Thermodynamic Bubble Ansatz

Luis Fernando Alday

IAS

Rutgers - January 2010

arXiv:0705.0303,..., arXiv:0904.0663, L.F.A & J. Maldacena; arXiv:0911.4708, L.F.A, D. Gaiotto & J. Maldacena

< 67 ▶

Motivations

We will be interested in gluon scattering amplitudes of planar $\mathcal{N}=4$ super Yang-Mills.

Motivation: It can give non trivial information about more realistic theories but is more tractable.

- Weak coupling: Perturbative computations are easier than in QCD. In the last years a huge technology was developed.
- The strong coupling regime can be studied, by means of the gauge/string duality, through a weakly coupled string sigma model.

Our aim

Learn about scattering amplitudes of planar $\mathcal{N} = 4$ super Yang-Mills by means of the AdS/CFT correspondence.

• AdS/CFT: Scattering amplitudes \rightarrow minimal surfaces in AdS

What we will do in practice

Compute the area of minimal surfaces in AdS

- Formulation of the problem
- 2 Minimal surfaces
 - Minimal surfaces in AdS₃
 - Regular polygons
 - Minimal surfaces in AdS₅

Our main tool

AdS/CFT duality

 $\begin{array}{lll} \mbox{Four dimensional} & \mbox{Type IIB string theory} \\ \mbox{maximally SUSY Yang-Mills} & \Leftrightarrow & \mbox{on $AdS_5 \times S^5$}. \end{array}$

$$\sqrt{\lambda} \equiv \sqrt{g_{YM}^2 N} = rac{R^2}{lpha'} \qquad \qquad rac{1}{N} pprox g_s$$

• The AdS/CFT duality allows to compute quantities of $\mathcal{N} = 4$ SYM at strong coupling by doing geometrical computations on AdS.

• □ ▶ • □ ▶ • □ ▶ • □

 Remember a similar problem: Expectation value of Wilson loops at strong coupling (Maldacena, Rey)

$$ds^2 = R^2 \frac{dx_{3+1}^2 + dr^2}{r^2}$$

• We need to consider the minimal area ending (at *r* = 0) on the Wilson loop.

$$\langle W
angle \sim e^{-rac{\sqrt{\lambda}}{2\pi} A_{min}}$$

• Problem: Scattering amplitude of gluons with momenta k_1 , k_2 , k_N at strong coupling.

1

• The problem reduces to a minimal area problem in AdS_5 . What is now the boundary of our world-sheet?

- Draw a polygon whose segments are $\Delta y^{\mu} = k^{\mu}$
- Polygon of light-like edges.
- Look for the minimal surface ending in such polygon.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

Prescription

$${\cal A}_{N}\sim e^{-rac{\sqrt{\lambda}}{2\pi}{\cal A}_{min}}$$

 A_N : Leading exponential behavior of the *n*-point scattering amplitude.

 $A_{min}(k_1^{\mu}, k_2^{\mu}, ..., k_N^{\mu})$: Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

- Minimal surfaces are described by classical strings.
- The full problem involves strings on AdS₅.

Mathematical problem

• Minimal area surface ending in the boundary of AdS at a polygon parametrized by X_i.

• The area will depend on cross-ratios $\frac{X_{ij}^2 X_{kl}^2}{X_{x}^2 X_{x}^2}$.

- Given the cross-ratios we would like to compute $A_{min}\left(\frac{\chi_{ij}^2\chi_{kl}^2}{\chi_{i}^2\chi_{kl}^2}\right)$
- Start with the simpler case: strings on AdS₃.

Formulation of the problem Minimal surfaces Conclusions and outlook Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

Strings on AdS_3 : world-sheet ending on a 2D polygon, *e.g.* in the cylinder.

- Consider a zig-zagged Wilson loop of 2*n* sides
- Parametrized by n X_i⁺ coordinates and n X_i⁻ coordinates.
- We can build 2n 6 invariant cross ratios.

Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

Classical strings on AdS_3

Strings on
$$AdS_3$$
: $\vec{Y} \cdot \vec{Y} = -Y_{-1}^2 - Y_0^2 + Y_1^2 + Y_2^2 = -1$

 $\textit{Eoms}: \partial \bar{\partial} \vec{Y} - (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}) \vec{Y} = 0, \quad \textit{Virasoro}: \partial \vec{Y} \cdot \partial \vec{Y} = \bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y} = 0$

Pohlmeyer kind of reduction \rightarrow generalized Sinh-Gordon

$$\alpha(z,\bar{z}) = \log(\partial \vec{Y}.\bar{\partial} \vec{Y}), \quad p^2 = \partial^2 \vec{Y}.\partial^2 \vec{Y}$$
$$\downarrow$$
$$p = p(z), \quad \partial \bar{\partial} \alpha - e^{\alpha} + |p(z)|^2 e^{-\alpha} = 0$$

- $\alpha(z, \bar{z})$ and p(z) invariant under conformal transformations.
- Area of the world sheet: ${\cal A}=\int e^lpha d^2 z$

・ロト ・同ト ・ヨト ・ヨト

Formulation of the problem Minimal surfaces Conclusions and outlook Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

Generalized Sinh-Gordon \rightarrow Strings on AdS_3 ?

From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$\begin{array}{l} (\partial + B^L)\psi_a^L = 0 \\ (\partial + B^R)\psi_a^R = 0 \end{array} \qquad B_z^L = \begin{pmatrix} \partial \alpha & e^\alpha \\ e^{-\alpha}\rho(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{\boldsymbol{a},\boldsymbol{\dot{a}}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_{\boldsymbol{a}}^L M \psi_{\boldsymbol{\dot{a}}}^R$$

One can check that Y constructed that way has all the correct properties.

< □ > < 同 > < 回 >

Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d

• $A_{1,2} \rightarrow A_{1,2}$: 2d gauge field, $A_{3,4} \rightarrow \Phi, \Phi^*$: Higgs field.

Hitchin equations $F^{(4)} = *F^{(4)} \longrightarrow \begin{array}{c} D_{\bar{z}} \Phi = D_z \Phi^* = 0 \\ F_{z\bar{z}} + [\Phi, \Phi^*] = 0 \end{array}$

- We can decompose $B = A + \Phi$.
- $dB + B \wedge B = 0$ implies the Hitchin equations.
- We have a particular solution of the SU(2) Hitchin system.
- Nice relation: $A = \int Tr \Phi \Phi^*$.

イロト イポト イヨト イヨト

Standard form of the sinh-Gordon equation: go to the w-plane

$$dw = \sqrt{p(z)}dz, \quad \hat{\alpha} = \alpha - \frac{1}{4}\log p\bar{p} \rightarrow \partial_w \bar{\partial}_{\bar{w}} \hat{\alpha} = \sinh 2\hat{\alpha}$$

- Simpler equation in a more complicated space.
- Convenient to understand some features of the solution.

$$\mathcal{A} = \int e^{\alpha} d^2 z = \int e^{\hat{\alpha}} d^2 w$$

< A >

Feature of α and p(z) for solutions corresponding to scattering amplitudes?

p(z) = 1, $\hat{\alpha} = 0 \rightarrow$ trivial inverse problem \rightarrow four cusps solution!

- Near the boundary we approach the cusps, so $\hat{\alpha}$ decays at infinity.
- Assume p(z) is a polynomial.
- Define a "regularized" area $A_{reg} = \int d^2 w (e^{\hat{lpha}} 1).$

< ロ > < 同 > < 回 > < 回 >

Consider a generic polynomial of degree n-2

$$p(z) = z^{n-2} + c_{n-4}z^{n-4} + \dots + c_1z + c_0$$

- We have used translations and re-scalings in order to fix the first two coefficients to one and zero.
- For a polynomial of degree n-2 we are left with 2n-6 (real) variables.
- This is exactly the number of invariant cross-ratios in two dimensions for the scattering of 2*n* gluons!

Null Wilsons loops of 2n sides $\Leftrightarrow p^{(n-2)}(z)$ and $\hat{\alpha}(z,\bar{z}) \to 0$

- Degree of the polynomial \rightarrow number of cusps.
- \bullet Coefficients of the polynomial \rightarrow shape of the polygon.

ロト (得) (手) (手)

Formulation of the problem	
Minimal surfaces	Regular polygons
Conclusions and outlook	

Regular polygons

- Simplest case: $p(z) = z^{n-2} \rightarrow w = \frac{n}{2} z^{n/2}$
- In the w plane we go around n/2 times.

Boundary: $|w| \gg 1 \rightarrow \hat{\alpha} \approx 0$. Gral solution of the linear problem:

$$\psi^L_{a} = c^+_{a} \eta^+ + c^-_{a} \eta^-, \qquad \eta^+ = \left(\begin{smallmatrix} \mathrm{e}^{\mathrm{w} + \bar{w}} \\ \mathrm{0} \end{smallmatrix}\right), \quad \eta^- = \left(\begin{smallmatrix} \mathrm{0} \\ \mathrm{e}^{-(\mathrm{w} + \bar{w})} \end{smallmatrix}\right)$$

- Focused in the left problem.
- w-plane divided into two regions (anti-Stokes sectors), ±Re(w) > 0
- In each sector, one of the two solutions dominates.
- In the anti-Stokes lines, both are of the same order.

< /₽ > < E >

There is a Stokes phenomenon going on...

- The large solution is only defined up to a multiple of the small solution.
- Actually, as we cross the (e.g. the first) Stokes line...

$$\left(\begin{smallmatrix} \mathrm{e}^{w+\bar{w}} \\ \mathrm{0} \end{smallmatrix}\right) \to \left(\begin{smallmatrix} \mathrm{e}^{w+\bar{w}} \\ \mathrm{0} \end{smallmatrix}\right) + \gamma \left(\begin{smallmatrix} \mathrm{0} \\ \mathrm{e}^{-(w+\bar{w})} \end{smallmatrix}\right)$$

- This jump in the small component of the large solution is characterized by the Stokes matrix $S_a^b = \begin{pmatrix} 1 & \gamma \\ 0 & 1 \end{pmatrix}$
- This small component becomes important as we cross to the other anti-Stokes region.

Formulation of the problem Minimal surfaces Conclusions and outlook Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

The right-problem is similar: $\psi_a^R = c_a^+ \left(e^{\frac{w+\bar{w}}{l}}_{0} \right) + c_a^- \left(e^{\frac{w+\bar{w}}{l}}_{e^{-\frac{w+\bar{w}}{l}}} \right)$

But now the Stokes and anti-Stokes lines are rotated.

< □ > < □ >

Formulation of the problem Minimal surfaces Conclusions and outlook Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

- The *w*-plane is divided into quadrants.
- At each quadrant, a pair of solutions $(\eta^L \text{ and } \eta^R)$ is dominant.
- The whole region corresponds to a single point in space-time, a cusp.
- As we cross one of the anti-Stokes lines, the dominant solution L or R changes and we jump to the next cusp.
- At each step only one changes \rightarrow in $\mathbb{R}^{1,1}$ only the X^+ or X^- coordinate changes
- As we go around the *w*-plane *n*/2 times, we get the 2*n* cusps!

• The general case is less symmetric but works similarly.

Formulation of the problem	
Minimal surfaces	Regular polygons
Conclusions and outlook	Minimal surfaces in AdS ₅

Strings on AdS₅:

- Still a holomorphic quantity $P(z) = \partial^2 \vec{Y} . \partial^2 \vec{Y}$.
- AdS_3 limit: $P(z) \rightarrow p(z)^2$.
- Two more physical fields: $\alpha(z, \bar{z}) = \log(\partial \vec{Y} \cdot \bar{\partial} \vec{Y})$ but also $\beta(z, \bar{z})$ and $\gamma(z, \bar{z})$.

For N gluons, how does the counting of cross-ratios work?

$$P(z) = z^{N-4} + c_{N-6} z^{N-6} ... + c_0 \rightarrow 2N - 10$$
 real coefficients.

- For AdS₄ we have exactly 2N − 10 cross ratios, so this is the whole picture (α and β are unique once you have fixed P(z))
- For AdS_5 there are N 5 extra degrees of freedom coming from the boundary conditions, giving the expected 3N - 15cross-ratios in 4d scattering!

Formulation of the problem Minimal surfaces Conclusions and outlook Minimal surfaces in AdS₃ Regular polygons Minimal surfaces in AdS₅

What about the Hitchin equations?

- Not anymore Left+Right factorization but we still have a Hitchin system!
- We obtain a particular case of SU(4) Hitchin system.

$$\Phi_{z} = \begin{pmatrix} 0 & e^{-1/2\alpha} v_{I} \tau^{I} \\ e^{1/2\alpha} \mathbf{1}_{2} & 0 \end{pmatrix}, \quad A_{z} = \begin{pmatrix} -\partial \alpha + d_{IJ} \tau^{IJ} & 0 \\ 0 & \partial \alpha + d_{IJ} \tau^{IJ} \end{pmatrix}$$

Not generic but fixed by the following projection

$$C\Phi^T C^{-1} = i\Phi, \quad CA^T C^{-1} = -A, \quad \rightarrow Tr(x - \Phi) = x^4 - P(z)$$

Space time coordinates:

$$(\partial + A_z + \Phi_z)\psi_a = 0, \ (\bar{\partial} + A_{\bar{z}} + \Phi_{\bar{z}})\psi_a = 0, \ Y \approx \psi_a \Gamma_{ab}\psi_b$$

General prescription for polynomial p(z) in AdS_3 or P(z) on AdS_5

- Compute the space-time cross-ratios in terms of the coefficients of P(z).
- Compute the area in terms of the coefficients of P(z).
- Write the area in terms of the space-time cross-ratios.

First non trivial cases:

- On AdS_3 : $p(z) = z^2 m$, the "octagon".
- On AdS_5 : $P(z) = z^2 U$, the "hexagon".

but its very hard to proceed...

Ask someone else!

- Gaiotto, Moore and Neitzke have found the same Hitchin equations in a completely different context.
- They have developed a technology very useful for solving the problem at hand!

Idea: Use integrability to promote the Hitchin system to a family of flat connections (introduce a spectral parameter)

$$B_z^{(\zeta)} = A_z + \frac{\Phi_z}{\zeta}, \quad B_{\bar{z}}^{(\zeta)} = A_{\bar{z}} + \zeta \Phi_{\bar{z}}$$

Formulation of the problem	
Minimal surfaces	Regular polygons
Conclusions and outlook	Minimal surfaces in AdS ₅

Why is this useful?

 Consider the deformed auxiliary linear problem leading to Y[ζ] (such that Y[1] is the physical solution).

$$(\partial + A_z + \frac{\Phi_z}{\zeta})\psi(\zeta) = 0$$

- Consider the cross-ratios as a function of ζ (such that at $\zeta = 1$ we obtain the physical cross-ratios).
- For ζ → 0 or ζ → ∞ the connections simplify and we can solve such inverse problem in a WKB approximation!

$$\psi \approx e^{\frac{1}{\zeta} \int P(z)^{1/4} dz}$$

Formulation of the problem	
Minimal surfaces	Regular polygons
Conclusions and outlook	Minimal surfaces in AdS ₅

Setting up a Riemann-Hilbert problem.

- We expect the cross-ratios as a function of ζ to be analytic away from $\zeta = 0, \infty$.
- The cross-ratios have different asymptotic behaviors as $\zeta \to 0, \infty$ depending on the phase of ζ , so they display Stokes phenomenon in the ζ plane.

Alternatively

- We can find some functions χ_a[ζ] of the cross-ratios, with uniform small/large ζ behavior on the whole ζ-plane.
- Due to Stokes, the price to pay is that there are discontinuities in the χ_a[ζ] along some rays in the ζ-plane.
- GMN: This defines a Riemann-Hilbert problem which can be rewritten as an integral equation for the cross-ratios! (as a function of ζ)

Formulation of the problem	
Minimal surfaces	Regular polygons
Conclusions and outlook	Minimal surfaces in AdS ₅

For the case of the Hexagon $P(z) = z^2 - U^{3/4}$

$$\begin{split} \epsilon(\theta) &= 2|U|\cosh\theta + \frac{\sqrt{2}}{\pi}\int d\theta' \frac{\cosh(\theta-\theta')}{\cosh 2(\theta-\theta')}\log(1+e^{-\tilde{\epsilon}}) + \\ &+ \frac{1}{2\pi}\int d\theta' \frac{1}{\cosh(\theta-\theta')}\log(1+\mu e^{-\epsilon})(1+\frac{e^{-\epsilon}}{\mu}) \\ \tilde{\epsilon}(\theta) &= 2\sqrt{2}|U|\cosh\theta + \frac{1}{\pi}\int d\theta' \frac{1}{\cosh(\theta-\theta')}\log(1+e^{-\tilde{\epsilon}}) + \\ &+ \frac{\sqrt{2}}{\pi}\int d\theta' \frac{\cosh(\theta-\theta')}{\cosh 2(\theta-\theta')}\log(1+\mu e^{-\epsilon})(1+\frac{e^{-\epsilon}}{\mu}) \end{split}$$

• Exactly the form of TBA equations!

A 10

I ≡ ▶ < </p>

Formulation of the problem	
Minimal surfaces	Regular polygons
Conclusions and outlook	Minimal surfaces in AdS ₅

• What is the regularized area?

$$egin{aligned} &A_{reg} = rac{1}{2\pi} \int_{-\infty}^{\infty} d heta 2 |U| \cosh heta \log ig(1+e^{-\epsilon}\muig) (1+rac{e^{-\epsilon}}{\mu}ig) + \ &+rac{1}{2\pi} \int_{-\infty}^{\infty} d heta 2 \sqrt{2} |U| \cosh heta \log ig(1+e^{- ilde{\epsilon}}ig) \end{aligned}$$

• Exactly the free energy of the TBA system!

Some exact results...

• High temperature/Conformal limit of the TBA equations $U = 0 \rightarrow u_1 = u_2 = u_3$

Hexagonal Wilson loop in AdS_5 in $U \rightarrow 0$ limit

$$R(u, u, u) = rac{\phi^2}{3\pi} + rac{3}{8}(\log^2 u + 2Li_2(1-u)), \quad u = rac{1}{4\cos^2(\phi/3)}$$

Some more exact results...

Eight sided Wilson loop in AdS_3 (the first non trivial)

$$R(m,\bar{m}) = \frac{1}{2} \int dt \frac{\bar{m}e^t - me^{-t}}{\tanh 2t} \log\left(1 + e^{-\pi(\bar{m}e^t + me^{-t})}\right)$$

< D > < A > < B >

What have we done and what needs to be done

- We have given a further step towards the computation of classical solutions relevant to scattering amplitudes at strong coupling.
- Integrability is the key ingredient of the computation

For the future...

- Could we compute these amplitudes at all values of the coupling?!
- What about other kind of solutions? *e.g.* correlations functions?
- Include fermions and understand non MHV amplitudes?