 6−5 = 1).

• Can also check that our procedure is consistent with better
understood misleading anomaly matchings.
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Conclusions

• We have seen that the (Rµ, U) multiplets contain a great deal

of physics.

• We can use this pair to learn things about operator mappings,

accidental symmetries, and IR phases.

• Can we extend duality mapping to other non-conserved quan-

tities (as in the case of a UV superpotential)?

• Can we prove that τUVU > τ IRU ? Can define another τ ′U using a

minimization procedure. Does this quantity also decrease?
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