Constraining Asymmetric Dark Matter

Matthew R Buckley David Schramm Fellow Fermilab Center for Theoretical Astrophysics

MRB, L. Randall 1009.0270 MRB 1104.1429 MRB, S. Profumo 1109.2164

Sunday, February 5, 12

- There's a lot of it: $\Omega_{\rm DM}/\Omega_B \approx 4.8$
- It interacts gravitationally
 - ... and not via EM/strong forces.
- It's non-relativistic.

- There's a lot of it: $\Omega_{\rm DM}/\Omega_B \approx 4.8$
- It interacts gravitationally
 - ... and not via EM/strong forces.
- It's non-relativistic.

Aquarius Simulation

- There's a lot of it: $\Omega_{\rm DM}/\Omega_B \approx 4.8$
- It interacts gravitationally
 - ... and not via EM/strong forces.
- It's non-relativistic.

Bullet Cluster

- There's a lot of it: $\Omega_{\rm DM}/\Omega_B \approx 4.8$
- It interacts gravitationally
 - ... and not via EM/strong forces.
- It's non-relativistic.

Millennium Simulation

What don't we know about DM?

- Everything else.
 - Mass?
 - Interactions beyond gravity?
 - Origin?
 - Connection to rest of particle physics?
 - Relation to Naturalness/Hierarchy problems?

- Relation to Baryons?
- Where to start?

Assume a Connection

- Naturalness and Hierarchy problems:
- How to ensure stability of weak scale against power-law corrections

 $m_Z, m_{\rm Higgs} \ll m_{\rm Planck}$

- Several solutions on the market (supersymmetry, extra dimensions)
 - All require new particles with electroweak couplings and $\mathcal{O}(100~{\rm GeV})$ masses.
 - Contains an uncharged, color neutral massive particle.

The WIMP miracle

- How would such a Weakly Interacting Massive Particle behave in the early Universe?
- All particles present in thermal bath, continual annihilation/production processes allow *n* to follow equilibrium density:

• Eventually these processes freeze out, and Y becomes constant: a thermal relic.

Matthew Buckley 5

🛟 Fermilab

The WIMP miracle

- A large $\langle \sigma v \rangle$ means equilibrium lasts longer, resulting in lower $Y(\infty) \propto \langle \sigma v \rangle^{-1}$
- An intriguing coincidence:

 $\langle \sigma v \rangle \approx 3 \times 10^{-26} \text{ cm}^3/\text{s} \sim \frac{g^4}{m_W^2} \Rightarrow Y \sim 10^{-10} \Rightarrow \Omega_{\text{DM}} h^2 \sim 0.1$

• That is, the $\langle \sigma v \rangle$ expected from a $SU(2)_L$ particle with weak-scale masses gives about the right amount of dark matter

Matthew Buckley

• *i.e.* The WIMP Miracle

How Miraculous?

- A very fruitful idea, lots of collider phenomenology, predictions for (in)direct detection, *etc.*
 - Realized in explicit models: notably supersymmetric $\tilde{\chi}_0$
- However: not universally true that a weak-scale interaction leads to a viable dark matter candidate.
 However: not universally true that a weak-scale universally tru
- Some degree of tuning necessary
- And obviously, no WIMP yet seen

<u>q</u>

TOTAL

🗲 Fermilab

Anomalies

- DAMA/Libra, CoGeNT, CRESST have reported signals broadly consistent with $\sim 7-10~{\rm GeV}\,{\rm DM}$
- CRESST 1σ • Not im 10 CRESST 2₀ total RESST 2009 WIMP signal MIMP-nucleon cross section [pb] DELWEISS-I γ bck but not s FNON100 Pb recoil bck 10⁻⁵ DAMA chan α bck DAMA neutron bck CoGeNT events 10⁻⁶ • Fermi/ 10-7 10⁻⁸ require 10 10 100 100(large a 0-0.1 -0.05 0 0.05 0.25 0.3 **S** WIMP mass [GeV] 0.2 0.1 0.15 light yield
 - Possible/likely that this is astrophysics
- Regardless: A good time to look at alternatives to WIMPs

Beyond WIMPs

- If not the WIMP miracle, then what?
- Take inspiration from the one component of the Universe we (mostly) understand.
 - Baryons are not a thermal relic. QCD cross-section too large by a factor of $\,\sim 10^9$
 - We have baryons today because of an initial asymmetry 10 Y10 Y_{ψ} $Y_{\text{Asym.}}$ 10^{-12} $Y_{\rm eq.}$ $Y_{\overline{\eta}}$ 10^{6} 10 10^{2} 10^{3} 10^{5} 10^{4} 1 Fermilab x = m/T

Asymmetric Dark Matter

- If asymmetry explains baryons, why not dark matter as well?
- Take guidance from $\Omega_{\rm DM}/\Omega_B = \mathcal{O}(1)$, rather than from the WIMP miracle.
- Assume this relation is not a coincidence, but a hint of deeper physics. Then:
 - DM not a thermal relic.
 - Production of DM related to the production of baryons
 - Baryons and thus DM (X) contains an asymmetry: X but not \bar{X}

Asymmetric Dark Matter

- "Dark" Sakharov conditions:
 - CP violation
 - Departure from thermal equilibrium
 - X-symmetry violation
- Additional sector to "hide" CP violation that can seed a *B*-asymmetry opens the door for many new solutions for baryogenesis.
- Here, I will remain agnostic as to the initial source of the asymmetry.

The Original ADM

- An idea with a lengthy history
 - Originally postulated in technicolor models Nussinov (1985), Barr, Chivukula, Farhi (1990)
 - Electroweak symmetry broken by condensate of a new strongly interacting force with confinement at low energies (analogous to strong nuclear force)
 - Leads to "technibaryons," very similar to baryons

The Original ADM

- Some of these technibaryons are charged under $SU(2)_L$, results in sphaleron interactions at high temperatures ($T\gtrsim 200~{\rm GeV}$)
 - These interactions would transfer any asymmetry from baryons into technibaryons (or vice versa)
 - LEP put strong constraints on most technicolor

The New ADM

• Spurred by light DM signals and general interest in non-supersymmetry-like models:

D.E. Kaplan *et al* 0901.4117 Cohen & Zurek 0909.2035 MRB & Randall 1009.0270 (see Refs. [1-2] of 1109.2164)

- Phenomenological: bottom-up, don't require solutions to hierarchy/naturalness
- Plenty of names to choose from: Xogenesis, aidnogenesis, darkogenesis, hylogenesis....

Matthew Buckley

Sunday, February 5, 12

Predictions of ADM

- Out of the many models on the market, are there any universal statements that can be made?
 - That is, what can we say about all ADM models?

- Mass?
- Interactions?
- Indirect Detection?

First Guess

• Naive expectation is that relating these asymmetries forces $n_X = n_B$, implying

$$m_X = \frac{\Omega_{\rm DM}}{\Omega_B} m_{\rm proton} \sim 5 \ {\rm GeV}$$

 Which of course is very interesting if you're interested in the DAMA/CoGeNT/CRESST anomalies

Matthew Buckley

But how solid is this conclusion?

Transfer Mechanisms

- To determine n_X/n_B , and thus m_X , need to specify the process in which an asymmetry in one sector gets converted into the other.
- Many options:
 - Sphalerons
 - Explicit violation of global symmetries

- Out of equilibrium decays
- Some combination of above
- Can't look at all in detail here.

Transfer Mechanisms

• Asymmetric number density of particle implies a non-zero chemical potential

$$m_{i} = g_{i} f(m_{i}/T) T^{2} R(T)^{3} \mu_{i}$$
$$f(x) = \frac{1}{4\pi^{2}} \int_{0}^{\infty} \frac{y^{2} dy}{\cosh^{2}\left(\frac{1}{2}\sqrt{x^{2}+y^{2}}\right)}$$

• If an operator exists that allows $X \leftrightarrow B$, then $\mu_X = \mathcal{O}(1)\mu_B$ and

$$f(m_X/T_D) = \frac{g_B f(0)}{g_X \times (\mu_X/\mu_B)} \frac{\rho_{\rm DM}}{\rho_B} \frac{m_{\rm proton}}{m_X}$$

Matthew Buckley

Sunday, February 5, 12

Transfer Mechanisms

$$f(m_X/T_D) = \frac{g_B f(0)}{g_X \times (\mu_X/\mu_B)} \frac{\rho_{\rm DM}}{\rho_B} \frac{m_{\rm proton}}{m_X}$$

- Assume transfer operator becomes ineffective ("shuts off") at temperature T_D. Then present number density set by n_i(T_D), and we have two regimes:
 - Relativistic: $m_X \ll T_D$, $m_X = \mathcal{O}(1) \times 5 \text{ GeV}$
 - Non-relativistic: $m_X \gtrsim T_D$,

$$m_X = \mathcal{O}(1) \times f^{-1}(m_X/T_D) \times 5 \text{ GeV}$$

• Without additional machinery in the theory, non-relativistic solutions tend to have $m_X \sim 8-10 T_D$

Explicit Breaking Terms

- Can transfer asymmetry via explicit X B breaking.
- Example: in the context of supersymmetry:

$$\mathcal{L} \supseteq \frac{1}{M^2} X X \tilde{u} \tilde{d} \tilde{d}$$

 n_X/T_D

MRB, Randall 1009.0270

 $T_{D} = 200 \text{ GeV}$

 $T_D = 100 \text{ GeV}$

8

Matthew Buckley 20

10

 $T_{p} = 1000 \text{ GeV}$

 $T_D = 20 \text{ GeV}$

 $T_D = 10 \text{ GeV}$

4

 ρ_{DM}/ρ_B

2

 Can have both relativistic and non-relativistic solutions. 15

- T_D a free parameter
- Non-rel. solution $m_X \sim 8 - 10 T_D$
- Collider bounds on squarks tend to push DM heavy

🛟 Fermilab

Sphalerons

- In the Standard Model, there is a mechanism for breaking both $B\,$ and L:
 - $SU(2)_L$ sphalerons.
- A sphaleron is a non-perturbative gauge configuration, separating vacua with different numbers of fermions charged under the gauge group.
- Action of the sphaleron creates 1 of each lefthanded fundamental fermion of the group, destroys 1 of each right-handed fermion.

Sphalerons

• In chiral $SU(2)_L$, this creates $N_f \times [3(u_L + d_L) + e_L]$ particles. Violating B and L, but not B - L

Active until electroweak phase transition

 $T_D \sim v \equiv \langle H \rangle \sim 200 \text{ GeV}$

- Exponentially suppressed below this
- Can't create an asymmetry, but will distribute it into all sectors with chiral $SU(2)_L$ fermions

Sphalerons & ADM

- Add N_X dark matter $SU(2)_L$ doublets
- Sphaleron action would now preserve both

$$B - L, B - \frac{3}{N_X}X$$

- Obviously, new doublets at 5 GeV completely excluded by LEP, so relativistic solution out.
- Implies 2 + TeV dark matter ruled out by direct detection
- Can avoid this by singlet-doublet mixing

Fermilab

Creating Lepton Number

• Could explicitly break X, L symmetries.

$$\mathcal{L} \supseteq \frac{1}{M} X X \tilde{L} H_u$$

- B created via SM sphaleron processes
- Non-relativistic solution implies heavy sneutrinos in vanilla models.
- $T_D < T_{sphaleron}$ allows for interesting solutions
 - "Intermediate mass" ADM, as excess particle number "bleeds" into neutrino sector

Predictions of ADM

- Out of the many models on the market, are there any universal statements that can be made?
 - That is, what can we say about all ADM models?

- Mass?
- Interactions?
- Indirect Detection?

A is A

- Asymmetric dark matter is asymmetric
 - Meaning that it has no significant symmetric (thermal) component
 - (definition of significant up for debate, here I'll assume <10%)

Matthew Buckley

• This means that ADM must have significant annihilation cross section into something $\sigma_{\rm ADM}\gtrsim\sigma_{\rm Thermal}\sim 1~{\rm pb}$

Dark Matter Interactions

Sunday, February 5, 12

Effective Operators

 Assume ADM annihilates into SM quarks, parametrized by an effective operator with scale

$$\mathcal{L}_{S,S} = \frac{m_q}{\Lambda^2} \chi_S^* \chi_S \bar{q} q \qquad \qquad \mathcal{L}_{F,P} = \frac{m_q}{\Lambda^3} \bar{\chi}_F \gamma^5 \chi_F \bar{q} \gamma^5 q
\mathcal{L}_{S,P} = \frac{m_q}{\Lambda^2} \chi_S^* \chi_S \bar{q} \gamma^5 q \qquad \qquad \mathcal{L}_{F,V} = \frac{1}{\Lambda^2} \bar{\chi}_F^F \gamma_\mu \chi_F \bar{q} \gamma^\mu q
\mathcal{L}_{S,V} = \frac{1}{\Lambda^2} \chi_S^* \partial_\mu \chi_S \bar{q} \gamma^\mu q \qquad \qquad \mathcal{L}_{F,A} = \frac{1}{\Lambda^2} \bar{\chi}_F^F \gamma^5 \gamma_\mu \chi_F \bar{q} \gamma^5 \gamma^\mu q
\mathcal{L}_{F,T} = \frac{1}{\Lambda^2} \bar{\chi}_F^F \sigma_{\mu\nu} \chi_F \bar{q} \sigma^{\mu\nu} q$$

 $\mathcal{L}_{F,S} = \frac{m_q}{\sqrt{2}} \bar{\chi}_F \chi_F \bar{q}q$

Matthew Buckley 2

- Lower limits on Λ from direct detection, collider searches, applicability of formalism ($m_{\chi} < 2\pi\Lambda$)
- Upper limits from over-annihilation of ADM

🛟 Fermilab

Collider Bounds

- Complete theory of dark matter often expected to have additional ($SU(3)_C$ charged) particles
- Minimal theory has only dark matter, plus some effective operator which may not be accessible at colliders.
- Only definite signal: $pp \rightarrow XX + \text{jets}/\gamma$ $\Rightarrow pp \rightarrow E_T + \text{jets}/\gamma$
- Main background $pp \rightarrow (Z \rightarrow \nu \bar{\nu}) + \text{jets}/\gamma$

Matthew Buckley 29

- Searches using ATLAS and CMS ($1~{\rm fb}^{-1}$), and CDF results .

Effective Operators

Implications

- This parameter space is highly constrained. Can relax these constraints by
 - having ADM annihilate into leptons,
 - or annihilate into new light dark particles,
 - or the effective operator formalism doesn't apply.
 - Requires new particles close in mass to DM

Matthew Buckley

 All of these interesting avenues for ADM model building. The last especially is suggestive of technicolor-like dark matter.

Predictions of ADM

- Out of the many models on the market, are there any universal statements that can be made?
 - That is, what can we say about all ADM models?

- Mass?
- Interactions?
- Indirect Detection?

Indirect Detection

- ADM consists of X but not \bar{X}
 - Naive expectation is therefore no indirect detection signals are possible
- However, DM is a singlet under the unbroken SM gauge groups $SU(3)_C \times U(1)_{\rm EM}$
 - Like with neutrinos, it is therefore generically possible to write Lagrangians containing "Majorana" $\Delta X = 2$ mass terms

$$\mathcal{L} \supseteq m_D X \bar{X} + m_M (X X + \bar{X} \bar{X})$$

Oscillating Dark Matter

 Combination of Dirac and Majorana mass terms leads to split mass eigenvalues:

 $m_1 = m_D - m_M, \ m_2 = m_D + m_M$

- DM produced as X will oscillate into \bar{X} with a timescale of $\tau = \Delta m^{-1}$
- Combined with large annihilation cross-section, can lead to significant energy injection at late times
- With $\tau_{\rm Universe}^{-1} \sim 10^{-41}~{\rm GeV}$, possibility of extremely strict constraints on ADM mass matrix

Oscillating Dark Matter

- Oscillation time τ must be longer than $t_{\rm freeze-out}$
- If $\tau \sim t_{\rm freeze-out}$, annihilation can re-start ("thaw") and resymmetrize the ADM

Matthew Buckley 37

 Constraints (for large ⟨σv⟩) when oscillation time characteristic timescale of BBN, CMB, and ≤ annihilation in dwarf galaxies in the present day (Fermi dwarf stacking)

Constraints & Implications

- Fairly stringent constraints 5× on oscillation time $\tau = \Delta m^{-1}$
- Outside of relatively small window of allowed $\langle \sigma v \rangle$, find $m_M \lesssim 10^{-41} \text{ GeV}$
 - (Derived for fermions)
- Implies some symmetry absolute forbids $\Delta X = 2$ mass terms

🗲 Fermilab

A Note on Thawing

- Previous bounds derived under the assumption that ADM density $\ge 90\%$ of total
- But interesting to note that, if $\tau \gtrsim t_{\rm freeze-out}$, can drive two final abundances together
 - I'm not aware of this sort of solution to the Boltzmann Eqn. used in a cosmological context
 - Could have interesting model-building uses

Constraints & Implications

• Work by Cirelli *et al* (1110.3809) and Tulin *et al* (1202.0283) followed up in more detail. Found interactions that distinguish between $X \leftrightarrow X^c$ at Lagrangian level can forbid reannihilation after oscillation without scattering off of thermal bath $x = m_X/T$

Implications of Oscillation

- If Majorana mass interpreted as result of a seesaw mechanism, implies high scale $> M_{\rm Planck}$
 - Such terms can be forbidden by simple global symmetries, but these are expected to be violated by gravitational-strength interactions
- Implies that successful ADM models require a symmetry that forbids $\Delta X = 2$ mass terms that are not violated even at extremely high energies

Matthew Buckley

• Possibly a gauge symmetry?

- WIMPs are a very good idea, but not the only game in town
- The coincidence between $\Omega_{\rm DM}$ and Ω_{B} provides an fruitful alternative for dark matter model-building.
- I've outlined the wide variety of asymmetry transfer methods potentially available
 - Leads to a wide range of potential masses for ADM

Matthew Buckley

• Not just $m_X/m_{\rm proton} = \Omega_{\rm DM}/\Omega_B$

- Can attempt to narrow down the possible theory space:
- To be asymmetric, ADM must have:
 - Large annihilation cross section to eliminate symmetric component
 - Either affinity for leptons or new light states to annihilate into or to mediate annihilations.

- Either affinity for leptons or new light states to annihilate into or to mediate annihilations.
- Must forbid $\Delta X = 2$ mass-terms down to $\Delta m \sim \tau_{\rm Universe}^{-1} \sim 10^{-41} {
 m GeV}$

- Either affinity for leptons or new light states to annihilate into or to mediate annihilations.
- Must forbid $\Delta X = 2$ mass-terms down to $\Delta m \sim \tau_{\text{Universe}}^{-1} \sim 10^{-41} \text{ GeV}$
- Implies a dark sector with a rich phenomenology:
 - New states with sizable couplings
 - New dark symmetries conserved to very high scales.

Matthew Buckley

Perhaps pointing back to something technicolor-ish?

Matthew Buckley 46/45

Sunday, February 5, 12

Back-Up Slides

Matthew Buckley 47/45

Sunday, February 5, 12

Squark Masses in B

$$\Gamma = n \langle \sigma v \rangle \sim \left(\frac{m_X T}{2\pi}\right)^{3/2} \frac{\pi m_X^2}{(16\pi^2)^2 M^4} e^{-(3m_{\tilde{q}} - m_X)/T}$$

- Non-rel. solution requires $m_X \sim 10T_D$
- T_D set when $\Gamma \sim H^{-,1}$ assuming M not too large, solutions when $(3m_{\tilde{q}} m_X) \sim 45T_D$

Sphalerons & ADM

- 1 2 TeV chiral doublet dark matter excluded by direct det 10^{-10⁻¹}
- Can look $\mathbb{C}^{\mathbb{C}}_{\mathbb{C}}$ with $SU(\mathbb{P}^{\mathbb{C}})$ • Can set $u^{\mathbb{R}}_{\mathbb{C}}$
- Can set $u^{\frac{4}{9}}$ light state $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0$

Singlet-Doublet mixing

- Specific example.
- 2 "left-handed states," singlet X_1 , doublet X_L
- 2 "right-handed states," singlets X_2, X_3
 - Form Dirac masses only

 $\mathcal{L} \supseteq v_1 v X_L \bar{X}_2 + y_2 v X_L \bar{X}_3 + m_{12} X_1 \bar{X}_2 + m_{13} X_1 \bar{X}_3$

• Select $v_1 v = M, v_2 v \sim \epsilon M, m_{12} \sim \epsilon M, m_{13} \sim 0$

Matthew Buckley

• Then action of sphaleron is to create ϵ^2 states of mass $\epsilon^2 M$ and $1 - \epsilon^2$ of mass M

Intermediate Masses

- Lepton-violating models transfer X/L asymmetry via higher dim. operators, and transfer asymmetry via sphalerons L/B
 - If $T_D < T_{\text{sphaleron}}$, then after $X \leftrightarrow L \leftrightarrow B$ stops, $X \leftrightarrow L$ continues, bleeding "excess" DM into invisible neutrinos

辈 Fermilab

Tevatron Search G

Goodman *et al* 1008.1783

- Follows CDF searches: 0807.3132

 - Allow $p_{T,j_2} > 30$ GeV, veto on 3+ jets

Sunday, February 5, 12

LHC Search

Fox et al 1109.4398

Sunday, February 5, 12