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Spin dependent scattering:  characterization 

Roadmap to the future

ϵ μ

μ

2



Alex Millar

Dark Matter Candidates
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Wavelike Dark Matter

• Much lighter than WIMPs: ~µeV (GHz) 
• Looking for dark matter is like tuning a 

radio to find the right station (dark matter 
mass) 

•  

• Axions, ALPs, dark photons, scalars…

ω = ma +
1
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The Strong CP Problem

• The Strong force should have a CP violating term   

• In principle can be , initial condition from vacuum topology 

• Limit from neutron EDM is 

ℒ ⊃ θ̄
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Axions

• New U(1) chiral symmetry (PQ) spontaneously broken at 
some scale  and anomalous under QCD 

• Absorb the angle into a new field, the axion  

• New pseudoscalar (parity odd) degree of freedom 

• Can be produced early in the universe as coherent waves 

• Also couple to photons and matter

fa

a/fa → a/fa − θ̄
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Where Should We Look?
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We Live Here
Is PQ symmetry is broken before or after inflation? 

After inflation Before inflation
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Broken after inflation

Broken before inflation
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Lots of details depend on the model but we will only focus on two interactions

How Should We Look?
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Coupling to electromagnetism Coupling to matter (mostly spin)

Axion
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How Should We Look?
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Coupling to electromagnetism 

Coupling to matter (mostly spin) 

• Lots of details depend on the model but we will only focus on two interactions
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How Do You Find a Wave?

• Can’t just look for scatterings 

• Exploit the coherence of the field to 
increase the signal 

• Analogue: finding the right radio 
station
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Axion Induced Currents
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Taking the Non-Relativistic Limit

• Matter tends to be slow: reduce to a non-relativistic description

13
Wind Axio-electric

Conjugate momentum

• Matter tends to be slow: reduce to a non-relativistic description 

• Lowest order terms (  is electron spin)σ
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• Most well known effect of axion-fermion couplings 

• Acts on spins similarly to a B-field

Axion-Induced Torques

14
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Axion-Induced Torques

• Most exploited fermion coupling 

• Can use nuclear magnetic resonance 
techniques 

• Includes CASPER WIND and ferromagnet 
haloscopes like QUAX 

• Tends to be most important for low axion 
masses

15
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Axion-Induced Forces

• How does the axio-electric term act on the electron?  

• We generalized the Lorentz force law, JHEP 05  (2024)
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Axion-Induced Forces

• This looks like an E-field, but it couples to spin rather than to charge 

• Not well studied in the literature 

• How can we exploit an effective electric field? 

• Turn it into a real electric field

17

https://www.shutterstock.com/



Alex Millar

Axion-Induced Currents

• New REAL currents to source Maxwell equations JHEP 05  (2024) 

•  is spin version of dielectric constant 

• Many ways to exploit currents 

• Two main approaches: quasiparticle resonances and breaking translation 
invariance

ϵσe
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Dielectric Haloscopes

• Introduce a series of dielectric layers 

• Breaking translation invariance provides momentum

19
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Dielectric Haloscopes

• Idea from the photon coupling                        
Phys. Rev. Lett. 118 (2017) 

• Arrange layers for constructive interference 

• Tune frequencies by controlling disk spacings 

• Many disks = strong signals

20
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Constructing Construction

• Can use classical transfer matrices or 
QFT overlap integral                           
JCAP 01 (2017),                      
JCAP 09 (2017) 

• Simple for one or two disks, or 
transparent disks 

• Numerical optimization for many 
layers and 3D effects                         
JCAP 01 (2017),                                    
JCAP 08 (2019) 

21

AJM+, JCAP 10 (2017) 
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Dielectric Haloscopes

• Two versions being pursued: movable disks, GHz version (MADMAX, DALI) 

• Thin film optical version (MuDHI, LAMPOST)

22

Phys. Rev. D 105 (2022) 
Stefan Knirck
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Axio-Electric Effect

• Spin polarized slab emits propagating radiation 
JHEP 05  (2024) 

• Can directly map from the photon case 

• Tends to be best for optical frequencies

23
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What About the Axion Wind?

• No bulk currents! JHEP 05  (2024) 

•  

• Discontinuity in µ leads to boundary 
currents 

• Doesn’t directly map onto the photon 
coupling

∇ × Beff ∝ ∇ × (∇a/μ)

24
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Axion Wind

• High frequency µ needs an applied B-field 

• Can use larger size, lower Q materials than NMR 

• Ferrites ideal JHEP 05  (2024) 

• Magnon resonance tunable with B-field 

• Can also be used on resonance similar to the 
quasiparticle haloscopes

25



Alex Millar

Magnetic Haloscope

• Introduce a series of magnetic layers 

• Boundary radiation emitted from each slab
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Sensitivity
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JHEP 05  (2024) 
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Absorption

• More generally one can consider the absorption of an axion  

• What if the system is polarized or magnetic? 

• Can just consider the total energy dissipated by the axion into a material 

• Easy to calculate from the axion equation of motion

28Axio-electric Wind
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Absorption: Axio-Electric

• Polarized targets haven’t been considered before! 

• Two advantages 

• Can spin polarize a system to remove background 

• Absorption higher on resonances
29
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Absorption: Wind

• Axion absorption onto magnons is not new (arXiv:2005.10256) 

• Only been done from first principles calculations 

• More generally one can just consider an arbitrary magnetized medium 

• Magnetic equivalent of the “energy loss function” 

• Anything with µ close to zero may be an interesting detector!

30
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Takeaways from Induced Currents

Media effects contain all the microphysics 

Can just measure the materials 

Axion induced currents provide viable new 
detection strategies 

31
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Spin-Dependent Scattering

32
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Light Dark Matter
Can be boson or fermion 

Typically scattering kinematics

33



Alex Millar

Magnon Scattering
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Susceptibility

• We can consider some general interaction via 

• Where the potential is given by 
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Susceptibility 

• The electron spin simply pulls out the magnetic susceptibility 
 

• How do we measure ?

χ ≈
1
μ2

B
× ((μ − 1)−1 + q̂q̂)−1

χ
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Neutron Scattering
• Neutron scattering can be dominated by the magnetic dipole 

• Can measure the 4D cross section information

37



Alex Millar

Neutron Scattering
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Data Limitations
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• For DM models which only depend on the transverse  we just get the rate from 
data (i.e., dipole) 

• Longitudinal  can’t be measured without magnetic monopoles, requires 
additional assumptions

χ

χ

Scattering Rate

40
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Scattering Rate

41
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Conclusions
Spin dependent couplings still have lots to explore 

Absorption and scattering can just be related to  and  

Magnetized dielectric haloscopes have interesting new 
phenomenology to explore 

Spin dependent dark matter rates can be taken directly from 
existing experiments 

More kinematic coverage needed for more robust rates

ϵ μ
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Questions?
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Backup Slides
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Axions

• Solution to the Strong CP problem: make θ a 
dynamical field so it can minimise the energy 
and send θ to zero  

• Need a new anomalous U(1) chiral symmetry 
(Peccei-Quinn), which is broken at high 
temperature ~fa (around 1012 GeV)
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Axions

46

• The “axion” is the angular degree of 
freedom: goldstone mode! 

• At the QCD scale the potential tilts 
as the axion acquires a mass – axion 
rolls down to a CP conserving 
minimum 

• Can be produced by misalignment 
or topological defects
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Axion Production Mechanisms

 

 

 

Vacuum Misalignment Decay of topological defects

arXiv:1809.09241
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Axion Production Mechanisms

 

 

 

Vacuum Misalignment Decay of topological defects

arXiv:1809.09241

48



Alex Millar

Axion-Photon Coupling
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Theoretical formalisms

• Transfer matrices (classical calculation) 

• All the action is at the interfaces 

• Combination of axion and photon field satisfies axion-Maxwell equations: axion-photon wave 
function 

• Solving for the classical E-field everywhere 

• Overlap integral (quantum field calculation) 

• All space is involved 

• Axion and photons wave functions treated separately: photon wave function satisfies regular 
Maxwell equations  

• Calculating transition probability
50
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Overlap Integral Formalism

• The main trick is choosing the right free-photon wave functions: Garibian wave 
functions,

51
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Overlap Integral formalism

• The E-field only encodes boundary conditions: in general it isn’t excited

52Alex MillarAlex Millar 23/44
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Example Solutions: 20 disks
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Optimization
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Example Scan
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Case Two: Wind

• Full behavior needs a dedicated analysis 

• Simple estimate extrapolated from N transparent slabs 

• High frequency µ needs an applied B-field (Landau-Liftshitz-Gilbert equation)

56
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Projections

• Axio-electric is easy: recast a high frequency haloscope like MuDHI or LAMPOST 

• Axion wind is better at lower frequencies 

• For the wind term we assume a MADMAX-like setup ignoring O(1) factors and daily 
modulation

57
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Spurious EDMs

• Often the axion induced electronic EDM is overestimated (or assumed constant). 

• You can do a field redefinition to get  

• With non-relativistic Hamiltonian 

58

Looks like EDM
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Spurius EDMs

• But axion is derivatively coupled: can’t have a constant EDM 

• Actually the field redefinitions to get the non-relativistic Hamiltonian also redefine 
the position operator shifting the COM  

• Doesn’t reappear at higher order (unlike Schiff ’s theorem) 

• Need to be very careful with non-relativistic derivations 

• Actual EDMs are suppressed by (ma/me)2, see arXiv:1312.6667
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