Supersymmetry and Moduli Stabilization in Heterotic M-theory

Lara B. Anderson

Department of Physics, University of Pennsylvania

Work done in collaboration with:

LBA, J. Gray, A. Lukas, B. Ovrut

arXiv:0903.5088, arXiv:0905.1748, arXiv:1001.2317, arXiv:1010.0255, arXiv:10???

Rutgers University - October 26th, 2010

€ ⊡ .

റെ റ

 $\sqrt{ }$

 \int

 $\overline{\mathcal{L}}$

- \bullet $E_8 \times E_8$ Heterotic String and SUSY vacua
- Why we're interested (and the problems)
- Slope stability of a vector bundle
- Stability, Kähler moduli, and the 4d effective field theory
- Holomorphy and complex structure moduli
- Holomorphic bundles \rightarrow

Constraints on the complex structure moduli

- A 4d description
- A hidden sector mechanism

 \leftarrow

Review of Heterotic M-theory

- Horava-Witten Theory: The strongly coupled limit of the heterotic string
- Bulk is 11-dimsensional supergravity
- \bullet boundaries support 10-dim E_8 SYM theories
- M5 brane world volume actions for central branes

One dimension out of 11 is already compact. So to produce a four-dimensional theory, consider the $E_8 \times E_8$ Heterotic string in 10-dimensions:

- \bullet One E_8 gives rise to the "Visible" sector, the other to the "Hidden" sector
- Compactify on a Calabi-Yau 3-fold, X leads to $\mathcal{N}=1$ SUSY in 4D
- \bullet Also have a holomorphic vector bundle V on X (with structure group $G \subset E_8$
	- V breaks $E_8 \rightarrow G \times H$, where H is the Low Energy GUT group
		- $G = SU(n)$, $n = 3, 4, 5$ leads to $H = E_6$, $SO(10)$, $SU(5)$
- • Moduli and Matter
	- $X \Rightarrow h^{1,1}(X)$ Kähler moduli and $h^{2,1}(X)$ -Complex structure moduli
	- $V \Rightarrow h^1(X, V \times V^{\vee})$ Bundle moduli
	- and Matter \Rightarrow Bundle valued cohomology gr[ou](#page-2-0)p[s,](#page-4-0) $H^1(\mathcal{V}), H^1(\wedge^2 \mathcal{V})$ $H^1(\mathcal{V}), H^1(\wedge^2 \mathcal{V})$ [, e](#page-0-0)[tc.](#page-36-0)

The gaugino variation demands that a supersymmetric vacuum to the theory, must satsify the Hermitian-Yang-Mills Equations

$$
\bullet \ \delta \chi = 0 \Rightarrow \begin{cases} F_{ab} = F_{\bar{a}\bar{b}} = 0 \\ g^{a\overline{b}} F_{a\overline{b}} = 0 \end{cases}
$$

• Solution depends on complex structure, Kähler and bundle moduli. Some regions of moduli space will provide a solution, some not.

Question: Vary moduli such that SUSY is broken...what happens in EFT? Is there a four-dimensional description?

Answer: There will be a new, positive definite contribution to the potential in the non-SUSY part of moduli space.

 Ω

 4 O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

•
$$
S_{partial} \sim \int_{M_{10}} Tr(F^{(1)})^2 + Tr(F^{(2)})^2 - Tr(R^2) + \dots
$$

Bianchi Identity: \bullet

$$
dH \sim -(Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R))
$$

- Wedge with a Kähler form, ω and integrate: $\int \omega \wedge (Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R)) = 0$
- \bullet Using the fact that to lowest order X is Ricci-flat Kähler manifold. \Rightarrow $\int_{M_{10}} \sqrt{-g} (\text{Tr}(F^{(1)})^2 + \text{Tr}(F^{(2)})^2 - \text{Tr}R^2 + 2(F^{(1)}_{a\overline{b}}g^{a\overline{b}})^2 +$ $2(F^{(2)}_{a\overline{b}}g^{ab})^2 + 4(F^{(1)}_{ab}F^{(1)}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}) + 4(F^{(2)}_{ab}F^{(2)}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})) = 0$
- Substituting into $S_{partial}$:
	- $S_{\text{partial}} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(2)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(1)}{}_{ab} F^{(1)}{}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) +$ $(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{ab}}g^{a\overline{a}}g^{a\overline{a}})\}$ $-10⁻¹⁰$

•
$$
S_{partial} \sim \int_{M_{10}} Tr(F^{(1)})^2 + Tr(F^{(2)})^2 - Tr(R^2) + \dots
$$

Bianchi Identity: \bullet

dH \sim -(Tr($F^{(1)} \wedge F^{(1)}$) + Tr($F^{(2)} \wedge F^{(2)}$) - Tr($R \wedge R$))

- Wedge with a Kähler form, ω and integrate: $\int \omega \wedge (Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R)) = 0$
- \bullet Using the fact that to lowest order X is Ricci-flat Kähler manifold. \Rightarrow $\int_{M_{10}} \sqrt{-g} (\text{Tr}(F^{(1)})^2 + \text{Tr}(F^{(2)})^2 - \text{Tr}R^2 + 2(F^{(1)}_{a\overline{b}}g^{a\overline{b}})^2 +$ $2(F^{(2)}_{a\overline{b}}g^{ab})^2 + 4(F^{(1)}_{ab}F^{(1)}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}) + 4(F^{(2)}_{ab}F^{(2)}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})) = 0$
- Substituting into $S_{partial}$:
	- $S_{\text{partial}} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(2)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(1)}{}_{ab} F^{(1)}{}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) +$ $(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{ab}}g^{a\overline{a}}g^{a\overline{a}})\}$ **←ロト ←何ト ←ヨト** Ω

•
$$
S_{partial} \sim \int_{M_{10}} Tr(F^{(1)})^2 + Tr(F^{(2)})^2 - Tr(R^2) + \dots
$$

Bianchi Identity: \bullet

$$
dH \sim -(Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R))
$$

- Wedge with a Kähler form, ω and integrate: $\int \omega \wedge (\, Tr(F^{(1)} \wedge F^{(1)}) + \, Tr(F^{(2)} \wedge F^{(2)}) - \, Tr(R \wedge R)) = 0$
- \bullet Using the fact that to lowest order X is Ricci-flat Kähler manifold. \Rightarrow $\int_{M_{10}} \sqrt{-g} (\text{Tr}(F^{(1)})^2 + \text{Tr}(F^{(2)})^2 - \text{Tr}R^2 + 2(F^{(1)}_{a\overline{b}}g^{a\overline{b}})^2 +$ $2(F^{(2)}_{a\overline{b}}g^{ab})^2 + 4(F^{(1)}_{ab}F^{(1)}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}) + 4(F^{(2)}_{ab}F^{(2)}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})) = 0$
- Substituting into $S_{partial}$:
	- $S_{\text{partial}} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(2)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(1)}{}_{ab} F^{(1)}{}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) +$ $(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{ab}}g^{a\overline{a}}g^{a\overline{a}})\}$ イロト イ押 トイヨ トイヨ Ω

•
$$
S_{partial} \sim \int_{M_{10}} Tr(F^{(1)})^2 + Tr(F^{(2)})^2 - Tr(R^2) + \dots
$$

Bianchi Identity: \bullet

$$
dH \sim -(Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R))
$$

- Wedge with a Kähler form, ω and integrate: $\int \omega \wedge (\, Tr(F^{(1)} \wedge F^{(1)}) + \, Tr(F^{(2)} \wedge F^{(2)}) - \, Tr(R \wedge R)) = 0$
- \bullet Using the fact that to lowest order X is Ricci-flat Kähler manifold. \Rightarrow $\int_{M_{10}} \sqrt{-g} (\text{Tr}(F^{(1)})^2 + \text{Tr}(F^{(2)})^2 - \text{Tr}R^2 + 2(F^{(1)}_{a\overline{b}}g^{a\overline{b}})^2 +$ $2(F^{(2)}{}_{a\overline{b}}g^{ab})^2+4(F^{(1)}{}_{ab}F^{(1)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})+4(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}))=0$
- Substituting into $S_{partial}$:

 $S_{\text{partial}} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(2)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(1)}{}_{ab} F^{(1)}{}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) +$ $(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{ab}}g^{a\overline{a}}g^{a\overline{a}})\}$ イロト イ押ト イヨト イヨト Ω

•
$$
S_{partial} \sim \int_{M_{10}} Tr(F^{(1)})^2 + Tr(F^{(2)})^2 - Tr(R^2) + \dots
$$

Bianchi Identity: \bullet

$$
dH \sim -(Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R))
$$

- Wedge with a Kähler form, ω and integrate: $\int \omega \wedge (\, Tr(F^{(1)} \wedge F^{(1)}) + \, Tr(F^{(2)} \wedge F^{(2)}) - \, Tr(R \wedge R)) = 0$
- \bullet Using the fact that to lowest order X is Ricci-flat Kähler manifold. \Rightarrow $\int_{M_{10}} \sqrt{-g} (\text{Tr}(F^{(1)})^2 + \text{Tr}(F^{(2)})^2 - \text{Tr}R^2 + 2(F^{(1)}_{a\overline{b}}g^{a\overline{b}})^2 +$ $2(F^{(2)}{}_{a\overline{b}}g^{ab})^2+4(F^{(1)}{}_{ab}F^{(1)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})+4(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}))=0$
- Substituting into $S_{partial}$:

 $S_{\text{partial}} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(2)}{}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(1)}{}_{ab} F^{(1)}{}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) +$ $(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{ab}}g^{a\overline{a}}g^{a\overline{a}})\}$ イロト イ押ト イヨト イヨト Ω

•
$$
S_{partial} \sim \int_{M_{10}} Tr(F^{(1)})^2 + Tr(F^{(2)})^2 - Tr(R^2) + \dots
$$

Bianchi Identity: \bullet

$$
dH \sim -(Tr(F^{(1)} \wedge F^{(1)}) + Tr(F^{(2)} \wedge F^{(2)}) - Tr(R \wedge R))
$$

- Wedge with a Kähler form, ω and integrate: $\int \omega \wedge (\, Tr(F^{(1)} \wedge F^{(1)}) + \, Tr(F^{(2)} \wedge F^{(2)}) - \, Tr(R \wedge R)) = 0$
- \bullet Using the fact that to lowest order X is Ricci-flat Kähler manifold. \Rightarrow $\int_{M_{10}} \sqrt{-g} (\text{Tr}(F^{(1)})^2 + \text{Tr}(F^{(2)})^2 - \text{Tr}R^2 + 2(F^{(1)}_{a\overline{b}}g^{a\overline{b}})^2 +$ $2(F^{(2)}{}_{a\overline{b}}g^{ab})^2+4(F^{(1)}{}_{ab}F^{(1)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})+4(F^{(2)}{}_{ab}F^{(2)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}))=0$
- \bullet Substituting into $S_{partial}$: √

$$
S_{partial} F^{(1)} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(2)}_{a\overline{b}} g^{a\overline{b}})^2 + (F^{(1)}_{ab} F^{(1)}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) + (F^{(2)}_{ab} F^{(2)}_{\overline{a}\overline{b}} g^{a\overline{a}} g^{a\overline{a}}) \}
$$

$$
S_{partial} \sqrt{-g} \{ (F^{(1)}_{ab} g^{ab})^2 + (F^{(2)}_{ab} g^{a\overline{b}})^2 + (F^{(2)}_{ab} g^{a\overline{b}})^2 + (F^{(1)}_{ab} F^{(1)}_{ab} g^{a\overline{a}} g^{a\overline{a}}) + (F^{(2)}_{ab} F^{(2)}_{ab} g^{a\overline{a}} g^{a\overline{a}}) \}
$$

So, $(F_{a\overline{b}}g^{ab})^2$ and $(F_{ab}F_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}})$ contribute positive semi-definite terms $\sqrt{ }$ to the 4d-potential and depend on the HYM equations! \overline{I} \mathcal{L} If moduli solve $HYM \rightarrow Potential = 0$ If HYM not satisfied \rightarrow Potential $\neq 0$

- What is the explicit form of this potential?
- Don't know $F_{a\overline{b}}$, F_{ab} and g^{ab} except numerically.
- • This potential is what we will derive...

Stability

- \bullet SUSY \rightarrow Hermitian YM equations, a set of wickedly complicated PDE's $F_{ab} = F_{\overline{ab}} = g^{ab} F_{\overline{ba}} = 0$
- We are saved by the Donaldson-Uhlenbeck-Yau Theorem: On each poly-stable, holomorphic vector bundle V , there exists a Hermitian YM connection satisfying the HYM equations
- The slope, $\mu(V)$, of a vector bundle is

$$
\mu(V) \equiv \frac{1}{\text{rk}(V)} \int_X c_1(V) \wedge \omega \wedge \omega
$$

where $\omega = t^k \omega_k$ is the Kahler form on X (ω_k a basis for $H^{1,1}(X)$).

- V is Stable if for every sub-sheaf, $F \subset V$, with 0 < $rk(F)$ < $rk(V)$, $\mu(\mathcal{F}) < \mu(V)$
- V is Poly-stable if $V = \bigoplus_i V_i$, V_i stable such that $\mu(V) = \mu(V_i)$ $\forall i$
- Cons[e](#page-11-0)rvation of Misery \rightarrow Tough to find sub-[she](#page-11-0)[av](#page-13-0)e[s.](#page-12-0)

 Ω

- We will consider a bundle on the CY 3-fold, $X = \begin{bmatrix} \frac{p}{p} & 0 \\ 0 & 0 \end{bmatrix}$ p^1
 p^3 2 $\frac{1}{4}$, with $h^{1,1}=2.$
- Where V is an $SU(3)$ bundle defined by

$$
0 \to V \to \mathcal{O}_X(1,0) \oplus \mathcal{O}_X(1,-1) \oplus \mathcal{O}_X(0,1)^{\oplus 2} \stackrel{f}{\longrightarrow} \mathcal{O}_X(2,1) \to 0
$$

which is destabilized in part of the Kähler cone by the rank 2 sub-bundle

 $0 \to \mathcal{F} \to \mathcal{O}_X(1,0) \oplus \mathcal{O}_X(0,1)^{\oplus 2} \to \mathcal{O}_X(2,1) \to 0$ with $c_1(\mathcal{F}) = -\omega_1 + \omega_2$.

- On a line (in general a hyperplane) in Kähler moduli space, the sub-sheaf F becomes important
- Can describe V in terms of this sub-sheaf as $0 \to \mathcal{F} \to V \to V/\mathcal{F} \to 0$
- Space of such extensions given by $Ext^1((V/F), F) = H^1(X, F \otimes (V/F)^{\vee}),$ where the origin of this group is a locus in the moduli space of V for which $V = \mathcal{F} \oplus V/\mathcal{F}$, with $c_1(\mathcal{F}) = -c_1(V/\mathcal{F})$
- On the line with $\mu(\mathcal{F}) = 0$, for SUSY to exist, need

 $V = \bigoplus_i V_i = \mathcal{F} \oplus V/\mathcal{F}$ to have a poly-stable bundle.

• This means the structure group changes!

 $SU(3) \rightarrow SU(2) \times U(1)$. Locally $SU(2) \times U(1) \approx SU(2) \times U(1)$

• Visible structure group changes to $E_6 \times U(1)$. New $U(1)$ gauge field in the visible 4d theory! 4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ 290

- E.g. $SU(3) \rightarrow S[U(2) \times U(1)]$.
- Visible structure group changes to $E_6 \times U(1)$. New $U(1)$ gauge field in the visible 4d theory!
- \bullet The enhanced $U(1)$ is "anomalous" (cancelled by Green-Schwarz Mechanism)
- \bullet Matter fields and "moduli" are now charged under this U(1). Locally, $E_8 \supset E_6 \times SU(2) \times U(1)$ $248 \rightarrow (1,1)_0 + (1,2)_{-3/2} + (1,2)_{3/2} + (1,3)_0 + (78,1)_0 + (27,1)_1 + (27,2)_{-1/2} +$ $(27, 1)_{-1}$ + $(27, 2)_{1/2}$
- Bundle moduli decompose as

$$
H^{1}(V \otimes V^{\vee}) \rightarrow \begin{cases} H^{1}(\mathcal{F} \otimes \mathcal{F}^{\vee}) + H^{1}(\mathcal{F} \otimes \mathcal{K}^{\vee}) + H^{1}(\mathcal{K} \otimes \mathcal{F}^{\vee}) \\ (1,3)_{0} + (1,2)_{-3/2} + (1,2)_{3/2} \\ 0 & \text{if } \mathcal{F} \in \mathcal{F} \text{Matter:} \ H^{1}(V) \rightarrow \begin{cases} H^{1}(\mathcal{K}) + H^{1}(\mathcal{F}) \\ (27,1)_{1} + (27,2)_{-1/2} \end{cases} \end{cases}
$$

 Ω

- The complexified Kähler moduli, $T^k = t^k + 2i\chi^k$, transform with a shift symmetry through the axion, χ^k
	- The dilaton, S, and M5-brane position moduli also transform under this $U(1)$, but at higher order (we'll come back to this...)
- The $U(1)$ -symmetry leads to a $U(1)$ D-term contribution to the 4d effective potential

$$
D^{U(1)} \sim \frac{\mu(\mathcal{F})}{\mathcal{V}} - \sum_{M,\bar{N}} Q^M G_{M\bar{N}} C^M \bar{C}^{\bar{N}} \tag{1}
$$

with a Fayet-Iliopolous (FI)-term $\sim \mu(\mathcal{F})$ -the slope of the relevant sub-bundle \mathcal{F} . Here \mathcal{V} is the volume of the CY and \mathcal{C}^M are $\mathcal{U}(1)$ charged fields.

- This is the explicit form of the potential described earlier by dimensional reduction!
- We can now demonstrate how this EFT descr[ibe](#page-15-0)[s s](#page-17-0)[t](#page-15-0)[ab](#page-16-0)[il](#page-17-0)[ity](#page-0-0).

 Ω

Spectrum and $U(1)$ charges

- At the "stability wall", $V \rightarrow \mathcal{F} + O(1, -1)$
- At a general point in the stable region: $h^1(V) = 2$, $h^1(V \otimes V^{\vee}) = 22$
- At the line of semi-stability:

- We can define our theory on the line and consider small perturbations.
- In general: $D^{U(1)} \sim \frac{\mu(\mathcal{F})}{\mathcal{V}} \sum_{M, \bar{N}} Q^M G_{M \bar{N}} C^M \bar{C}^{\bar{N}}$ Here: $D^{U(1)} \sim \frac{9}{4(4\pi)^{2/3}} \frac{-4t^1+t^2}{6t^1t^2+(t^2)}$ $\frac{-4t^{1}+t^{2}}{6t^{1}t^{2}+(t^{2})^{2}}+\frac{3}{2}\textit{G}_{L\bar{M}}\textit{C}^{\textit{L}}\bar{\textit{C}}^{\bar{M}}$ $D^{E_6} \Rightarrow =0$ イロト イ押ト イヨト イヨト

Stability in EFT

$$
D^{U(1)}\sim \tfrac{\mu(\mathcal{F})}{\mathcal{V}} + \tfrac{3}{2} G_{L\bar{M}} C^L \bar{C}^{\bar{M}}
$$

- Note that there exists only negatively charged matter!
- $\mu(\mathcal{F}) < 0 \ \Rightarrow < C^L >$ adjust $\rightarrow D^{U(1)} = 0$, SUSY vacuum
- The vev $\langle C^L \rangle$ describes motion in bundle moduli space away from the decomposable locus! (i.e. $Ext^1(\mathcal{K}, \mathcal{F}) \neq 0$)
- NO positively charged matter

 $\mu(\mathcal{F}) > 0 \Rightarrow D^{U(1)} \neq 0$ No SUSY vacuum

- $\mu(\mathcal{F})=0 \ \Rightarrow <\mathsf{C}^L>=0,\ D^{U(1)}=0,\ \mathrm{SUSY}$
- At the wall itself, $\langle C^L \rangle = 0$ corresponds to the requirement that bundle be split, $(0 \in Ext^1(\mathcal{K}, \mathcal{F}), \text{ as expected!})$
- In the stable region: $1 \mathcal{C}^{\mathcal{L}}$ -field higgsed. That is, under 1 constraint $(D^{U(1)}=0)$, 16 $C^L \rightarrow 15 C^L$ $C^L \rightarrow 15 C^L$ $C^L \rightarrow 15 C^L$ (+7 $\phi^{\alpha} = 22$ bun[dle](#page-17-0) [m](#page-19-0)o[d](#page-18-0)[ul](#page-19-0)[i,](#page-0-0) [as](#page-36-0) [ex](#page-0-0)[pec](#page-36-0)[te](#page-0-0)[d!\)](#page-36-0)

K ロ > K @ ▶ K 할 > K 할 > (할 > X 할 > 9 Q @)

Conclusions –Kähler Moduli

- At such a 'Stability Wall', the vector bundle must decompose into a direct sum in order to preserve supersymmetry.
- This bundle decomposition \Rightarrow an enhanced $U(1)$ in the visible theory \bullet This $U(1)$ leads to a D-term potential that correctly models vector bundle

slope-stability

- Observation: This D-term potential is independent of complex structure moduli for all anomaly free and $N = 1$ SUSY theories.
- Didn't have time to discuss...
	- 1 loop correction preserves notion of stability, but incorporates dilaton and 5-brane moduli
	- Stability walls can lead to transitions between bundles
	- Kähler cone substructure can lead to constraints on phenomenology:

Yukawa textures, etc.
Lara Anderson (UPenn)

Supersymmetry and Moduli Stabilization in Heterotic I Rutgers - Oct. 26th, '10 16 / 32

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- We have discussed the D-terms in detail... but what about the other contributions to the potential?
- Recall, a vector bundle is said to be holomorphic if $F_{ab} = F_{\bar{a}\bar{b}} = 0$
- Suppose we begin with a holomorphic bundle w.r.t a fixed complex structure. What happens as we vary the complex structure? Must a bundle stay holomorphic for any variation $\delta \mathfrak{z}^I \mathfrak{v}_I \in h^{2,1}(X)? \Rightarrow$ No!
- In real coordinates we introduce the projectors \bullet

$$
P_{\mu}^{\ \nu} = (1_{\mu}^{\ \nu} + i \mathcal{J}_{\mu}^{\ \nu}) \quad \bar{P}_{\mu}^{\ \nu} = (1_{\mu}^{\ \nu} - i \mathcal{J}_{\mu}^{\ \nu}) \tag{2}
$$

Where $\mathcal{J}^2 = -1$ is the complex structure tensor. Leads to

$$
g^{\mu\nu}P^{\gamma}_{\mu}\bar{P}^{\delta}_{\nu}F_{\gamma\delta} = 0 \qquad (3)
$$

$$
P^{\nu}_{\mu}P^{\sigma}_{\rho}F_{\nu\sigma}=0 \quad , \quad \bar{P}^{\nu}_{\mu}\bar{P}^{\sigma}_{\rho}F_{\nu\sigma} = 0 \quad \text{as} \quad (4)
$$

Varying the complex structure

• Consider change in $F_{ab} = 0$ under the perturbation

$$
\mathcal{J} = \mathcal{J}^{(0)} + \delta \mathcal{J} \quad A = A^{(0)} + \delta A \tag{5}
$$

 $\delta \mathcal{J} \rightarrow \delta P$

- In terms of the original coords, $\delta J_a^{\bar{b}} = -i \bar{v}^{\bar{b}}_{l a} \delta \dot{\delta}^{\dagger}$ only non-vanishing component of $\delta \mathcal{J}$ (by integrability of C.S.)
- To first order this leads to

$$
\delta \mathfrak{z}^I v_{I[\bar{a}]}^c F^{(0)}_{|c|\bar{b}]} + 2D^{(0)}_{[\bar{a}} \delta A_{\bar{b}]} = 0 \tag{6}
$$

4 ロ ト 4 何 ト 4 日

- Rotation of $F^{1,1}$ into $F^{0,2}$ plus change in $F^{0,2}$ due to change in gauge connection.
- Question: For each $\delta \mathfrak{z}^I$ is there a δA which compensates?
- In general, the answer is not always.

There are three objects in deformation theory that we need

- \bullet *Def(X)*: Deformations of *X* as a complex manifold. Infinitesimal defs parameterized by the vector space $H^1(TX) = H^{2,1}(X)$. These are the complex structure deformations of X.
- Def (V): The deformation space of V (changes in connection, δA) for fixed C.S. moduli. Infinitesimal defs measured by $H^1(End(V)) = H^1(V \otimes V^{\vee})$. These define the **bundle moduli** of V.
- Def (V, X) : Simultaneous holomorphic deformations of V and X. The tangent space is $H^1(X, \mathcal{Q})$ where

$$
0 \to V \otimes V^{\vee} \to Q \stackrel{\pi}{\to} TX \to 0 \tag{7}
$$

If P is the total space of the bundle, $Q = r_* \mathcal{TP}$.

 H^1 $H^1(X,\mathcal{Q})$ are the real moduli of a heterotic th[eo](#page-22-0)r[y!](#page-24-0) \iff \iff \iff \iff QQ Supersymmetry and Moduli Stabilization in Heterotic I Rutgers - Oct. 26th, '10 19 / 32

 $0 \to V \otimes V^{\vee} \to Q \stackrel{\pi}{\to} TX \to 0$ is known as the Atiyah sequence.

• The long exact sequence in cohomology gives us

$$
0 \to H^1(V \otimes V^{\vee}) \to H^1(Q) \stackrel{d\pi}{\to} H^1(TX) \stackrel{\alpha}{\to} H^2(V \otimes V^{\vee}) \to \ldots
$$
 (8)

- If the map $d\pi$ is surjective then $H^1(\mathcal{Q}) = H^1(V \otimes V^\vee) \oplus H^1(TX)$
- But $d\pi$ not surjective in general! $H^1(\mathcal{Q}) = H^1(V \otimes V^\vee) \oplus Im(d\pi)$
- \bullet dπ difficult to define, but by exactness, $Im(d\pi) = Ker(\alpha)$ where

$$
\alpha = [F^{1,1}] \in H^1(V \otimes V^{\vee} \otimes TX^{\vee})
$$
 (9)

is the Atiyah Class

• C.S. moduli allowed
$$
\alpha(\delta \mathfrak{z} \mathfrak{v}) = 0
$$
 $(0 \in H^2(V \times V^{\vee}))$. I.e. in $\text{Ker}(\alpha)$

$$
\delta \mathfrak{z}^{\prime} v_{I[\bar{\mathfrak{z}}}^c F_{|c|\bar{b}]} = D_{[\bar{\mathfrak{z}}}\Lambda_{\bar{b}]} \ \ (=0 \in H^2(V \times V^{\vee})) \tag{10}
$$

• Now, if we let $\Lambda = -2\delta A$ we recover

$$
\delta \mathfrak{z}^I v_{I[\bar{a}]}^c F_{|c|\bar{b}]}^{(0)} + 2D_{[\bar{a}}^{(0)} \delta A_{\bar{b}]} = 0 \qquad (11)
$$

- That is, the fluctuation of the 10d E.O.M. $F_{ab} = 0$ is implied by the Atiyah sequence.
- Note that the bundle moduli are unaffected (not fixed). I.e. an injection $0 \to H^1(V \otimes V^{\vee}) \to H^1(\mathcal{Q}).$
- We want to know:
	- Ker(α): Free C.S. moduli
	- $Im(\alpha)$: Stabilized C.S. moduli
- Why wasn't this done 20 years ago? \Rightarrow General story not applied in heterotic string theory and tough to compute...
- Using algebraic geometry, this is just polynomial (Cech, etc) multiplication. Hard, but can be done!

 Ω

- All good in principle... but what is $Im(\alpha)$? How many moduli fixed??
- Let's start simple...
- Line bundles?
	- For a line bundle on a K3, $Im(\alpha) = \mathbb{C}$
	- For a CY threefold, → Line bundles do not constrain C.S. moduli. Always deform in the with X since $H^2(\mathcal{L} \otimes \mathcal{L}^{\vee}) = H^2(\mathcal{O}_X) = 0$
- However, what about simplest possible rank 2 bundle? \rightarrow consider an an SU(2) extension

$$
0 \to \mathcal{L} \to V \to \mathcal{L}^{\vee} \to 0 \tag{12}
$$

K ロ ト K 何 ト K ヨ ト K

In principle, can stabilize arbitrarily many moduli!

 Ω

A Threefold Example

 \bullet Let's consider an explicit extension: $0 \to \mathcal{L} \to V \to \mathcal{L}^\vee \to 0$

 $\big]^{3,75}$ $\begin{array}{c|c} \mathbb{P}^1 & 2 \\ \mathbb{P}^1 & 2 \\ \mathbb{P}^2 & 3 \end{array}$ For example on the Calabi-Yau threefold $X =$ \bullet

$$
0 \to \mathcal{O}(-2,-1,2) \to V \to \mathcal{O}(2,1,-2) \to 0 \tag{13}
$$

- Why this one? Here $Ext^1(\mathcal{L}^{\vee}, \mathcal{L}) = H^1(X, \mathcal{O}(-4, -2, 4)) = 0$ generically. Hence cannot define the bundle for general complex structure!
- Let $\mathcal{A} = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$. The Koszul sequence for X gives us $0 \to \mathcal{O}(-2,-2,-3) \otimes \mathcal{L}_\mathcal{A} \stackrel{p_o}{\to} \mathcal{L}_\mathcal{A} \to \mathcal{L}_X \to 0$ $0 \rightarrow H^1(X,\mathcal{O}(-4-2,4)) \rightarrow H^2(\mathcal{A},\mathcal{O}(-6,-4,1)) \stackrel{p_0}{\rightarrow} H^2(\mathcal{A},\mathcal{O}(-4,-2,4))$ $\rightarrow H^2(X, -4, -2, 4) \rightarrow 0$
- For generic degree $\{2, 2, 3\}$ embedding polynomials, p , $Ext = 0$, but on a higher-codimensional locus, the cohomology c[an](#page-26-0) [ju](#page-28-0)[m](#page-26-0)[p.](#page-27-0) Ω

Jumping cohomology and the Atiyah class

- We can explicitly solve for when $\ker(p) \neq 0$ and we find that on a 58-dimensional locus in C.S. moduli space, $h^1(X, \mathcal{O}(-4, -2, 4)) = 18$.
- **•** Begin at a point, p_0 for which $Ext \neq 0$, do Atiyah computation of linear deformations.
- Since this extension bundle cannot be defined away from this 58-dimensional locus we expect $Im(\alpha) \neq 0$
	- Note: Split bundle $\mathcal{L} \oplus \mathcal{L}^{\vee}$ is not supersymmetric for arbitrary Kähler moduli and not infinitesimally deformable to V.
	- $H^1(X, \mathcal{L}^{\otimes 2})$ does not disappear as we perturb the C.S., rather the one forms are simply no-longer $\{0, 1\}$ w.r.t to the new C.S.

As a result, we would expect that $im(\alpha) \geq 17$.

Also since $im(\alpha) \leq h^2(V \otimes V^{\vee}) = dim(Ext^1(\mathcal{L}^{\vee}, \mathcal{L})) - 1 = 17$. Hence, $17 \leq im(\alpha) \leq 17$ $17 \leq im(\alpha) \leq 17$. So, we expect to stabilize e[xac](#page-27-0)[tly](#page-29-0) 17 C.S. 17 C.S. 17 C.S. 17 C.S. m[o](#page-0-0)[dul](#page-36-0)[i.](#page-0-0) $\frac{1}{5}$
Lara Anderson (UPenn) Supersymmetry and Moduli Stabilization in Heterotic [Rutgers - Oct. 26th, 10

 2990

- What to do to compute $Im(\alpha)$?
- We need $\alpha = [F^{1,1}] \in H^1(\text{End}(V) \otimes TX^{\vee})$ where

$$
0 \to \mathcal{O}^{\oplus 3} \to \mathcal{O}(1,0,0)^{\oplus 2} \oplus \mathcal{O}(0,1,0)^{\oplus 2} \oplus \mathcal{O}(0,0,1)^{\oplus 3} \to \mathcal{TA} \to 0
$$

$$
0 \to \mathcal{TX} \to \mathcal{TA} \to \mathcal{O}(2,2,3) \to 0
$$

and we must determine the cohomology from

- Have explicitly generated polynomial basis of source, target and map for $H^1(TX) \stackrel{\alpha}{\rightarrow} H^2(V \otimes V^{\vee})$
- Direct computation yields that $Im(\alpha) = 17$. No. of moduli stabilized!
- Interesting observation: The polynomial multiplication in the "jumping" cohomology locus $H^2(\mathcal{A}, \mathcal{O}(-6, -4, 1)) \stackrel{p_0}{\rightarrow} H^2(\mathcal{A}, \mathcal{O}(-4, -2, 4))$ is identical to the calculation of $H^1(TX) \stackrel{\alpha}{\rightarrow} H^2(V \otimes V^{\vee})$, down to the exact monomials!
- For the 4d Theory: We have Gukov-Vafa-Witten superpotential $W = \int_X \Omega \wedge H$ where $H = dB - \frac{3\alpha'}{\sqrt{2}} (\omega^{3YM} - \omega^{3L})$
- In Minkowski vacuum (with $W = 0$), F-terms:

$$
F_{C_i} = \frac{\partial W}{\partial C_i} = -\frac{3\alpha'}{\sqrt{2}} \int_X \Omega \wedge \frac{\partial \omega^{3YM}}{\partial C_i}
$$

Dimensional Reduction Anzatz: $A_{\mu} = A_{\mu}^{(0)} + \delta A_{\mu} + \bar{\omega}_{\mu}^{i} \delta C_{i} + \omega_{\mu}^{i} \delta \bar{C}_{i}$

$$
F_{C_i} = \int_X e^{\bar{a}\bar{c}\bar{b}} \epsilon^{abc} \Omega^{(0)}_{abc} 2\bar{\omega}_{\bar{c}}^{xi} \operatorname{tr}(\mathcal{T}_x \mathcal{T}_y) \left(\delta \delta^I v_{I[\bar{a}]}^c F_{|c|\bar{b}]}^{(0)y} + 2D_{[\bar{a} \delta}^{(0)} \delta A_{\bar{b}]}^y \right)
$$

 Ω

- $0 \to \mathcal{L} \to V \to \mathcal{L}^{\vee}$ gives an $N = 1$ 4d theory with E_7 symmetry
- \bullet In general, λ is stabilized at the compactification scale. To explicitly describe F-terms F_{C_i} , we must find a region of moduli space for which χ is light.
- \bullet Here this happens near (but not on!) the Stability Wall. Extra $U(1)$ gives charges, $C_+ \in H^1(\mathcal{L}^{\otimes 2})$, $C_- \in H^1(\mathcal{L}^{\vee \otimes 2})$. E_7 singlets only in spectrum.
- Superpotential: $W = \lambda_{ia}(3) C^i_+ C^a_- + \Gamma_{ijab} C^i_+ C^j_+ C^a_- C^b_-$ −
- D-term: $D^{U(1)} = Fl G_{i\bar{j}}^{+} C_{\bar{i}}^{i} \overline{C}_{+}^{\bar{j}} + G_{\bar{a}\bar{b}}^{-} C_{-}^{\bar{a}} \overline{C}_{-}^{\bar{b}}$ −
- Choose Vacuum: $\lt C_+$ > \neq 0 and $\lt C_-$ > = 0. With C_+ chosen to cancel FI term.

 QQ

イロト イ母 ト イヨ ト イヨト

- ϕ $\langle C_{-} \rangle = 0$ in vacuum $\Rightarrow W = 0$, $\partial W / \partial \zeta = 0$, and $\partial W / \partial C_{+} = 0$
- This leaves "The" F-term: $\frac{\partial W}{\partial C_{-}^2} = \lambda_{i a}(\mathfrak{z}) < C_{+}^i > = 0$
- Choose vacuum value of the C.S. so that $\mathsf{Ext} \neq 0 \Rightarrow \lambda = 0$. Supersymmetric Minkowski vacuum!
- Now in fluctuation

$$
\delta(W) = 0
$$

\n
$$
\delta\left(\frac{\partial W}{\partial C_+^i}\right) = 0
$$

\n
$$
\delta\left(\frac{\partial W}{\partial \mathfrak{z}^I}\right) = \frac{\partial \lambda_{ia}}{\partial \mathfrak{z}^I_{\perp}} < C_+^i > \delta C_-^a = 0
$$

\n
$$
\delta\left(\frac{\partial W}{\partial C_-^b}\right) = \frac{\partial \lambda_{ib}}{\partial \mathfrak{z}^I_{\perp}} \delta \mathfrak{z}^I_{\perp} < C_+^i > +\Gamma_{ijab} < C_+^i > C_+^i > \delta C_-^a = 0
$$

 $\frac{\partial \lambda_i}{\partial \delta'}$ vanishes along the 58-dimensional locus. ⊥ to locus, $\delta \delta'$ _⊥ gets a mass. δC^2 − also massive. Agrees with Atiyah Computation! $($ \Box $)$ $($ \overline{A} $)$ $($ 290

A Hidden sector mechanism

- Conclusion: A generic bundle perturbatively stabilizes some of the C.S. moduli
- We can find bundles that stabilize all or many of the complex structure moduli
- Such bundles probably not always well-suited for visible sector phenomenology (i.e. Three families, particle spectrum, etc).
- However, such bundles can *always* be added to the Hidden sector
	- For example, the $SU(2)$ extension $0 \to \mathcal{L} \to V \to \mathcal{L}^{\vee} \to 0$ can be defined on any CY with $h^{1,1} > 1$.
	- Slope-stable. I.e. D-terms vanish.
	- Generically satisfies anomaly cancellation: $c_2(TX) c_2(V_1) c_2(V_2) \geq 0$
	- \bullet \bullet E_7 symmetry compatible with gaugino conde[ns](#page-32-0)a[tio](#page-34-0)[n](#page-32-0)[, e](#page-33-0)t[c.](#page-0-0)

 Ω

Stabilization in the Hidden sector

 299

イロト イ御 トメ ヨ トメ ヨ

Conclusions – Complex Structure Moduli

- The presence of a *holomorphic* vector bundle constrains C.S. moduli
- The moduli of a heterotic compactification: $H^{1,1}(X)$, $H^{1}(V \otimes V^{\vee})$, $Ker(\alpha)$
- $Im(\alpha)$ can be computed
- Leads to F-terms in 4-dimensions: $\frac{\partial W}{\partial C_l}$ where C_l are 4*d* matter fields
- The C.S. can be stabilized at the perturbative level without moving away from a CY manifold
	- Avoids problems of KKLT scenarios in heterotic
	- Allows us to keep heterotic model-building toolkit!
- Provides a general Hidden Sector mechanism for stabilizing the C.S. moduli in Heterotic (M-theory) compactifications.
- Work in progress Add non-perturbative effects to remaining stabilize remaining moduli $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$ Ω

The End

重

 299

メロト メ都 トメ ヨ トメ ヨト