

Maximal R-symmetry violating amplitudes in type IIB superstring theory

(based on arXiv:1204.4208 and work in progress)

Rutger Boels University of Hamburg

A seminar at my university

A seminar at my university

Colonel Henry Rutgers (1745–1830, Dutch parents)

A seminar at my university

Colonel Henry Rutgers (1745–1830, Dutch parents)

- Rutger is a Germanic name, related to Rodger
- means something like "famous with the spear"

Why pay attention?

...string scattering amplitudes in a flat background...

"hasn't everything been calculated already?"

"hasn't everything been calculated already?"

- derive vertex operators
- calculate correlation functions
- integrate over moduli

"hasn't everything been calculated already?"

- derive vertex operators
- calculate correlation functions
- integrate over moduli

"hasn't everything been calculated already?"

- derive vertex operators
- calculate correlation functions
- integrate over moduli

 \rightarrow very complicated above four points!

Two motivations for general study of amplitudes

Theoretical

Experimental

Tuesday, October 23, 12

Two motivations for general study of amplitudes

Theoretical

- scattering amplitudes are everywhere
- uncovering new symmetries

Experimental

UHI Two motivations for general study of amplitudes

Theoretical

- scattering amplitudes are everywhere
- uncovering new symmetries

Experimental

- scattering amplitudes are everywhere
- first step in "theory to experiment"

Two motivations for general study of amplitudes

Theoretical

- scattering amplitudes are everywhere
- uncovering new symmetries

Experimental

- scattering amplitudes are everywhere
- first step in "theory to experiment"

massive progress in four dimensional field theory

- especially with maximal supersymmetry
- many authors

• symmetry vs simplicity \rightarrow most (manifestly) symmetric answers are the simplest

• symmetry vs simplicity \rightarrow most (manifestly) symmetric answers are the simplest

golden standard of simple scattering amplitudes:
4D MHV amplitudes in tree level Yang-Mills

[Parke-Taylor, 87]:

$$A_{\mathbf{n}}(\mathrm{MHV}) = \frac{\langle i, j \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle \mathbf{n}1 \rangle}$$

• symmetry vs simplicity \rightarrow most (manifestly) symmetric answers are the simplest

golden standard of simple scattering amplitudes:
4D MHV amplitudes in tree level Yang-Mills

[Parke-Taylor, 87]:

$$A_{\mathbf{n}}(\mathrm{MHV}) = \frac{\langle i, j \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle \mathbf{n}1 \rangle}$$

- engine of many if not all recent 4D developments
- similar insight into perturbative string theory?
- (string theory should be simpler than field theory)

• symmetry vs simplicity \rightarrow most (manifestly) symmetric answers are the simplest

golden standard of simple scattering amplitudes:
4D MHV amplitudes in tree level Yang-Mills

[Parke-Taylor, 87]:

$$A_{\mathbf{n}}(\mathrm{MHV}) = \frac{\langle i, j \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle \mathbf{n}1 \rangle}$$

- engine of many if not all recent 4D developments
- similar insight into perturbative string theory?
- (string theory should be simpler than field theory)

D=4 vs D>4?

• Poincare quantum numbers for multiple plane waves \rightarrow covariance

$$K|k\rangle = k|k\rangle$$
 K_{μ} $K_{[\mu}\Sigma_{\nu\rho]}$

 Poincare quantum numbers for multiple plane waves → covariance

$$K |k\rangle = k |k\rangle \qquad K_{\mu} \qquad K_{[\mu} \Sigma_{\nu\rho]}$$

• on-shell states: little group

SO(D-2)
$$K^2 = 0$$

SO(D-1) $K^2 \neq 0$

 Poincare quantum numbers for multiple plane waves → covariance

$$K |k\rangle = k |k\rangle \qquad K_{\mu} \qquad K_{[\mu} \Sigma_{\nu\rho]}$$

• on-shell states: little group
$$\overbrace{}^{\mathsf{SO}(\mathsf{D-2})} \qquad K^2 = 0$$
$$\mathsf{SO}(\mathsf{D-1}) \qquad K^2 \neq 0$$

• massless, 4D: Abelian little group \rightarrow helicity

 Poincare quantum numbers for multiple plane waves → covariance

$$K |k\rangle = k |k\rangle \qquad K_{\mu} \qquad K_{[\mu} \Sigma_{\nu\rho]}$$

• on-shell states: little group
$$\checkmark \begin{array}{c} \mathsf{SO}(\mathsf{D-2}) & K^2 = 0 \\ \mathsf{SO}(\mathsf{D-1}) & K^2 \neq 0 \end{array}$$

- massless, 4D: Abelian little group \rightarrow helicity
- helicity violation quantified: $|\sum_i h_i| \le n-4$ (all trees, susy loops)
- bound saturated \rightarrow simple amplitudes (MHV)

 Poincare quantum numbers for multiple plane waves → covariance

$$K |k\rangle = k |k\rangle \qquad K_{\mu} \qquad K_{[\mu} \Sigma_{\nu\rho]}$$

• on-shell states: little group
$$\overbrace{}^{\mathsf{SO}(\mathsf{D-2})} \qquad K^2 = 0$$
$$\mathsf{SO}(\mathsf{D-1}) \qquad K^2 \neq 0$$

- massless, 4D: Abelian little group \rightarrow helicity
- helicity violation quantified: $|\sum_i h_i| \le n-4$ (all trees, susy loops)
- bound saturated \rightarrow simple amplitudes (MHV)

e.g. in Yang-Mills [Parke-Taylor, 87]:

$$A_{\mathbf{n}}(\mathrm{MHV}) = \frac{\langle i, j \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle \mathbf{n}1 \rangle}$$

technical complication: non-Abelian little groups

- technical complication: non-Abelian little groups
- previous formulations in higher D:
 - spinor helicity in D=6 [Cheung-O'Connell, 09]
 - spinor helicity in $D \ge 4$ [RB, 09]
 - see also D=10, [Caron-Huot-O'Connell, 10],
 - D=6 [Dennen-Huang-Siegel, 09]

- technical complication: non-Abelian little groups
- previous formulations in higher D: \longrightarrow 3,4,5 pt amplitudes
 - spinor helicity in D=6 [Cheung-O'Connell, 09]
 - spinor helicity in D≥4 [RB, 09]
 - see also D=10, [Caron-Huot-O'Connell, 10],
 - D=6 [Dennen-Huang-Siegel, 09]

- technical complication: non-Abelian little groups
- previous formulations in higher D: > 3,4,5 pt amplitudes
 - spinor helicity in D=6 [Cheung-O'Connell, 09]
 - spinor helicity in $D \ge 4$ [RB, 09]
 - see also D=10, [Caron-Huot-O'Connell, 10],

D=6 [Dennen-Huang-Siegel, 09]

3,4,5 pt supersymmetric amplitudes

- technical complication: non-Abelian little groups
- previous formulations in higher D: \rightarrow 3,4,5 pt amplitudes
 - spinor helicity in D=6 [Cheung-O'Connell, 09]
 - spinor helicity in $D \ge 4$ [RB, 09]
 - see also D=10, [Caron-Huot-O'Connell, 10],

D=6 [Dennen-Huang-Siegel, 09]

3,4,5 pt supersymmetric amplitudes

no MHV amplitude simplicity known

- technical complication: non-Abelian little groups
- previous formulations in higher D: \rightarrow 3,4,5 pt amplitudes
 - spinor helicity in D=6 [Cheung-O'Connell, 09]
 - spinor helicity in D≥4 [RB, 09]
 - see also D=10, [Caron-Huot-O'Connell, 10],

D=6 [Dennen-Huang-Siegel, 09]

3,4,5 pt supersymmetric amplitudes

no MHV amplitude simplicity known

but:

- maximal susy "lives" in D=10/D=11
- superstring / M-theory

- technical complication: non-Abelian little groups
- previous formulations in higher D: \rightarrow 3,4,5 pt amplitudes
 - spinor helicity in D=6 [Cheung-O'Connell, 09]
 - spinor helicity in D≥4 [RB, 09]
 - see also D=10, [Caron-Huot-O'Connell, 10],

D=6 [Dennen-Huang-Siegel, 09]

3,4,5 pt supersymmetric amplitudes

 \rightarrow 1)>6/

no MHV amplitude simplicity known

but:

- maximal susy "lives" in D=10/D=11
- superstring / M-theory

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix}$$

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix} \qquad \text{Weyl spinors} \\ 1, 2, \dots, \mathcal{D}$$

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix} \qquad \text{Weyl spinors} \\ 1, 2, \dots, \mathcal{D}$$

 $\exists \text{ charge conjugation matrix: } C\Gamma^{\mu}C^{-1} = -(\Gamma^{\mu})^{T}$

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix} \qquad \text{Weyl spinors} \\ 1, 2, \dots, \mathcal{D}$$

∃ charge conjugation matrix:

$$C\Gamma^{\mu}C^{-1} = -\left(\Gamma^{\mu}\right)^{T}$$

$$C = \begin{pmatrix} \Omega_{BA} & 0 \\ 0 & \Omega^{B'A'} \end{pmatrix}, \qquad D = 4k + 4$$
$$C = \begin{pmatrix} 0 & \Omega_{B}^{A'} \\ \Omega^{B'}{}_{A} & 0 \end{pmatrix}, \qquad D = 4k + 2$$

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix} \qquad \text{Weyl spinors} \\ 1, 2, \dots, \mathcal{D}$$

3 charge conjugation matrix: (

$$C\Gamma^{\mu}C^{-1} = -\left(\Gamma^{\mu}\right)^{T}$$

$$C = \begin{pmatrix} \Omega_{BA} & 0 \\ 0 & \Omega^{B'A'} \end{pmatrix}, \qquad D = 4k + 4 \qquad \text{``raise and lower''}$$
$$C = \begin{pmatrix} 0 & \Omega_{B}^{A'} \\ \Omega^{B'}{}_{A} & 0 \end{pmatrix}, \qquad D = 4k + 2 \qquad \text{``move primes''}$$

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix} \qquad \text{Weyl spinors} \\ 1, 2, \dots, \mathcal{D}$$

J charge conjugation matrix: $C\Gamma^{\mu}C$

$$C\Gamma^{\mu}C^{-1} = -\left(\Gamma^{\mu}\right)^{T}$$

$$C = \begin{pmatrix} \Omega_{BA} & 0 \\ 0 & \Omega^{B'A'} \end{pmatrix}, \qquad D = 4k + 4 \qquad \text{``raise and lower''}$$
$$C = \begin{pmatrix} 0 & \Omega_{B}^{A'} \\ \Omega^{B'}{}_{A} & 0 \end{pmatrix}, \qquad D = 4k + 2 \qquad \text{``move primes''}$$

→ spinor products:
$$\lambda_A \psi^A \equiv [\lambda \psi] \qquad \lambda^{A'} \psi_{A'} \equiv \langle \lambda \psi \rangle$$
Spinor helicity in general higher D [RB, O'Connell, 12]

chiral representation of Gamma matrix algebra

$$\Gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu, BA'} \\ \bar{\sigma}^{\mu}_{B'A} & 0 \end{pmatrix} \qquad \psi = \begin{pmatrix} \lambda^{A} \\ \tilde{\lambda}_{A'} \end{pmatrix} \qquad \text{Weyl spinors} \\ 1, 2, \dots, \mathcal{D}$$

 $\exists \text{ charge conjugation matrix: } C\Gamma^{\mu}C^{-1} = -\left(\Gamma^{\mu}\right)^{T}$

 $C = \begin{pmatrix} \Omega_{BA} & 0 \\ 0 & \Omega^{B'A'} \end{pmatrix}, \qquad D = 4k + 4 \quad \text{``raise and lower''}$

 $C = \begin{pmatrix} 0 & \Omega_B^{A'} \\ \Omega^{B'}{}_A & 0 \end{pmatrix}, \qquad D = 4k+2 \quad \text{``move primes''}$

→ spinor products: $\lambda_A \psi^A \equiv [\lambda \psi] \qquad \lambda^{A'} \psi_{A'} \equiv \langle \lambda \psi \rangle$ symmetries: from { $[\psi \lambda]$, $[\lambda \psi]$, $\langle \lambda \psi \rangle$, $\langle \psi \lambda \rangle$ } 2 independent

On-shell vectors and spinors

On-shell vectors and spinors

solve massles chiral Dirac equation

$$k_{\mu}\sigma^{\mu,BA'}\lambda_{A',a'} = 0 \qquad k_{\mu}\bar{\sigma}^{\mu}_{A'A}\lambda^{A,a} = 0 \qquad k^2 = 0$$

UH On-shell vectors	and spinors	SO(D-2) little group
solve massles chiral Di	rac equation	vveyi spinors
$k_{\mu}\sigma^{\mu,BA'}\lambda_{A',a'} = 0$	$k_{\mu}\bar{\sigma}^{\mu}_{A'A}\lambda^{A,a} = 0$	$k^{2} = 0$

On-shell vectors and spinors
solve massles chiral Dirac equation
$$k_{\mu}\sigma^{\mu,BA'}\lambda_{A',a'} = 0$$
 $k_{\mu}\bar{\sigma}^{\mu}_{A'A}\lambda^{A,a} = 0$ $k^2 = 0$

• can see little group as separate or as subgroup of SO(D)

On-shell vectors and spinors
solve massles chiral Dirac equation
$$k_{\mu}\sigma^{\mu,BA'}\lambda_{A',a'} = 0$$
 $k_{\mu}\bar{\sigma}^{\mu}_{A'A}\lambda^{A,a} = 0$ $k^2 = 0$

can see little group as separate or as subgroup of SO(D)

$$\rightarrow \text{ proof of:} \quad \begin{aligned} & k_{\mu}\sigma^{\mu,BA'} = \lambda^{B,a}\lambda_{a}^{A'} \\ & [\lambda^{a}\lambda^{b}] = 0 \end{aligned} \quad \epsilon^{\mu,n}\gamma_{n}^{a'a} \propto \frac{\lambda^{a'}\sigma^{\mu}\psi\lambda^{a}}{2k\cdot v} \end{aligned}$$

On-shell vectors and spinors
solve massles chiral Dirac equation
$$k_{\mu}\sigma^{\mu,BA'}\lambda_{A',a'} = 0$$
 $k_{\mu}\bar{\sigma}^{\mu}_{A'A}\lambda^{A,a} = 0$ $k^2 = 0$

• can see little group as separate or as subgroup of SO(D)

$$\rightarrow \text{ proof of:} \quad \begin{aligned} & k_{\mu}\sigma^{\mu,BA'} = \lambda^{B,a}\lambda_{a}^{A'} \\ & [\lambda^{a}\lambda^{b}] = 0 \end{aligned} \quad \epsilon^{\mu,n}\gamma_{n}^{a'a} \propto \frac{\lambda^{a'}\sigma^{\mu}\psi\lambda^{a}}{2k\cdot v} \end{aligned}$$

complete dictionairy between vectors and spinors

On-shell vectors and spinors
solve massles chiral Dirac equation
$$k_{\mu}\sigma^{\mu,BA'}\lambda_{A',a'} = 0$$
 $k_{\mu}\bar{\sigma}^{\mu}_{A'A}\lambda^{A,a} = 0$ $k^2 = 0$

• can see little group as separate or as subgroup of SO(D)

$$\rightarrow \text{ proof of:} \quad \begin{aligned} & k_{\mu}\sigma^{\mu,BA'} = \lambda^{B,a}\lambda_{a}^{A'} \\ & [\lambda^{a}\lambda^{b}] = 0 \end{aligned} \quad \epsilon^{\mu,n}\gamma_{n}^{a'a} \propto \frac{\lambda^{a'}\sigma^{\mu}\psi\lambda^{a}}{2k\cdot v} \end{aligned}$$

- complete dictionairy between vectors and spinors
- little group basis choice through a set of fixed spinors:

$$\lambda^{A,a} \propto k^{AA'} \xi^a_{A'} \qquad \lambda_{A',a'} \propto k_{A'A} \xi^A_{a'} ,$$

(leads to complete basis, numerical convenience)

covariant representation of on-shell supersymmetry algebra

$$\{Q,\overline{Q}\} = k$$
 $\left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k$$
 $\left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

covariant representation of on-shell supersymmetry algebra

$$\{Q,\overline{Q}\} = k$$
 $\left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$

using fermionic variables,

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

• on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg

covariant representation of on-shell supersymmetry algebra

$$\{Q,\overline{Q}\} = k$$
 $\left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform
- massive Dirac sols \rightarrow BPS states

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k$$
 $\left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform
- massive Dirac sols \rightarrow BPS states
- extension to massive case (red)

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k$$
 $\left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform massive Dirac sols \rightarrow BPS states $k = k^{\flat} + \frac{m^2}{2q \cdot k}q$
- extension to massive case (red)

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k^{\flat} + \frac{m^2}{2q \cdot k}q \qquad \left(k^{AA'} = \lambda^{A,a}\lambda_a^{A'}\right)$$

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform massive Dirac sols \rightarrow BPS states $k = k^{\flat} + \frac{m^2}{2q \cdot k}q$
- extension to massive case (red)

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k^{\flat} + \frac{m^2}{2q \cdot k}q \qquad \left(k^{\flat AA'} = \lambda^{A,a}\lambda_a^{A'} q^{AA'} = \xi^A_{a'}\xi^{A',a'}\right)$$

$$\left\{\eta_a, \frac{\delta}{\delta\eta_b}\right\} = \delta_a^b$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform massive Dirac sols \rightarrow BPS states $k = k^{\flat} + \frac{m^2}{2q \cdot k}q$
- extension to massive case (red)

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k^{\flat} + \frac{m^2}{2q \cdot k}q \qquad \left(k^{\flat AA'} = \lambda^{A,a}\lambda_a^{A'} q^{AA'} = \xi^A_{a'}\xi^{A',a'}\right)$$

$$\begin{cases} \eta_a, \frac{\delta}{\delta \eta_b} \\ \left\{ \iota^{a'}, \frac{\delta}{\delta \iota^{b'}} \right\} = \delta_a^{a'} \end{cases}$$

$$Q^{A} = \lambda^{A,a} \eta_{a}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta \eta_{a}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform massive Dirac sols \rightarrow BPS states $k = k^{\flat} + \frac{m^2}{2q \cdot k}q$
- extension to massive case (red)

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k^{\flat} + \frac{m^2}{2q \cdot k}q \qquad \left(k^{\flat AA'} = \lambda^{A,a}\lambda_a^{A'} q^{AA'} = \xi^A_{a'}\xi^{A',a'}\right)$$

$$\begin{cases} \eta_a, \frac{\delta}{\delta \eta_b} \\ \left\{ \iota^{a'}, \frac{\delta}{\delta \iota^{b'}} \right\} = \delta^{b'}_{b'} \end{cases}$$

$$Q^{A} = \lambda^{A,a} \eta_{a} + \frac{m}{[\xi\lambda]} \xi^{A}_{a'} \iota^{a'}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta\eta_{a}} + \frac{\bar{m}}{\langle\xi\lambda\rangle} \xi^{A',a'} \frac{\delta}{\delta\iota^{a'}}$$

- on-shell superspace: $\{k_{\mu}, \eta_{a}\}$ variables on each leg
- other reps by fermionic fourier transform massive Dirac sols \rightarrow BPS states $k = k^{\flat} + \frac{m^2}{2q \cdot k}q$
- extension to massive case (red)

covariant representation of on-shell supersymmetry algebra

$$\left\{Q,\overline{Q}\right\} = k^{\flat} + \frac{m^2}{2q \cdot k}q \qquad \left(k^{\flat AA'} = \lambda^{A,a}\lambda_a^{A'} q^{AA'} = \xi^A_{a'}\xi^{A',a'}\right)$$

$$\left\{ \eta_a, \frac{\delta}{\delta\eta_b} \right\} = \delta_a^b$$
$$\left\{ \iota^{a'}, \frac{\delta}{\delta\iota^{b'}} \right\} = \delta_{b'}^{a'}$$

$$Q^{A} = \lambda^{A,a} \eta_{a} + \frac{m}{[\xi\lambda]} \xi^{A}_{a'} \iota^{a'}$$
$$\bar{Q}^{A'} = \lambda^{A'}_{a} \frac{\delta}{\delta\eta_{a}} + \frac{\bar{m}}{\langle\xi\lambda\rangle} \xi^{A',a'} \frac{\delta}{\delta\iota^{a'}}$$

- on-shell superspace: $\left\{k_{\mu}, \eta_{a}, \iota^{a'}\right\}$ variables on each leg
- other reps by fermionic fourier transform massive Dirac sols \rightarrow BPS states $k = k^{\flat} + \frac{m^2}{2q \cdot k}q$
- extension to massive case (red)

Superfields for rep:
$$Q^A = \lambda^{A,a} \eta_a$$
 $\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$

identify massless field content:

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta) \,^{"\mathcal{D}-2"}$$

Superfields for rep: $Q^A = \lambda^{A,a} \eta_a$ $\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$

identify massless field content: little group spinor rep

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta) \,^{"\mathcal{D}-2"}$$

• general: ϕ_0 transforms in some representation of little group

• fundamental multiplet: ϕ_0 is a scalar

- general: ϕ_0 transforms in some representation of little group
- fundamental multiplet: ϕ_0 is a scalar
- other states antisymmetrized tensor products of ϕ_0 with chiral spinor of SO(D-2)
- can calculate their Dynkin labels

Massless on-shell superspace in D=10

D=10: 256 states in the fundamental multiplet

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta)^8$$

field content as SO(8) representations:

Massless on-shell superspace in D=10

D=10: 256 states in the fundamental multiplet

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta)^8$$

field content as SO(8) representations:

Massless on-shell superspace in D=10

D=10: 256 states in the fundamental multiplet

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta)^8$$

field content as SO(8) representations:

D=10: 65.536 states in the fundamental multiplet $\phi(\eta,\iota) = \phi_0 + \phi^a \eta_a + \phi_{a'} \iota^{a'} + \ldots + \bar{\phi} \left((\eta)^8 \iota^8 \right)$

can calculate it's SO(9) Dynkin labels:

 $\phi(\eta,\iota) = \phi_0 + \phi^a \eta_a + \phi_{a'}\iota^{a'} + \ldots + \bar{\phi}\left((\eta)^8\iota^8\right)$

can calculate it's SO(9) Dynkin labels:

0	$(0,0,0,0)_1$
1	$(0, 0, 0, 1)_{16}$
2	$(0, 1, 0, 0)_{36} + (0, 0, 1, 0)_{84}$
3	$(1,0,0,1)_{128} + (0,1,0,1)_{432}$
4	$(2,0,0,0)_{44} + (0,0,0,2)_{126} + (1,1,0,0)_{231} + (0,2,0,0)_{495} + (1,0,0,2)_{924}$
5	$(1, 0, 0, 1)_{128} + (0, 1, 0, 1)_{432} + (2, 0, 0, 1)_{576} + (0, 0, 0, 3)_{672} + (1, 1, 0, 1)_{2560}$
6	$(0, 1, 0, 0)_{36} + (0, 0, 1, 0)_{84} + (1, 1, 0, 0)_{231} + (1, 0, 1, 0)_{594} + (1, 0, 0, 2)_{924}$
	$+(2,1,0,0)_{910}+(2,0,1,0)_{2457}+(0,1,0,2)_{2772}$
7	$(0, 0, 0, 1)_{16} + (1, 0, 0, 1)_{128} + (0, 1, 0, 1)_{432} + (2, 0, 0, 1)_{576}$
	$+(0,0,1,1)_{768}+(3,0,0,1)_{1920}+(1,1,0,1)_{2560}+(1,0,1,1)_{5040}$
8	$(0,0,0,0)_1 + (1,0,0,0)_9 + (0,0,1,0)_{84} + (2,0,0,0)_{44} + (0,0,0,2)_{126}$
	$+(1,0,1,0)_{594}+(0,2,0,0)_{495}+(1,0,0,2)_{924}+(3,0,0,0)_{156}+(0,1,1,0)_{1650}$
	$+(2,0,1,0)_{2457}+(2,0,0,2)_{3900}+(0,0,2,0)_{1980}+(4,0,0,0)_{450}$

 $\phi(\eta,\iota) = \phi_0 + \phi^a \eta_a + \phi_{a'}\iota^{a'} + \ldots + \bar{\phi}\left((\eta)^8\iota^8\right)$

can calculate it's SO(9) Dynkin labels:

0 $(0, 0, 0, 0)_1$ embed in bigger group? $(0, 0, 0, 1)_{16}$ 1 $\mathbf{2}$ $(0, 1, 0, 0)_{36} + (0, 0, 1, 0)_{84}$ 3 $(1, 0, 0, 1)_{128} + (0, 1, 0, 1)_{432}$ $(2,0,0,0)_{44} + (0,0,0,2)_{126} + (1,1,0,0)_{231} + (0,2,0,0)_{495} + (1,0,0,2)_{924}$ 4 5 $(1, 0, 0, 1)_{128} + (0, 1, 0, 1)_{432} + (2, 0, 0, 1)_{576} + (0, 0, 0, 3)_{672} + (1, 1, 0, 1)_{2560}$ 6 $(0, 1, 0, 0)_{36} + (0, 0, 1, 0)_{84} + (1, 1, 0, 0)_{231} + (1, 0, 1, 0)_{594} + (1, 0, 0, 2)_{924}$ $+(2,1,0,0)_{910}+(2,0,1,0)_{2457}+(0,1,0,2)_{2772}$ $(0, 0, 0, 1)_{16} + (1, 0, 0, 1)_{128} + (0, 1, 0, 1)_{432} + (2, 0, 0, 1)_{576}$ 7 $+(0,0,1,1)_{768}+(3,0,0,1)_{1920}+(1,1,0,1)_{2560}+(1,0,1,1)_{5040}$ 8 $(0,0,0,0)_1 + (1,0,0,0)_9 + (0,0,1,0)_{84} + (2,0,0,0)_{44} + (0,0,0,2)_{126}$ $+(1,0,1,0)_{594}+(0,2,0,0)_{495}+(1,0,0,2)_{924}+(3,0,0,0)_{156}+(0,1,1,0)_{1650}$ $+(2,0,1,0)_{2457}+(2,0,0,2)_{3900}+(0,0,2,0)_{1980}+(4,0,0,0)_{450}$

 $\phi(\eta,\iota) = \phi_0 + \phi^a \eta_a + \phi_{a'}\iota^{a'} + \ldots + \bar{\phi}\left((\eta)^8\iota^8\right)$

can calculate it's SO(16) Dynkin labels:

 $\phi(\eta,\iota) = \phi_0 + \phi^a \eta_a + \phi_{a'}\iota^{a'} + \ldots + \bar{\phi}\left((\eta)^8\iota^8\right)$

can calculate it's SO(16) Dynkin labels:

- $0 \qquad (0,0,0,0,0,0,0,0)_1$
- $1 \qquad (1,0,0,0,0,0,0,0)_{16}$
- $2 \qquad (0, 1, 0, 0, 0, 0, 0, 0)_{120}$
- $3 \qquad (0,0,1,0,0,0,0,0)_{560}$
- $4 \quad (0,0,0,1,0,0,0,0)_{1820}$
- $5 \qquad (0,0,0,0,1,0,0,0)_{4368}$
- $6 \qquad (0,0,0,0,0,1,0,0)_{8008}$
- $7 \qquad (0,0,0,0,0,0,1,1)_{11440}$
- 8 $(0, 0, 0, 0, 0, 0, 2, 0)_{6435} + (0, 0, 0, 0, 0, 0, 0, 2)_{6435}$

various other groups in paper (SO(32), SO(10), etc.)

Tuesday, October 23, 12

- promote each leg of an amplitude $A(k_i) \rightarrow A(\{k_i, \eta_i\})$
- component amplitudes by fermionic integration

Superamplitudes

- promote each leg of an amplitude $A(k_i) \rightarrow A(\{k_i, \eta_i\})$
- component amplitudes by fermionic integration
- simple formulation of the on-shell susy Ward identities

$$Q = \sum_{i} Q_{i}$$

$$Q = \sum_{i} \overline{Q}_{i}$$

$$QA = \overline{Q}A = 0$$
universal
exact,
universal

Superamplitudes $Q^A = \lambda^{A,a} \eta_a$ $\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$

- promote each leg of an amplitude $A(k_i) \rightarrow A(\{k_i, \eta_i\})$
- component amplitudes by fermionic integration
- simple formulation of the on-shell susy Ward identities

$$Q = \sum_{i} Q_{i}$$

$$\overline{Q} = \sum_{i} \overline{Q}_{i}$$

$$QA = \overline{Q}A = 0$$
universal
exact,
universal
Superamplitudes $Q^A = \lambda^{A,a} \eta_a$ $\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$

- promote each leg of an amplitude $A(k_i) \rightarrow A(\{k_i, \eta_i\})$
- component amplitudes by fermionic integration
- simple formulation of the on-shell susy Ward identities

$$Q = \sum_{i} Q_{i}$$

$$\overline{Q} = \sum_{i} \overline{Q}_{i}$$

$$QA = \overline{Q}A = 0$$
universal
solving half: $\delta^{\mathcal{D}}(Q) \sim \epsilon_{A_{1}...A_{\mathcal{D}}} \left(Q^{A_{1}}...Q^{A_{\mathcal{D}}}\right)$

special to this representation

Superamplitudes $Q^A = \lambda^{A,a} \eta_a$ $\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$

- promote each leg of an amplitude $A(k_i) \rightarrow A(\{k_i, \eta_i\})$
- component amplitudes by fermionic integration
- simple formulation of the on-shell susy Ward identities

$$Q = \sum_{i} Q_{i}$$

$$\overline{Q} = \sum_{i} \overline{Q}_{i}$$

$$QA = \overline{Q}A = 0$$
exact,
universal
exact,

representation

Superamplitudes $Q^A = \lambda^{A,a} \eta_a$ $\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta n_a}$

- promote each leg of an amplitude $A(k_i) \rightarrow A(\{k_i, \eta_i\})$
- component amplitudes by fermionic integration
- simple formulation of the on-shell susy Ward identities

$$Q = \sum_{i} Q_{i}$$

$$\overline{Q} = \sum_{i} \overline{Q}_{i}$$

$$QA = \overline{Q}A = 0$$
exact,
universal
exact,

Tuesday, October 23, 12

Superamplitudes

 $A = \delta^{\mathcal{D}}(Q)\tilde{A} \quad \overline{Q}\tilde{A} = 0$

$$A = \delta^{\mathcal{D}}(Q)\tilde{A} \quad \overline{Q}\tilde{A} = 0$$

• 3 minimal, maximal fermionic weight for amplitudes

$$\mathcal{D} \leq \text{weight} \leq (\#\text{massless})\frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$$

Superamplitudes $A = \delta^{\mathcal{D}}(Q)\tilde{A} \quad \overline{Q}\tilde{A} = 0$ • \exists minimal, maximal fermionic weight for amplitudes $\mathcal{D} \leq \text{weight} \leq (\#\text{massless})\frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$ fermionic delta function

Superamplitudes $A = \delta^{\mathcal{D}}(Q)\tilde{A} \quad \overline{Q}\tilde{A} = 0$ • 3 minimal, maximal fermionic weight for amplitudes $\mathcal{D} \leq \text{weight} \leq (\#\text{massless}) \frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$ fermionic delta function conjugate delta function delta function only:
 simplest solutions
 four massless legs
 one massive, two massless

Superamplitudes $A = \delta^{\mathcal{D}}(Q)\tilde{A} \quad \overline{Q}\tilde{A} = 0$ • I minimal, maximal fermionic weight for amplitudes $\mathcal{D} \leq \text{weight} \leq (\#\text{massless})\frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$ conjugate delta function fermionic delta function delta function only:
 simplest solutions
 four massless legs
 one massive, two massless

• immediate four point tree amplitudes /w massless matter:

$$A_{D=8,\text{YM}} \sim \frac{\delta^8(Q)}{st} \quad A_{D=10,\text{Grav.}} \sim \frac{\delta^{16}(Q)}{stu}$$

Superamplitudes $A = \delta^{\mathcal{D}}(Q)\tilde{A} \quad \overline{Q}\tilde{A} = 0$ • I minimal, maximal fermionic weight for amplitudes $\mathcal{D} \leq \text{weight} \leq (\#\text{massless})\frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$ conjugate delta function fermionic delta function delta function only:
 simplest solutions
 four massless legs
 one massive, two massless

• immediate four point tree amplitudes /w massless matter:

$$A_{D=8,\text{YM}} \sim \frac{\delta^8(Q)}{st} \quad A_{D=10,\text{Grav.}} \sim \frac{\delta^{16}(Q)}{stu}$$

• also three points, five points, on-shell recursion in paper

minimal, maximal fermionic weight for amplitudes

$$\mathcal{D} \leq \text{weight} \leq (\#\text{massless})\frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$$

minimal, maximal fermionic weight for amplitudes

$$\mathcal{D} \leq \text{weight} \leq (\#\text{massless})\frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$$

more delta-function-only amplitudes?

minimal, maximal fermionic weight for amplitudes

$$\mathcal{D} \leq \text{weight} \leq (\#\text{massless}) \frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$$

more delta-function-only amplitudes?

• fermionic weight of amplitudes is related to $U(I)_R$ charge

$$\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$$

 $Q^A = \lambda^{A,a} n_{\sim}$

minimal, maximal fermionic weight for amplitudes

$$\mathcal{D} \leq \text{weight} \leq (\#\text{massless}) \frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$$

more delta-function-only amplitudes?

• fermionic weight of amplitudes is related to $U(I)_R$ charge

$$\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$$

 $Q^A = \lambda^{A,a} n_{-}$

• massless super fields have natural $U(I)_R$ charge ("selfdual")

minimal, maximal fermionic weight for amplitudes

 $\mathcal{D} \leq \text{weight} \leq (\#\text{massless}) \frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$

more delta-function-only amplitudes?

• fermionic weight of amplitudes is related to $U(I)_R$ charge

$$\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$$

 $Q^A = \lambda^{A,a} n_{a}$

- massless super fields have natural $U(I)_R$ charge ("selfdual")
- $U(I)_R$ in D=8 \rightarrow rotations in 9-10 plane conserved \rightarrow superamplitudes here have weight 2n

minimal, maximal fermionic weight for amplitudes

 $\mathcal{D} \leq \text{weight} \leq (\#\text{massless}) \frac{\mathcal{D}}{2} + (\#\text{massive})\mathcal{D} - \mathcal{D}$

more delta-function-only amplitudes?

• fermionic weight of amplitudes is related to $U(I)_R$ charge

$$\bar{Q}^{A'} = \lambda_a^{A'} \frac{\delta}{\delta \eta_a}$$

 $Q^A = \lambda^{A,a} n$

- massless super fields have natural $U(I)_R$ charge ("selfdual")
- U(1)_R in D=8 → rotations in 9-10 plane conserved → superamplitudes here have weight 2n • U(1)_R in D=10 → part of SL(2,R)/U(1) of IIB not conserved

→ simple superamplitudes?

Massless on-shell superspace in D=10, type IIB

D=10:256 states in the fundamental multiplet

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta)^8$$

field content:

b	osonic	fern	nionic
0	$\underline{1}_4$	1	8.
2	28_2	1	
4	$35_0 + 35'_0$	3	56_{1}
6	$\underline{}$	5	56-1
0	$\frac{20}{-2}$	7	$\frac{8}{-3}$
8	1 - 4		•

D=10:256 states in the fundamental multiplet

$$\phi(\eta) = \phi_0 + \phi^a \eta_a + \ldots + \overline{\phi}_0(\eta)^8$$

field content:

Tuesday, October 23, 12

Tuesday, October 23, 12

Structure of IIB superamplitudes A_n

$$A_n = \tilde{A}_n \delta^{16}(Q)$$

• superamplitudes with only massless fields have:

 $16 \le \text{weight} \le 8n - 16$ (weight = even)

• superamplitudes with only massless fields have:

 $16 \le \text{weight} \le 8n - 16$ (weight = even)

• graviton-only components at weight 4n conserves U(I)_R

• superamplitudes with only massless fields have:

 $16 \le \text{weight} \le 8n - 16$ (weight = even)

- graviton-only components at weight 4n conserves U(I)_R
- delta function only amp violates $U(I)_R$ by 4n-16 units

→ Maximal R-symmetry Violation (MRV)

• existence exact, R-charges must satisfy: $|\sum_i q_i| \le 4n - 16$

• superamplitudes with only massless fields have:

 $16 \le \text{weight} \le 8n - 16$ (weight = even)

- graviton-only components at weight 4n conserves U(I)_R
- delta function only amp violates $U(I)_R$ by 4n-16 units

→ Maximal R-symmetry Violation (MRV)

- existence exact, R-charges must satisfy: $|\sum q_i| \le 4n 16$
- general MRV amplitudes properties:
 - follow from one component amplitude
 - completely Bose symmetric

• superamplitudes with only massless fields have:

 $16 \le \text{weight} \le 8n - 16$ (weight = even)

- graviton-only components at weight 4n conserves U(I)_R
- delta function only amp violates $U(I)_R$ by 4n-16 units

→ Maximal R-symmetry Violation (MRV)

- existence exact, R-charges must satisfy: $|\sum q_i| \le 4n 16$
- general MRV amplitudes properties:
 - follow from one component amplitude
 - completely Bose symmetric
 - only massive particle poles (n>4)
 - \rightarrow no poles in field theory limit

exceptional case at four points

$$A_4^{D=10} = \frac{\delta^{10}(K)\delta^{16}(Q)}{s\,t\,u} \left[\frac{\Gamma\left(\alpha's+1\right)\Gamma\left(\alpha't+1\right)\Gamma\left(\alpha'u+1\right)}{\Gamma\left(1-\frac{\left(\alpha'u\right)}{2}\right)\Gamma\left(1-\frac{\left(\alpha'u\right)}{2}\right)} \right]$$

exceptional case at four points

$$A_4^{D=10} = \frac{\delta^{10}(K)\delta^{16}(Q)}{s\,t\,u} \left[\frac{\Gamma\left(\alpha's+1\right)\Gamma\left(\alpha't+1\right)\Gamma\left(\alpha'u+1\right)}{\Gamma\left(1-\frac{(\alpha'u)}{2}\right)\Gamma\left(1-\frac{(\alpha'u)}{2}\right)} \right]$$

from general properties at string tree level:

$$\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$$
> 4

c_i: symmetric polynomia in external momenta of dimension 2i subject to momentum conservation

exceptional case at four points

$$A_4^{D=10} = \frac{\delta^{10}(K)\delta^{16}(Q)}{s\,t\,u} \left[\frac{\Gamma\left(\alpha's+1\right)\Gamma\left(\alpha't+1\right)\Gamma\left(\alpha'u+1\right)}{\Gamma\left(1-\frac{(\alpha'u)}{2}\right)\Gamma\left(1-\frac{(\alpha'u)}{2}\right)} \right]$$

from general properties at string tree level:

$$\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$$
> 4

c_i: symmetric polynomia in external momenta of dimension 2i subject to momentum conservation

examples: $c_0 \rightarrow \text{constant}$

$$c_1 \to (\sum_i k_i)^2 = 0$$

exceptional case at four points

$$A_4^{D=10} = \frac{\delta^{10}(K)\delta^{16}(Q)}{s\,t\,u} \left[\frac{\Gamma\left(\alpha's+1\right)\Gamma\left(\alpha't+1\right)\Gamma\left(\alpha'u+1\right)}{\Gamma\left(1-\frac{(\alpha's)}{2}\right)\Gamma\left(1-\frac{(\alpha'u)}{2}\right)} \right]$$

from general properties at string tree level:

$$\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$$
> 4

c_i: symmetric polynomia in external momenta of dimension 2i subject to momentum conservation

examples: $c_0 \rightarrow \text{constant}$

$$c_1 o (\sum_i k_i)^2 = 0$$
 general story?

Problem: how many symmetric polynomials up to momentum conservation are there for an n-point amplitude at order alpha'

Problem: how many symmetric polynomials up to momentum conservation are there for an n-point amplitude at order alpha'

#		0		2	3	4	5	6	7	8	9	10	
Ρ	4		0					2	Ι	2	2	2	2
а	5		0	Ι		2	2	5	4	8	9	13	15
r t	6	Ι	0	Ι	2	4	6	13	19	36	58	97	149
ι i	7		0		2	4	8	20	36	83	169	344	680
C	8		0		2	5	10	28	59	152	364	885	2093
I	9		0		2	5	10	31	72	205	557	1565	432I
е	10		0		2	5		33	81	246	722	2222	6875
S			0		2	5		33	84	263	812	2262	8913

Problem: how many symmetric polynomials up to momentum conservation are there for an n-point amplitude at order alpha'

#		0	I	2	3	4	5	6	7	8	9	10	
Ρ	4	I	0	I	Ι	Ι	I	2	Ι	2	2	2	2
а	5	Ι	0	Ι	Ι	2	2	5	4	8	9	13	15
r t	6		0		2	4	6	13	19	36	58	97	149
ι i	7		0		2	4	8	20	36	83	169	344	680
C	8		0		2	5	10	28	59	152	364	885	2093
I	9		0		2	5	10	31	72	205	557	1565	432I
е	10		0		2	5		33	81	246	722	2222	6875
S			0		2	5		33	84	263	812	2262	8913

by computing the generating function ("Molien series")

related problem: what is a minimal basis for the ring of symmetric polynomials on the previous slide?

related problem: what is a minimal basis for the ring of symmetric polynomials on the previous slide?

answer:

	0		2	3	4	5	6	7	8	9	10		12	13	14	15
4	I	0		I	0	0	0	0	0	0	0	0	0	0	0	0
5	I	0		I	Ι	Ι	2	I	I	I	0	0	0	0	0	0
6	I	0	I	2	3	4	7	7	12		16	4	11	0	0	0
7		0		2	3	6	14	22	48	85	163	247	469	497	692	0

related problem: what is a minimal basis for the ring of symmetric polynomials on the previous slide?

answer:

	0		2	3	4	5	6	7	8	9	10		12	13	14	15
4		0	Ι	I	0	0	0	0	0	0	0	0	0	0	0	0
5		0	Ι	I		I	2	I	I		0	0	0	0	0	0
6		0	Ι	2	3	4	7	7	12		16	4	11	0	0	0
7		0	Ι	2	3	6	14	22	48	85	163	247	469	497	692	0

intruiging relation to possible terms in type IIB low energy effective action (local amplitudes \leftrightarrow effective action!)

Intermezzo: fun with counting

related problem: what is a minimal basis for the ring of symmetric polynomials on the previous slide?

answer:

	0		2	3	4	5	6	7	8	9	10		12	13	14	15
4		0	Ι	I	0	0	0	0	0	0	0	0	0	0	0	0
5	Ι	0	Ι	I	I	Ι	2	I	I	I	0	0	0	0	0	0
6	I	0	I	2	3	4	7	7	12		16	4	11	0	0	0
7		0		2	3	6	14	22	48	85	163	247	469	497	692	0

intruiging relation to possible terms in type IIB low energy effective action (local amplitudes \leftrightarrow effective action!)

string theory selects one combination out of these polynomials

from general properties at string tree level:

$$\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$$

five point example from dilaton-graviton⁴ amplitude:

from general properties at string tree level:

$$\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

five point example from dilaton-graviton⁴ amplitude:

$$\begin{split} \tilde{A}_{5}^{\text{MRV}} = & (g\alpha'^{2})^{3} \left[-6\,\zeta(3)\alpha'^{3} - \frac{5}{2}\,\zeta(5)\alpha'^{5}\left([s_{12}^{2}]_{5}\right) \right. \\ & \left. + 2\,\zeta(3)^{2}\alpha'^{6}\left([s_{12}^{3}]_{5}\right) - \frac{7}{32}\zeta(7)\,\alpha'^{7}\left(13[s_{12}^{4}]_{5} + 6[s_{12}^{2}s_{34}^{2}]_{5}\right) \right. \\ & \left. + \frac{1}{30}\zeta(3)\zeta(5)\,\alpha'^{8}\left(71[s_{12}^{5}]_{5} + 25[s_{12}^{3}s_{34}^{2}]_{5}\right) + \mathcal{O}\left(\alpha'^{9}\right) \right] \end{split}$$

from general properties at string tree level:

$$\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

five point example from dilaton-graviton⁴ amplitude:

$$\begin{split} \tilde{A}_{5}^{\text{MRV}} = & (g\alpha'^{2})^{3} \left[-6\,\zeta(3)\alpha'^{3} - \frac{5}{2}\,\zeta(5)\alpha'^{5}\left([s_{12}^{2}]_{5}\right) \\ & +2\,\zeta(3)^{2}\alpha'^{6}\left([s_{12}^{3}]_{5}\right) - \frac{7}{32}\zeta(7)\,\alpha'^{7}\left(13[s_{12}^{4}]_{5} + 6[s_{12}^{2}s_{34}^{2}]_{5}\right) \\ & +\frac{1}{30}\zeta(3)\zeta(5)\,\alpha'^{8}\left(71[s_{12}^{5}]_{5} + 25[s_{12}^{3}s_{34}^{2}]_{5}\right) + \mathcal{O}\left(\alpha'^{9}\right) \right] \end{split}$$

• using results from: [Kawai-Lewellen-Tye, 86], [Stieberger-Taylor, 06], [Huber-Maitre, 07] + equivalence theorem

from general properties at string tree level:

$$\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

five point example from dilaton-graviton⁴ amplitude:

$$\begin{split} \tilde{A}_{5}^{\text{MRV}} = & (g\alpha'^{2})^{3} \left[-6\,\zeta(3)\alpha'^{3} - \frac{5}{2}\,\zeta(5)\alpha'^{5}\left([s_{12}^{2}]_{5}\right) \right. \\ & \left. + 2\,\zeta(3)^{2}\alpha'^{6}\left([s_{12}^{3}]_{5}\right) - \frac{7}{32}\zeta(7)\,\alpha'^{7}\left(13[s_{12}^{4}]_{5} + 6[s_{12}^{2}s_{34}^{2}]_{5}\right) \right. \\ & \left. + \frac{1}{30}\zeta(3)\zeta(5)\,\alpha'^{8}\left(71[s_{12}^{5}]_{5} + 25[s_{12}^{3}s_{34}^{2}]_{5}\right) + \mathcal{O}\left(\alpha'^{9}\right) \right] \end{split}$$

• using results from: [Kawai-Lewellen-Tye, 86], [Stieberger-Taylor, 06], [Huber-Maitre, 07] + equivalence theorem

recently extended to order 15, all orders "known"

from general properties at string tree level:

$$\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$$

five point example from dilaton-graviton⁴ amplitude:

$$\tilde{A}_{5}^{\text{MRV}} = (g\alpha'^{2})^{3} \left[-6\zeta(3)\alpha'^{3} - \frac{5}{2}\zeta(5)\alpha'^{5}([s_{12}^{2}]_{5}) + 2\zeta(3)^{2}\alpha'^{6}([s_{12}^{3}]_{5}) - \frac{7}{32}\zeta(7)\alpha'^{7}(13[s_{12}^{4}]_{5} + 6[s_{12}^{2}s_{34}^{2}]_{5}) + \frac{1}{30}\zeta(3)\zeta(5)\alpha'^{8}(71[s_{12}^{5}]_{5} + 25[s_{12}^{3}s_{34}^{2}]_{5}) + \mathcal{O}(\alpha'^{9}) \right]$$

• using results from: [Kawai-Lewellen-Tye, 86], [Stieberger-Taylor, 06], [Huber-Maitre, 07] + equivalence theorem

recently extended to order 15, all orders "known"

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \zeta(\vec{s}) = \sum_{0 < n_1 \le n_2 \dots \le n_{|s|}} \frac{1}{\prod_i n_i^{s_i}}$$

weight $\equiv \sum_i s_i$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \zeta(\vec{s}) = \sum_{0 < n_1 \le n_2 \dots \le n_{|s|}} \frac{1}{\prod_i n_i^{s_i}}$$

weight $\equiv \sum_i s_i$

- multiple zetas form ring over rationals
- many relations ("shuffle", "stuffle", etc, etc)
- basis conjectured, explicit realization up to weight 22

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \zeta(\vec{s}) = \sum_{\substack{0 < n_1 \le n_2 \dots \le n_{|s|}}} \frac{1}{\prod_i n_i^{s_i}}$$

weight $\equiv \sum_i s_i$

- multiple zetas form ring over rationals
- many relations ("shuffle", "stuffle", etc, etc)
- basis conjectured, explicit realization up to weight 22

experimental facts:

- all coefficients in superstring have "uniform trancendentality" weight = order in alpha'
- "closed string has no pi's" (roughly)
- \rightarrow explicit check to weight 15 for MRV, problem is 3F2...

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \zeta(\vec{s}) = \sum_{\substack{0 < n_1 \le n_2 \dots \le n_{|s|}}} \frac{1}{\prod_i n_i^{s_i}}$$

weight $\equiv \sum_i s_i$

- multiple zetas form ring over rationals
- many relations ("shuffle", "stuffle", etc, etc)
- basis conjectured, explicit realization up to weight 22

experimental facts:

- all coefficients in superstring have "uniform trancendentality" weight = order in alpha'
- "closed string has no pi's" (roughly)
- \rightarrow explicit check to weight 15 for MRV, problem is 3F2...
- see [Stieberger, 09], [Schlotterer-Stieberger, 12] for more

$$\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

determining higher multiplicity?

$$\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

determining higher multiplicity? → kinematic limits

$$\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

determining higher multiplicity? \rightarrow soft limits

from general properties at string tree level:

 $\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$

determining higher multiplicity? \rightarrow soft limits

• supersymmetric soft limit: $k_i, \eta_i \to 0$

from general properties at string tree level:

 $\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$

determining higher multiplicity? \rightarrow soft limits

• supersymmetric soft limit: $k_i, \eta_i \to 0$

• axion decouples in this limit, dilaton related to couplings

from general properties at string tree level:

 $\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$

determining higher multiplicity? \rightarrow soft limits

- supersymmetric soft limit: $k_i, \eta_i \to 0$
- axion decouples in this limit, dilaton related to couplings

$$\lim_{k_1 \to 0} A_{n+1}(\{k_1, 0\}, X) = 2g_s \alpha'^2 \left(\alpha' \frac{\delta}{\delta \alpha'} - 2g_s \frac{\delta}{\delta g_s}\right) A_n(X)$$

"Soft dilaton theorem" [Ademollo et.al., 75], [Shapiro, 75]

from general properties at string tree level:

 $\tilde{A}_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$

determining higher multiplicity? \rightarrow soft limits

- supersymmetric soft limit: $k_i, \eta_i \to 0$
- axion decouples in this limit, dilaton related to couplings

$$\lim_{k_1 \to 0} A_{n+1}(\{k_1, 0\}, X) = 2g_s \alpha'^2 \left(\alpha' \frac{\delta}{\delta \alpha'} - 2g_s \frac{\delta}{\delta g_s}\right) A_n(X)$$

"Soft dilaton theorem" [Ademollo et.al., 75], [Shapiro, 75]

• differential operator annihilates gravitational coupling \rightarrow relates c_i for various multiplicities, up to degeneracy

UHH itti

Return to intermezzo: fun with counting

Problem: how many symmetric polynomials up to momentum conservation are there for an n-point amplitude at order alpha'

	0	I	2	3	4	5	6	7	8	9	10	
4	Ι	0	Ι	Ι	Ι	Ι	2	I	2	2	2	2
5	Ι	0	Ι	Ι	2	2	5	4	8	9	13	15
6	Ι	0	Ι	2	4	6	13	19	36	58	97	149
7	Ι	0	Ι	2	4	8	20	36	83	169	344	680
8	Ι	0	Ι	2	5	10	28	59	152	364	885	2093
9	Ι	0	Ι	2	5	10	31	72	205	557	1565	4321
10	Ι	0	Ι	2	5	11	33	81	246	722	2222	6875
11	Ι	0	Ι	2	5		33	84	263	812	2262	8913

conjecture: dimension stabilizes at n = 2i

$$\tilde{A}_n^{\mathrm{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}\left(\alpha'^6\right) \right)$$

using soft dilatons to fix constants:

$$\tilde{A}_{n}^{\text{MRV}} = 2(3)^{n-4} \alpha'^{3} \zeta(3) + \frac{5^{n-4}}{2} \alpha'^{5} \zeta(5) \left([s_{12}^{2}]_{n} \right) \\ + \frac{(6)^{n-4}}{3} \alpha'^{6} \zeta(3)^{2} \left([s_{12}^{3}]_{n} \right) + \mathcal{O} \left(\alpha'^{7} \right)$$

MRV amplitudes in field theory limit $A_n = \tilde{A}_n \delta^{16}(Q)$ from general properties at string tree level: $\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$ using soft dilatons to fix constants: from four points $\tilde{A}_n^{\text{MRV}} = 2(3)^{n-4} \alpha'^3 \zeta(3) + \frac{5^{n-4}}{2} \alpha'^5 \zeta(5) \left([s_{12}^2]_n \right)$ $+\frac{(6)^{n-4}}{3}\alpha'^{6}\zeta(3)^{2}\left([s_{12}^{3}]_{n}\right)+\mathcal{O}\left(\alpha'^{7}\right)$

MRV amplitudes in field theory limit $A_n = \tilde{A}_n \delta^{16}(Q)$ from general properties at string tree level: $A_n^{\text{MRV}} = (g\alpha'^2)^{n-2} \left(\alpha'^3 c_0 + \alpha'^4 c_1 + \alpha'^5 c_2 + \mathcal{O}(\alpha'^6) \right)$ using soft dilatons to fix constants: from four points $\tilde{A}_n^{\text{MRV}} = 2(3)^{n-4} \alpha'^3 \zeta(3) + \frac{5^{n-4}}{2} \alpha'^5 \zeta(5) \left([s_{12}^2]_n \right)$ $+\frac{(6)^{n-4}}{3} \alpha'^{6} \zeta(3)^{2} \left([s_{12}^{3}]_{n} \right) + \mathcal{O} \left(\alpha'^{7} \right)$ from five points, up to one constant!

MRV amplitudes in field theory limit $A_n = \tilde{A}_n \delta^{16}(Q)$ from general properties at string tree level: $\bar{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$ using soft dilatons to fix constants: from four points $\tilde{A}_n^{\text{MRV}} = 2(3)^{n-4} \alpha'^3 \zeta(3) + \frac{5^{n-4}}{2} \alpha'^5 \zeta(5) \left([s_{12}^2]_n \right)$ $+\frac{(6)^{n-4}}{3} \alpha'^{6} \zeta(3)^{2} \left([s_{12}^{3}]_{n} \right) + \mathcal{O} \left(\alpha'^{7} \right)$ from five points, up to one how many points constant! for which order?

MRV amplitudes in field theory limit $A_n = \tilde{A}_n \delta^{16}(Q)$ from general properties at string tree level: $\bar{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$ using soft dilatons to fix constants: from four points $\tilde{A}_{n}^{\text{MRV}} = 2(3)^{n-4} \alpha'^{3} \zeta(3) + \frac{5^{n-4}}{2} \alpha'^{5} \zeta(5) \left([s_{12}^{2}]_{n} \right)$ $+\frac{(6)^{n-4}}{3} \alpha'^{6} \zeta(3)^{2} \left([s_{12}^{3}]_{n} \right) + \mathcal{O} \left(\alpha'^{7} \right)$ from five points, up to one how many points constant! for which order? include more stringy symmetries?

MRV amplitudes in field theory limit $A_n = \tilde{A}_n \delta^{16}(Q)$ from general properties at string tree level: $\bar{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$ using soft dilatons to fix constants: from four points $\tilde{A}_n^{\text{MRV}} = 2(3)^{n-4} \alpha'^3 \zeta(3) + \frac{5^{n-4}}{2} \alpha'^5 \zeta(5) \left([s_{12}^2]_n \right)$ $+\frac{(6)^{n-4}}{3} \alpha'^{6} \zeta(3)^{2} \left([s_{12}^{3}]_{n} \right) + \mathcal{O} \left(\alpha'^{7} \right)$ from five points, up to one how many points constant! for which order? include more stringy symmetries?

MRV amplitudes in field theory limit $A_n = \tilde{A}_n \delta^{16}(Q)$ from general properties at string tree level: $\tilde{A}_{n}^{\text{MRV}} = (g\alpha'^{2})^{n-2} \left(\alpha'^{3}c_{0} + \alpha'^{4}c_{1} + \alpha'^{5}c_{2} + \mathcal{O}\left(\alpha'^{6}\right) \right)$ using soft dilatons to fix constants: from four points $\tilde{A}_n^{\text{MRV}} = 2(3)^{n-4} \alpha'^3 \zeta(3) + \frac{5^{n-4}}{2} \alpha'^5 \zeta(5) \left([s_{12}^2]_n \right)$ $+\frac{(6)^{n-4}}{3} \alpha'^{6} \zeta(3)^{2} \left([s_{12}^{3}]_{n} \right) + \mathcal{O} \left(\alpha'^{7} \right)$ from five points, up to one how many points constant! for which order? include more stringy $\alpha'^{\imath} \leftrightarrow (2i - 6)?$ symmetries?

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

• results for effective action, $R^4, D^4 R^4, D^6 R^4, \lambda^{16}$ couplings

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

- results for effective action, $R^4, D^4 R^4, D^6 R^4, \lambda^{16}$ couplings
- coefficients as functions of background fields $\tau_b = a_b + i e^{-\phi_b}$

e.g.:
$$f_{\beta}^{k}(\tau_{b}, \bar{\tau}_{b}) = \sum_{(l,m) \neq (0,0)} (l + m\tau_{b})^{2k-\beta} (l + m\bar{\tau}_{b})^{-\beta}$$

• non-holomorphic Eisenstein series, known to $\mathcal{O}\left(\alpha'^7\right)$

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

- results for effective action, $R^4, D^4 R^4, D^6 R^4, \lambda^{16}$ couplings
- coefficients as functions of background fields $\tau_b = a_b + i e^{-\phi_b}$

e.g.:
$$f_{\beta}^{k}(\tau_{b}, \bar{\tau}_{b}) = \sum_{(l,m) \neq (0,0)} (l + m\tau_{b})^{2k-\beta} (l + m\bar{\tau}_{b})^{-\beta}$$

- non-holomorphic Eisenstein series, $R^4 \leftrightarrow \beta = \frac{3}{2}, k = 0$ known to $\mathcal{O}\left(\alpha'^7\right)$
- "beta" \leftrightarrow alpha' order, "k" \leftrightarrow U(I)_R non-conservation

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

- results for effective action, $R^4, D^4 R^4, D^6 R^4, \lambda^{16}$ couplings
- coefficients as functions of background fields $\tau_b = a_b + i e^{-\phi_b}$

e.g.:
$$f_{\beta}^{k}(\tau_{b}, \bar{\tau}_{b}) = \sum_{(l,m) \neq (0,0)} (l + m\tau_{b})^{2k-\beta} (l + m\bar{\tau}_{b})^{-\beta}$$

- non-holomorphic Eisenstein series, $R^4 \leftrightarrow \beta = \frac{3}{2}, k = 0$ known to $\mathcal{O}\left(\alpha'^7\right)$
- "beta" \leftrightarrow alpha' order, "k" \leftrightarrow U(I)_R non-conservation
- weak string coupling expansion:

 $\lim_{\tau_b \to i\infty} f_{\frac{3}{2}}^k(\tau_b, \overline{\tau}_b) \propto \zeta(3) + (1\text{-loop}) + \text{instanton}$

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

$$\tau_b = a_b + i e^{-\phi_b} \qquad f_{\beta}^k(\tau_b, \bar{\tau}_b) = \sum_{(l,m) \neq (0,0)} (l + m\tau_b)^{k-\beta} (l + m\bar{\tau}_b)^{-k-\beta}$$

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

$$\tau_b = a_b + i e^{-\phi_b} \qquad f_{\beta}^k(\tau_b, \bar{\tau}_b) = \sum_{\substack{(l,m) \neq (0,0)}} (l + m\tau_b)^{k-\beta} (l + m\bar{\tau}_b)^{-k-\beta}$$

"exact" amplitude conjecture:

$$A_n^{\text{MRV}} \propto \delta^{16}(Q) (\alpha'^2 g)^{n-2} \left(\alpha'^3 f_{\frac{3}{2}}^{n-4} + \alpha'^5 f_{\frac{5}{2}}^{n-4} \left([s_{12}^2]_n \right) + \mathcal{O}\left(\alpha'^6 \right) \right)$$

more stringy symmetry in IIB: SL(2,Z) [Green-Gutperle, 97], [Green et.al., 97-12]

$$\tau_b = a_b + i e^{-\phi_b} \qquad f_{\beta}^k(\tau_b, \bar{\tau}_b) = \sum_{(l,m) \neq (0,0)} (l + m\tau_b)^{k-\beta} (l + m\bar{\tau}_b)^{-k-\beta}$$

"exact" amplitude conjecture:

$$A_n^{\text{MRV}} \propto \delta^{16}(Q) (\alpha'^2 g)^{n-2} \left(\alpha'^3 f_{\frac{3}{2}}^{n-4} + \alpha'^5 f_{\frac{5}{2}}^{n-4} \left([s_{12}^2]_n \right) + \mathcal{O}\left(\alpha'^6 \right) \right)$$

- analytic part of amplitude: the "no logs"-part
- guess for next order exists
- much work: relation to effective action, better normalization...

shown examples of applications of 'analytic S-matrix' insight:

scattering amplitudes are functions

- of the quantum numbers
- with physical singularities

shown examples of applications of 'analytic S-matrix' insight:

scattering amplitudes are functions

- of the quantum numbers
- with physical singularities

remarkable simplicity found

shown examples of applications of 'analytic S-matrix' insight:

scattering amplitudes are functions

- of the quantum numbers
- with physical singularities

remarkable simplicity found

more examples of applications / more explicit amplitudes?

- how deep does MHV -- MRV analogy go?
- worldsheet picture? (pure spinor?)
- IIA? D=11? open strings? → constrained superspaces

Your Question Here?

Tuesday, October 23, 12