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Outline

E8 × E8 Heterotic String and SUSY vacua

Why we’re interested (and the problems)

Slope stability of a vector bundle

Stability, Kähler moduli, and the 4d effective field theory

Holomorphy and complex structure moduli

Holomorphic bundles →


















Constraints on the complex structure moduli

A 4d description

A hidden sector mechanism
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Review of Heterotic M-theory

Horava-Witten Theory: The strongly coupled limit of the heterotic string

Bulk is 11-dimsensional supergravity

boundaries support 10-dim E8 SYM theories

M5 brane world volume actions for central branes
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A heterotic model

One dimension out of 11 is already compact. So to produce a four-dimensional

theory, consider the E8 × E8 Heterotic string in 10-dimensions:

One E8 gives rise to the “Visible” sector, the other to the “Hidden” sector

Compactify on a Calabi-Yau 3-fold, X - leads to N = 1 SUSY in 4D

Also have a holomorphic vector bundle V on X (with structure group

G ⊂ E8)

V breaks E8 → G × H , where H is the Low Energy GUT group

G = SU(n), n = 3, 4, 5 leads to H = E6, SO(10), SU(5)

Moduli and Matter

X ⇒ h1,1(X ) - Kähler moduli and h2,1(X ) -Complex structure moduli

V ⇒ h1(X , V × V∨) Bundle moduli

and Matter ⇒ Bundle valued cohomology groups, H1(V ),H1(∧2V ), etc.
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Supersymmetric Vacua in Heterotic

The gaugino variation demands that a supersymmetric vacuum to the theory,

must satsify the Hermitian-Yang-Mills Equations

δχ = 0 ⇒







Fab = Fāb̄ = 0

g abFab = 0

Solution depends on complex structure, Kähler and bundle moduli. Some

regions of moduli space will provide a solution, some not.

Question: Vary moduli such that SUSY is broken...what happens in

EFT? Is there a four-dimensional description?

Answer: There will be a new, positive definite contribution to the

potential in the non-SUSY part of moduli space.
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Dimensional Reduction

Spartial ∼
∫

M10
Tr(F (1))2 + Tr(F (2))2 − Tr(R2) + . . .

Bianchi Identity:

dH ∼ −(Tr(F (1) ∧ F (1)) + Tr(F (2) ∧ F (2)) − Tr(R ∧ R))

Wedge with a Kähler form, ω and integrate:
∫

ω ∧ (Tr(F (1) ∧ F (1)) + Tr(F (2) ∧ F (2)) − Tr(R ∧ R)) = 0

Using the fact that to lowest order X is Ricci-flat Kähler manifold.

⇒
∫

M10

√−g(Tr(F (1))2 + Tr(F (2))2 − TrR2 + 2(F (1)
abg

ab)2 +

2(F (2)
abg

ab)2 + 4(F (1)
abF

(1)
abg

aag aa) + 4(F (2)
abF

(2)
abg

aag aa)) = 0

Substituting into Spartial :

Spartial ∼
∫

M10

√−g{(F (1)
abg

ab)2 + (F (2)
abg

ab)2 + (F (1)
abF

(1)
abg

aag aa) +

(F (2)
abF

(2)
abg

aag aa)}
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Spartial ∼
∫

M10

√−g{(F (1)
abg

ab)2 + (F (2)
abg

ab)2

+(F (1)
abF

(1)
abg

aag aa) + (F (2)
abF

(2)
abg

aag aa)}

So, (Fabg
ab)2 and (FabFabg

aag aa) contribute positive semi-definite terms

to the 4d-potential and depend on the HYM equations!






If moduli solve HYM → Potential = 0

If HYM not satisfied → Potential 6= 0

What is the explicit form of this potential?

Don’t know Fab, Fab and g ab except numerically.

This potential is what we will derive...

Lara Anderson (UPenn) Supersymmetry and Moduli Stabilization in Heterotic M-theory Rutgers - Oct. 26th, ’10 7 / 32



Stability

SUSY → Hermitian YM equations, a set of wickedly complicated PDE’s

Fab = Fab = g abFba = 0

We are saved by the Donaldson-Uhlenbeck-Yau Theorem:

On each poly-stable, holomorphic vector bundle V, there exists a

Hermitian YM connection satisfying the HYM equations

The slope, µ(V ), of a vector bundle is

µ(V ) ≡ 1

rk(V )

∫

X
c1(V ) ∧ ω ∧ ω

where ω = tkωk is the Kahler form on X (ωk a basis for H1,1(X )).

V is Stable if for every sub-sheaf, F ⊂ V , with 0 < rk(F) < rk(V ),

µ(F) < µ(V )

V is Poly-stable if V =
⊕

i Vi , Vi stable such that µ(V ) = µ(Vi ) ∀i

Conservation of Misery → Tough to find sub-sheaves.
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We will consider a bundle on the CY 3-fold, X =
[

P
1

P
3

∣

∣

∣

2

4

]

, with

h1,1 = 2.

Where V is an SU(3) bundle defined by

0 → V → OX (1, 0) ⊕OX (1,−1)⊕OX (0, 1)⊕2 f−→ OX (2, 1) → 0

which is destabilized in part of the Kähler cone by the rank 2 sub-bundle

0 → F → OX (1, 0) ⊕OX (0, 1)⊕2 → OX (2, 1) → 0 with c1(F) = −ω1 + ω2.

UNSTABLE

S

S

2

2

c (L )=(−1,1)1

1

1

1/2

STABLE
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Splitting a vector bundle

On a line (in general a hyperplane) in Kähler moduli space, the sub-sheaf

F becomes important

Can describe V in terms of this sub-sheaf as 0 → F → V → V /F → 0

Space of such extensions given by Ext1((V /F),F) = H1(X ,F ⊗ (V /F)∨),

where the origin of this group is a locus in the moduli space of V for

which V = F ⊕ V /F , with c1(F) = −c1(V /F)

On the line with µ(F) = 0, for SUSY to exist, need

V =
⊕

i Vi = F ⊕ V /F to have a poly-stable bundle.

This means the structure group changes!

SU(3) → S [U(2) × U(1)]. Locally S [U(2) × U(1)] ≈ SU(2) × U(1)

Visible structure group changes to E6 ×U(1). New U(1) gauge field in the

visible 4d theory!
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E.g. SU(3) → S [U(2) × U(1)].

Visible structure group changes to E6 ×U(1). New U(1) gauge field in the

visible 4d theory!

The enhanced U(1) is “anomalous” (cancelled by Green-Schwarz

Mechanism)

Matter fields and “moduli” are now charged under this U(1).

Locally, E8 ⊃ E6 × SU(2) × U(1)

248 → (1, 1)0 + (1, 2)−3/2 + (1, 2)3/2 + (1, 3)0 + (78, 1)0 + (27, 1)1 + (27, 2)−1/2 +

(2̄7, 1)−1 + (2̄7, 2)1/2

Bundle moduli decompose as

H1(V ⊗ V∨) →







H1(F ⊗ F∨) + H1(F ⊗K∨) + H1(K ⊗F∨)

(1, 3)0 + (1, 2)−3/2 + (1, 2)3/2

E6 Matter: H1(V ) →







H1(K) + H1(F)

(27, 1)1 + (27, 2)−1/2
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The complexified Kähler moduli, T k = tk + 2iχk , transform with a shift

symmetry through the axion, χk

The dilaton, S , and M5-brane position moduli also transform under this

U(1), but at higher order (we’ll come back to this...)

The U(1)-symmetry leads to a U(1) D-term contribution to the 4d

effective potential

DU(1) ∼ µ(F)

V −
∑

M,N̄

QMGMN̄CM C̄ N̄ (1)

with a Fayet-Iliopolous (FI)-term ∼ µ(F) -the slope of the relevant

sub-bundle F . Here V is the volume of the CY and CM are U(1) charged

fields.

This is the explicit form of the potential described earlier by dimensional

reduction!

We can now demonstrate how this EFT describes stability...

Lara Anderson (UPenn) Supersymmetry and Moduli Stabilization in Heterotic M-theory Rutgers - Oct. 26th, ’10 12 / 32



Spectrum and U(1) charges

At the “stability wall”, V → F + O(1,−1)

At a general point in the stable region: h1(V ) = 2, h1(V ⊗ V∨) = 22

At the line of semi-stability:

Fields E6 × U(1) charges number of fields

φα 10 7

f I 27−1/2 2

CL 1−3/2 16

We can define our theory on the line and consider small perturbations.

In general: DU(1) ∼ µ(F)
V − ∑

M,N̄ QMGMN̄CM C̄N̄

Here: DU(1) ∼ 9
4(4π)2/3

−4t1+t2

6t1t2+(t2)2 + 3
2GLM̄CLC̄ M̄

DE6 ⇒< f I >= 0
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Stability in EFT

DU(1) ∼ µ(F)
V

+ 3
2
GLM̄C LC̄ M̄

Note that there exists only negatively charged matter!

µ(F) < 0 ⇒< C L
> adjust → DU(1) = 0, SUSY vacuum

The vev < CL > describes motion in bundle moduli space away from the

decomposable locus! (i.e. Ext1(K,F) 6= 0)

NO positively charged matter

µ(F) > 0 ⇒ DU(1) 6= 0 No SUSY vacuum

µ(F) = 0 ⇒< C L
>= 0, DU(1) = 0, SUSY

At the wall itself, < CL >= 0 corresponds to the requirement that bundle

be split, (0 ∈ Ext1(K,F), as expected!)

In the stable region: 1 CL-field higgsed. That is, under 1 constraint

(DU(1) = 0), 16 CL → 15 CL (+7 φα = 22 bundle moduli, as expected!)
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Conclusions –Kähler Moduli

At such a ‘Stability Wall’, the vector bundle must decompose into a direct

sum in order to preserve supersymmetry.

This bundle decomposition ⇒ an enhanced U(1) in the visible theory

This U(1) leads to a D-term potential that correctly models vector bundle

slope-stability

Observation: This D-term potential is independent of complex structure

moduli for all anomaly free and N = 1 SUSY theories.

Didn’t have time to discuss...

1 loop correction preserves notion of stability, but incorporates dilaton and

5-brane moduli

Stability walls can lead to transitions between bundles

Kähler cone substructure can lead to constraints on phenomenology:

Yukawa textures, etc.
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Holomorphic Vector bundles

We have discussed the D-terms in detail... but what about the other

contributions to the potential?

Recall, a vector bundle is said to be holomorphic if Fab = Fāb̄ = 0

Suppose we begin with a holomorphic bundle w.r.t a fixed complex

structure. What happens as we vary the complex structure? Must a

bundle stay holomorphic for any variation δzI vI ∈ h2,1(X )? ⇒ No!

In real coordinates we introduce the projectors

P ν
µ = (1 ν

µ + iJ ν
µ ) P̄ ν

µ = (1 ν
µ − iJ ν

µ ) (2)

Where J 2 = −1 is the complex structure tensor. Leads to

gµνPγ
µ P̄δ

νFγδ = 0 (3)

P ν
µ P σ

ρ Fνσ = 0 , P̄ ν
µ P̄ σ

ρ Fνσ = 0 (4)
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Varying the complex structure

Consider change in Fab = 0 under the perturbation

J = J (0) + δJ A = A(0) + δA (5)

δJ → δP

In terms of the original coords, δJ b̄
a = −i v̄ b̄

Iaδz
I only non-vanishing

component of δJ (by integrability of C.S.)

To first order this leads to

δzI v c
I [ā]F

(0)

|c|b̄]
+ 2D

(0)
[ā δAb̄] = 0 (6)

Rotation of F 1,1 into F 0,2 plus change in F 0,2 due to change in gauge

connection.

Question: For each δzI is there a δA which compensates?

In general, the answer is not always.
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Deformation Theory

There are three objects in deformation theory that we need

Def (X ): Deformations of X as a complex manifold. Infinitesimal defs

parameterized by the vector space H1(TX ) = H2,1(X ). These are the

complex structure deformations of X .

Def (V ): The deformation space of V (changes in connection, δA) for fixed

C.S. moduli. Infinitesimal defs measured by H1(End(V )) = H1(V ⊗ V∨).

These define the bundle moduli of V .

Def (V , X ): Simultaneous holomorphic deformations of V and X . The

tangent space is H1(X ,Q) where

0 → V ⊗ V∨ → Q π→ TX → 0 (7)

If P is the total space of the bundle, Q = r∗TP .

H1(X ,Q) are the real moduli of a heterotic theory!
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The Atiyah Sequence

0 → V ⊗ V∨ → Q π→ TX → 0 is known as the Atiyah sequence.

The long exact sequence in cohomology gives us

0 → H1(V ⊗ V∨) → H1(Q)
dπ→ H1(TX )

α→ H2(V ⊗ V∨) → . . . (8)

If the map dπ is surjective then H1(Q) = H1(V ⊗ V∨) ⊕ H1(TX )

But dπ not surjective in general! H1(Q) = H1(V ⊗ V∨) ⊕ Im(dπ)

dπ difficult to define, but by exactness, Im(dπ) = Ker(α) where

α = [F 1,1] ∈ H1(V ⊗ V∨ ⊗ TX∨) (9)

is the Atiyah Class

C.S. moduli allowed α(δzv) = 0 (0 ∈ H2(V × V∨)). I.e. in Ker(α)

δzI v c
I [āF|c|b̄] = D[āΛb̄] (= 0 ∈ H2(V × V∨)) (10)
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Now, if we let Λ = −2δA we recover

δzI v c
I [ā]F

(0)

|c|b̄]
+ 2D

(0)
[ā δAb̄] = 0 (11)

That is, the fluctuation of the 10d E.O.M. Fab = 0 is implied by the

Atiyah sequence.

Note that the bundle moduli are unaffected (not fixed). I.e. an injection

0 → H1(V ⊗ V∨) → H1(Q).

We want to know:

Ker(α): Free C.S. moduli

Im(α): Stabilized C.S. moduli

Why wasn’t this done 20 years ago? ⇒ General story not applied in

heterotic string theory and tough to compute...

Using algebraic geometry, this is just polynomial (Cech, etc)

multiplication. Hard, but can be done!
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Examples

All good in principle... but what is Im(α)? How many moduli fixed??

Let’s start simple...

Line bundles?

For a line bundle on a K3, Im(α) = C

For a CY threefold, −→ Line bundles do not constrain C.S. moduli.

Always deform in the with X since H2(L ⊗ L∨) = H2(OX ) = 0

However, what about simplest possible rank 2 bundle? → consider an an

SU(2) extension

0 → L → V → L∨ → 0 (12)

In principle, can stabilize arbitrarily many moduli!
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A Threefold Example

Let’s consider an explicit extension: 0 → L → V → L∨ → 0

For example on the Calabi-Yau threefold X =

[

P
1 2

P
1 2

P
2 3

]3,75

0 → O(−2,−1, 2) → V → O(2, 1,−2) → 0 (13)

Why this one? Here Ext1(L∨,L) = H1(X ,O(−4,−2, 4)) = 0 generically.

Hence cannot define the bundle for general complex structure!

Let A = P
1 × P

1 × P
2. The Koszul sequence for X gives us

0 → O(−2,−2,−3)⊗ LA
po→ LA → LX → 0

0 → H1(X ,O(−4 − 2, 4)) → H2(A,O(−6,−4, 1))
p0→ H2(A,O(−4,−2, 4))

→ H2(X ,−4,−2, 4) → 0

For generic degree {2, 2, 3} embedding polynomials, p, Ext = 0, but on a

higher-codimensional locus, the cohomology can jump.
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Jumping cohomology and the Atiyah class

We can explicitly solve for when ker(p) 6= 0 and we find that on a

58-dimensional locus in C.S. moduli space, h1(X ,O(−4,−2, 4)) = 18.

Begin at a point, p0 for which Ext 6= 0, do Atiyah computation of linear

deformations.

Since this extension bundle cannot be defined away from this

58-dimensional locus we expect Im(α) 6= 0

Note: Split bundle L ⊕ L∨ is not supersymmetric for arbitrary Kähler

moduli and not infinitesimally deformable to V .

H1(X ,L⊗2) does not disappear as we perturb the C.S., rather the one

forms are simply no-longer {0, 1} w.r.t to the new C.S.

As a result, we would expect that im(α) ≥ 17.

Also since im(α) ≤ h2(V ⊗ V∨) = dim(Ext1(L∨,L)) − 1 = 17. Hence,

17 ≤ im(α) ≤ 17. So, we expect to stabilize exactly 17 C.S. moduli.
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What to do to compute Im(α)?

We need α = [F 1,1] ∈ H1(End(V ) ⊗ TX∨) where

0 → O⊕3 → O(1, 0, 0)⊕2 ⊕O(0, 1, 0)⊕2 ⊕O(0, 0, 1)⊕3 → TA → 0

0 → TX → TA → O(2, 2, 3) → 0

and we must determine the cohomology from

0 0 0

↓ ↓ ↓
0 → L⊗2 ⊗ TX∨ → V ⊗ L× TX∨ → TX∨ → 0

↓ ↓ ↓
0 → L⊗ V∨ ⊗ TX∨ → V ⊗ V∨ ⊗ TX∨ → L∨ ⊗ V∨ ⊗ TX∨ → 0

↓ ↓ ↓
0 → TX∨ → L∨ ⊗ V ⊗ TX∨ → L∨⊗2 ⊗ TX∨ → 0

↓ ↓ ↓
0 0 0
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Have explicitly generated polynomial basis of source, target and map for

H1(TX )
α→ H2(V ⊗ V∨)

Direct computation yields that Im(α) = 17. No. of moduli stabilized!

Interesting observation: The polynomial multiplication in the “jumping”

cohomology locus H2(A,O(−6,−4, 1))
p0→ H2(A,O(−4,−2, 4)) is identical

to the calculation of H1(TX )
α→ H2(V ⊗ V∨), down to the exact

monomials!

For the 4d Theory: We have Gukov-Vafa-Witten superpotential

W =
∫

X
Ω ∧ H where H = dB − 3α′

√
2

(

ω3YM − ω3L
)

In Minkowski vacuum (with W = 0), F-terms:

FCi
= ∂W

∂Ci
= − 3α′

√
2

∫

X
Ω ∧ ∂ω3YM

∂Ci

Dimensional Reduction Anzatz: Aµ = A
(0)
µ + δAµ + ω̄i

µδCi + ωi
µδC̄i

FCi
=

∫

X

ǫāc̄ b̄ǫabcΩ
(0)
abc2ω̄xi

c̄ tr(TxTy )
(

δzI v c
I [āF

(0)y

|c|b̄]
+ 2D

(0)
[ā δAy

b̄]

)
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4d Effective Theory

0 → L → V → L∨ gives an N = 1 4d theory with E7 symmetry

In general, z is stabilized at the compactification scale. To explicitly

describe F-terms FCi
, we must find a region of moduli space for which z is

light.

Here this happens near (but not on!) the Stability Wall. Extra U(1) gives

charges, C+ ∈ H1(L⊗2), C− ∈ H1(L∨⊗2
). E7 singlets only in spectrum.

Superpotential: W = λia(z)C i
+C a

− + ΓijabC
i
+C

j
+C a

−C b
−

D-term: DU(1) = FI − G+
i j̄

C i
+C

j̄

+ + G−
ab̄

C a
−C

b̄

−

Choose Vacuum: < C+ > 6= 0 and < C− >= 0. With C+ chosen to cancel

FI term.
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〈C−〉 = 0 in vacuum ⇒ W = 0, ∂W /∂z = 0, and ∂W /∂C+ = 0

This leaves “The” F-term: ∂W
∂C a

−

= λia(z) < C i
+ >= 0

Choose vacuum value of the C.S. so that Ext 6= 0 ⇒ λ = 0.

Supersymmetric Minkowski vacuum!

Now in fluctuation

δ (W ) = 0

δ

(

∂W

∂C i
+

)

= 0

δ

(

∂W

∂zI

)

=
∂λia

∂zI⊥
< C i

+ > δC a
− = 0

δ

(

∂W

∂C b
−

)

=
∂λib

∂z
I
⊥

δzI⊥ < C i
+ > +Γijab < C i

+ >< C
j
+ > δC a

− = 0

∂λia

∂zI vanishes along the 58-dimensional locus. ⊥ to locus, δzI⊥ gets a mass. δC a
−

also massive. Agrees with Atiyah Computation!
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A Hidden sector mechanism

Conclusion: A generic bundle perturbatively stabilizes some of the C.S.

moduli

We can find bundles that stabilize all or many of the complex structure

moduli

Such bundles probably not always well-suited for visible sector

phenomenology (i.e. Three families, particle spectrum, etc).

However, such bundles can always be added to the Hidden sector

For example, the SU(2) extension 0 → L → V → L∨ → 0 can be defined

on any CY with h1,1
> 1.

Slope-stable. I.e. D-terms vanish.

Generically satisfies anomaly cancellation: c2(TX ) − c2(V1) − c2(V2) >= 0

E7 symmetry compatible with gaugino condensation, etc.
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Stabilization in the Hidden sector

fixed plane
(hidden sector)

.......fixed plane

Z

.......

Z

1
W

Z

n
W

M fivebrane
(visible sector) (hidden sector)

S Z
2

1
/

(hidden sector)
M fivebrane

Z

5d bulk

Z Wilson line2

xU(1)
L

H=SU(3)

=3

Y

gen

G vector bundle

C

N

xSU(2)
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Conclusions – Complex Structure Moduli

The presence of a holomorphic vector bundle constrains C.S. moduli

The moduli of a heterotic compactification: H1,1(X ), H1(V ⊗ V∨), Ker(α)

Im(α) can be computed

Leads to F-terms in 4-dimensions: ∂W
∂CI

where CI are 4d matter fields

The C.S. can be stabilized at the perturbative level without moving away

from a CY manifold

Avoids problems of KKLT scenarios in heterotic

Allows us to keep heterotic model-building toolkit!

Provides a general Hidden Sector mechanism for stabilizing the C.S.

moduli in Heterotic (M-theory) compactifications.

Work in progress – Add non-perturbative effects to remaining stabilize

remaining moduli
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The End

Lara Anderson (UPenn) Supersymmetry and Moduli Stabilization in Heterotic M-theory Rutgers - Oct. 26th, ’10 32 / 32


