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Motivations

We will be interested in gluon scattering amplitudes of planar
N = 4 super Yang-Mills.

Motivation: It can give non trivial information about more realistic
theories but is more tractable.

Weak coupling: Perturbative computations are easier than in
QCD. In the last years a huge technology was developed.

The strong coupling regime can be studied, by means of the
gauge/string duality, through a weakly coupled string sigma
model.

Our aim

Learn about scattering amplitudes of planar N = 4 super
Yang-Mills by means of the AdS/CFT correspondence.
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AdS/CFT : Scattering amplitudes → minimal surfaces in AdS

What we will do in practice

Compute the area of minimal surfaces in AdS

1 Formulation of the problem

2 Minimal surfaces
Minimal surfaces in AdS3

Regular polygons
Minimal surfaces in AdS5

3 Conclusions and outlook
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Our main tool

AdS/CFT duality

Four dimensional Type IIB string theory
maximally SUSY Yang-Mills ⇔ on AdS5 × S5.

√
λ ≡

√
g2
YMN =

R2

α′
1

N
≈ gs

The AdS/CFT duality allows to compute quantities of N = 4
SYM at strong coupling by doing geometrical computations
on AdS .
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Remember a similar problem: Expectation value of Wilson
loops at strong coupling (Maldacena, Rey)

ds2 = R2 dx2
3+1 + dr2

r2

r=0

We need to consider the minimal area
ending (at r = 0 ) on the Wilson loop.

〈W 〉 ∼ e−
√
λ

2π
Amin
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Problem: Scattering amplitude of gluons with momenta k1,
k2, .... kN at strong coupling.

⇓

The problem reduces to a minimal area problem in AdS5.

What is now the boundary of our world-sheet?

r !> 0

k

3k4k

1k

1 2

34

2

Draw a polygon whose segments
are ∆yµ = kµ

Polygon of light-like edges.

Look for the minimal surface
ending in such polygon.

Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Prescription

AN ∼ e−
√
λ

2π
Amin

AN : Leading exponential behavior of the n−point scattering
amplitude.
Amin(kµ1 , k

µ
2 , ..., k

µ
N): Area of a minimal surface that ends on a

sequence of light-like segments on the boundary.

Minimal surfaces are described by classical strings.

The full problem involves strings on AdS5.
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Mathematical problem

Minimal area surface ending in the boundary of AdS at a
polygon parametrized by Xi .

Xi : Location of the cusps; X 2
i ,i+1 = 0.

The area will depend on cross-ratios
X 2

ij X
2
kl

X 2
ikX 2

jl
.

Given the cross-ratios we would like to compute Amin(
X 2

ij X
2
kl

X 2
ikX 2

jl
)

Start with the simpler case: strings on AdS3.
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Strings on AdS3: world-sheet ending on a 2D polygon, e.g. in the
cylinder.

Consider a zig-zagged Wilson loop of 2n
sides

Parametrized by n X +
i coordinates and n

X−i coordinates.

We can build 2n− 6 invariant cross ratios.

X
!
2

X
!
4X

+
1

X
+
3

X
+
2 X

!
3

!1 1
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Classical strings on AdS3

Strings on AdS3 : ~Y .~Y = −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 = −1

Eoms : ∂∂̄ ~Y−(∂~Y .∂̄ ~Y )~Y = 0, Virasoro : ∂~Y .∂ ~Y = ∂̄ ~Y .∂̄ ~Y = 0

Pohlmeyer kind of reduction → generalized Sinh-Gordon

α(z , z̄) = log(∂~Y .∂̄ ~Y ), p2 = ∂2~Y .∂2~Y

↓
p = p(z), ∂∂̄α− eα + |p(z)|2e−α = 0

α(z , z̄) and p(z) invariant under conformal transformations.

Area of the world sheet: A =
∫

eαd2z
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Generalized Sinh-Gordon → Strings on AdS3?

From α, p construct flat connections BL,R and solve two linear
auxiliary problems.

(∂ + BL)ψL
a = 0

(∂ + BR)ψR
ȧ = 0

BL
z =

(
∂α eα

e−αp(z) −∂α

)

Space-time coordinates

Ya,ȧ =

(
Y−1 + Y2 Y1 − Y0

Y1 + Y0 Y−1 − Y2

)
= ψL

aMψR
ȧ

One can check that Y constructed that way has all the correct
properties.
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Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d

A1,2 → A1,2: 2d gauge field, A3,4 → Φ,Φ∗: Higgs field.

Hitchin equations

F (4) = ∗F (4) →
Dz̄Φ = DzΦ∗ = 0

Fzz̄ + [Φ,Φ∗] = 0

We can decompose B = A + Φ.

dB + B ∧ B = 0 implies the Hitchin equations.

We have a particular solution of the SU(2) Hitchin system.

Nice relation: A =
∫

TrΦΦ∗.
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Standard form of the sinh-Gordon equation: go to the w−plane

dw =
√

p(z)dz , α̂ = α− 1

4
log pp̄ → ∂w ∂̄w̄ α̂ = sinh2α̂

Simpler equation in a more complicated space.

Convenient to understand some features of the solution.

A =

∫
eαd2z =

∫
eα̂d2w
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Feature of α and p(z) for solutions corresponding to scattering
amplitudes?

p(z) = 1, α̂ = 0 → trivial inverse problem → four cusps solution!

Near the boundary we approach the cusps, so α̂ decays at
infinity.

Assume p(z) is a polynomial.

Define a ”regularized” area Areg =
∫

d2w(eα̂ − 1).

Luis Fernando Alday Thermodynamic Bubble Ansatz



Formulation of the problem
Minimal surfaces

Conclusions and outlook

Minimal surfaces in AdS3
Regular polygons
Minimal surfaces in AdS5

Consider a generic polynomial of degree n − 2

p(z) = zn−2 + cn−4z
n−4 + ...+ c1z + c0

We have used translations and re-scalings in order to fix the
first two coefficients to one and zero.

For a polynomial of degree n− 2 we are left with 2n− 6 (real)
variables.

This is exactly the number of invariant cross-ratios in two
dimensions for the scattering of 2n gluons!

Null Wilsons loops of 2n sides⇔ p(n−2)(z) and α̂(z , z̄)→ 0

Degree of the polynomial → number of cusps.

Coefficients of the polynomial → shape of the polygon.
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Regular polygons

Simplest case: p(z) = zn−2 → w = n
2zn/2

In the w plane we go around n/2 times.

Boundary: |w | � 1→ α̂ ≈ 0. Gral solution of the linear problem:

ψL
a = c+

a η
+ + c−a η

−, η+ =
(

ew+w̄

0

)
, η− =

(
0

e−(w+w̄)

)

i

anti!Stokes

anti!Stokes

Stokes Stokes

i+1 S Si+1 i

next sheet

w!plane, left problem
Focused in the left problem.

w−plane divided into two regions
(anti-Stokes sectors), ±Re(w) > 0

In each sector, one of the two
solutions dominates.

In the anti-Stokes lines, both are of
the same order.
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There is a Stokes phenomenon going on...

The large solution is only defined up to a multiple of the small
solution.

Actually, as we cross the (e.g. the first) Stokes line...

(
ew+w̄

0

)
→
(

ew+w̄

0

)
+ γ

(
0

e−(w+w̄)

)
This jump in the small component of the large solution is
characterized by the Stokes matrix Sb

a =
(

1 γ
0 1

)
This small component becomes important as we cross to the
other anti-Stokes region.
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The right-problem is similar: ψR
a = c+

a

(
e

w+w̄
i

0

)
+ c−a

(
0

e−
w+w̄

i

)

next sheet

Stokes

anti!Stokes

Stokes

anti!Stokes

i

i+1

i

S

S

i+1

w!plane, right problem

But now the Stokes and anti-Stokes lines are rotated.
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X
!
iX

+
i(      ,      )

X
+
i+1 X

!
i(       ,       )

X
+
i+1 X

!
i+1

X
+
i+2 X

!
i+1(       ,       )(       ,       )

w!plane

next sheet

X
+

X
!

X
!
iX

+
i(      ,      )

X
+
i+1 X

!
i(       ,       )

X
+
i+1 X

!
i+1(       ,       )

The w−plane is divided into quadrants.

At each quadrant, a pair of solutions (ηL and
ηR) is dominant.

The whole region corresponds to a single
point in space-time, a cusp.

As we cross one of the anti-Stokes lines, the
dominant solution L or R changes and we
jump to the next cusp.

At each step only one changes → in R1,1

only the X + or X− coordinate changes

As we go around the w−plane n/2 times, we
get the 2n cusps!

The general case is less symmetric but works similarly.
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Strings on AdS5:

Still a holomorphic quantity P(z) = ∂2~Y .∂2~Y .

AdS3 limit: P(z)→ p(z)2.

Two more physical fields: α(z , z̄) = log(∂~Y .∂̄ ~Y ) but also
β(z , z̄) and γ(z , z̄).

For N gluons, how does the counting of cross-ratios work?

P(z) = zN−4 + cN−6z
N−6...+ c0 → 2N − 10 real coefficients.

For AdS4 we have exactly 2N − 10 cross ratios, so this is the
whole picture (α and β are unique once you have fixed P(z))

For AdS5 there are N − 5 extra degrees of freedom coming
from the boundary conditions, giving the expected 3N − 15
cross-ratios in 4d scattering!
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What about the Hitchin equations?

Not anymore Left+Right factorization but we still have a
Hitchin system!

We obtain a particular case of SU(4) Hitchin system.

Φz =
(

0 e−1/2αvI τ
I

e1/2α12 0

)
, Az =

(
−∂α+dIJτ

IJ 0
0 ∂α+dIJτ

IJ

)
Not generic but fixed by the following projection

CΦTC−1 = iΦ, CATC−1 = −A, → Tr(x − Φ) = x4 − P(z)

Space time coordinates:

(∂ + Az + Φz)ψa = 0, (∂̄ + Az̄ + Φz̄)ψa = 0, Y ≈ ψaΓabψb
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General prescription for polynomial p(z) in AdS3 or P(z) on AdS5

Compute the space-time cross-ratios in terms of the
coefficients of P(z).

Compute the area in terms of the coefficients of P(z).

Write the area in terms of the space-time cross-ratios.

First non trivial cases:

On AdS3: p(z) = z2 −m, the ”octagon”.

On AdS5: P(z) = z2 − U, the ”hexagon”.

but its very hard to proceed...
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Ask someone else!

Gaiotto, Moore and Neitzke have found the same Hitchin
equations in a completely different context.

They have developed a technology very useful for solving the
problem at hand!

Idea: Use integrability to promote the Hitchin system to a family
of flat connections (introduce a spectral parameter)

B
(ζ)
z = Az +

Φz

ζ
, B

(ζ)
z̄ = Az̄ + ζΦz̄
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Why is this useful?

Consider the deformed auxiliary linear problem leading to Y [ζ]
(such that Y [1] is the physical solution).

(∂ + Az +
Φz

ζ
)ψ(ζ) = 0

Consider the cross-ratios as a function of ζ (such that at
ζ = 1 we obtain the physical cross-ratios).

For ζ → 0 or ζ →∞ the connections simplify and we can
solve such inverse problem in a WKB approximation!

ψ ≈ e
1
ζ

R
P(z)1/4dz
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Setting up a Riemann-Hilbert problem.

We expect the cross-ratios as a function of ζ to be analytic
away from ζ = 0,∞.

The cross-ratios have different asymptotic behaviors as
ζ → 0,∞ depending on the phase of ζ, so they display Stokes
phenomenon in the ζ plane.

Alternatively

We can find some functions χa[ζ] of the cross-ratios, with
uniform small/large ζ behavior on the whole ζ−plane.

Due to Stokes, the price to pay is that there are
discontinuities in the χa[ζ] along some rays in the ζ−plane.

GMN: This defines a Riemann-Hilbert problem which can be
rewritten as an integral equation for the cross-ratios! (as a
function of ζ)
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For the case of the Hexagon P(z) = z2 − U3/4

ε(θ) = 2|U| cosh θ +
√

2
π

∫
dθ′ cosh(θ−θ′)

cosh 2(θ−θ′) log(1 + e−ε̃) +

+ 1
2π

∫
dθ′ 1

cosh(θ−θ′) log(1 + µe−ε)(1 + e−ε

µ )

ε̃(θ) = 2
√

2|U| cosh θ + 1
π

∫
dθ′ 1

cosh(θ−θ′) log(1 + e−ε̃) +

+
√

2
π

∫
dθ′ cosh(θ−θ′)

cosh 2(θ−θ′) log(1 + µe−ε)(1 + e−ε

µ )

Exactly the form of TBA equations!
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What is the regularized area?

Areg =
1

2π

∫ ∞
−∞

dθ2|U| cosh θ log (1 + e−εµ)(1 +
e−ε

µ
) +

+
1

2π

∫ ∞
−∞

dθ2
√

2|U| cosh θ log (1 + e−ε̃)

Exactly the free energy of the TBA system!
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Some exact results...

High temperature/Conformal limit of the TBA equations
U = 0→ u1 = u2 = u3

Hexagonal Wilson loop in AdS5 in U → 0 limit

R(u, u, u) =
φ2

3π
+

3

8
(log2 u + 2Li2(1− u)), u =

1

4 cos2(φ/3)

Some more exact results...

Eight sided Wilson loop in AdS3 (the first non trivial)

R(m, m̄) =
1

2

∫
dt

m̄et −me−t

tanh 2t
log
(

1 + e−π(m̄et+me−t)
)
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What have we done and what needs to be done

We have given a further step towards the computation of
classical solutions relevant to scattering amplitudes at strong
coupling.

Integrability is the key ingredient of the computation

For the future...

Could we compute these amplitudes at all values of the
coupling?!

What about other kind of solutions? e.g. correlations
functions?

Include fermions and understand non MHV amplitudes?
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