Searching for light dark matter with magnetic
materials

Alex Millar

Asher Berlin, AM, Tanner Trickle, Kevin Zhou, 2312.11601
Asher Berlin, AM, Tanner Trickle, Kevin Zhou, 2504.02027

2¢ Fermilab



https://arxiv.org/abs/2312.11601
https://arxiv.org/abs/2504.02927

Outline

Introduction to light dark matter
Axion induced currents: € and y engineering

Spin dependent scattering: ¢ characterization

Roadmap to the future

Alex Millar



Dark Matter Candidates
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Wavelike Dark Matter

* Much lighter than WIMPs: ~ueV (GHz)

* Looking for dark matter is like tuning a
radio to find the right station (dark matter
mass)

1
O 60=ma+5 aV

* Axions, ALPs, dark photons, scalars...
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The Strong CP Problem

2

. The Strong force should have a CP violating term & D 6 3‘; > GG
T

» In principle can be 8 € [0,27], initial condition from vacuum topology

e Limit from neutron EDMis 8 < 10710
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Axions

* New U(1) chiral symmetry (PQ) spontaneously broken at
some scale f, and anomalous under QCD

2

1 a g
< D —0 ad’a + —
2 * 1., 32x2

» Absorb the angle into a new field, the axion a/f, — alf, — 0

GG

* New pseudoscalar (parity odd) degree of freedom

* Can be produced early in the universe as coherent waves

* Also couple to photons and matter

¢
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Where Should We Look?

[s PQ symmetry is broken before or after inflation?
~ We Live Here

Topological defects
Random 6
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Before inflation

7’ 0.17
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Where Should We Look? £,

pev nev llev meV eV ma""’f

kHz MHz GHz THz Va

Broken after inflation
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How Should We Look?

Lots of details depend on the model but we will only focus on two interactions

Magnetic Field Fermion
Axion
Photon
Fermion
Coupling to electromagnetism Coupling to matter (mostly spin)

P 9
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How Should We Look?

* Lots of details depend on the model but we will only focus on two interactions

Coupling to matter (mostly spin)

Lint O ga'yaE - B+ Yaf (aﬁba) ‘ij’Yu’YSle

¢

Coupling to electromagnetism

Alex Millar .

10




How Do You Find a Wave?

e Can’tjust look for scatterings

» Exploit the coherence of the field to
increase the signal

* Analogue: finding the right radio
station

Alex Millar
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Axion Induced Currents
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y

y Taking the Non-Relativistic Limit

* Matter tends to be slow: reduce to a non-relativistic description

* Lowest order terms (o is electron spin)

Jaf (aua') \I}7N75\Ij ;

H D —gaf(va,)-d— gafdcr-ﬂ' ,
m g
Wind Axio-electric =P A
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Axion-Induced Torques

* Most well known effect of axion-fermion couplings

* Acts on spins similarly to a B-field

d
E<S>:<2ﬂfSXB 29afS><Va>

Beg = (gaf//vtf) Va
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Axion-Induced Torques

y

Beff

* Most exploited fermion coupling

* Can use nuclear magnetic resonance
techniques

* Includes CASPER WIND and ferromagnet
haloscopes like QUAX

. . Magnetic Fiel
* Tends to be most important for low axion agnetic Field

MasScEsS
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g/ Axion-Induced Forces

* How does the axio-electric term act on the electron?

* We generalized the Lorentz force law, JHEP 05 (2024)

dv d , .
FEme :qE—I—q(VXB)—I-,uf(a-B)—gafa(aa)

Eeff s _(gaf/Q) a
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4

Axion-Induced Forces

* This looks like an E-field, but it couples to spin rather than to charge

* Not well studied in the literature
* How can we exploit an effective electric field?

 Turn it into a real electric field

Alex Millar

https:/www.shutterstock.com/
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P Axion-Induced Currents

* New REAL currents to source Maxwell equations JHEP 0§ (2024)

Jo=J, +3) =(c0e — 1) 0Eeg + V x ((1 — p7") Beg)

a

* ¢_,is spin version of dielectric constant
* Many ways to exploit currents

* Two main approaches: quasiparticle resonances and breaking translation
Invariance

Alex Millar
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g Dielectric Haloscopes

 Introduce a series of dielectric layers

'T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T‘
P _— P o Magnetic Field

Photon

* Breaking translation invariance provides momentum

Alex Millar
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g Dielectric Haloscopes

* Idea from the photon coupling

Phys. Rev. Lett. 118 (2017) § lpuamp | Experimental idea _
z ~80 high dielectric plates spacing ~mm (£=20)
. . to cm range for boost in the frequency /
* Arrange layers for constructive interference — W band 10 100 GHs /msc

\ <200cm positioning

* Tune frequencies by controlling disk spacings

* Many disks = strong signals \ - L
% N

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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* Can use classical transfer matrices or
QFT overlap integral
JCAP o1 (2017),
JCAP 09 (2017)

* Simple for one or two disks, or
transparent disks

* Numerical optimization for many
layers and 3D effects
JCAP o1 (2017),
JCAP 08 (2019)
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Constructing Construction
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g Dielectric Haloscopes

* Two versions being pursued: movable disks, GHz version (MADMAX, DALI)
* Thin film optical version (MuDHI, LAMPOST)

stack and ‘
lens inside / 4 \ a&huqtable mount

Alex Millar Stefan Knirck
Phys. Rev. D 105 (2022)
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Axio-Electric Effect

4

* Spin polarized slab emits propagating radiation E = E g
JHEP 0§ (2024)

* Can directly map from the photon case

* Tends to be best for optical frequencies

Spins

Alex Millar
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Y What About the Axion Wind?

* No bulk currents! JHEP 05 (2024)

2 M2
*» VXBsx VX (Valu)
* Discontinuity in p leads to boundary
currents Current J
* Doesn’t directly map onto the photon B
coupling

Outgoing photons

Alex Millar
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e Axion Wind

* High frequency p needs an applied B-field

* Can use larger size, lower Q materials than NMR
* Ferrites ideal JHEP 05 (2024)

* Magnon resonance tunable with B-field

 Can also be used on resonance similar to the
quasiparticle haloscopes

Alex Millar
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|7 Magnetic Haloscope

* Introduce a series of magnetic layers
Magnetic Field

Photon

2

A A AR LA,

‘1’ ¢ ‘l' P

* Boundary radiation emitted from each slab
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Sensitivity
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Absorption

* More generally one can consider the absorption of an axion
* What if the system is polarized or magnetic?
» Can just consider the total energy dissipated by the axion into a material

» Easy to calculate from the axion equation of motion

(82 -+ mg) A — —(ge (8tjo' -+ V - Ila)

eja — (5 — 1) atE'eff + (Eae — 1) at <E ' §>

Alex Millar Axio-electric Wind
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Absorption: Axio-Electric

y o 3Im|e(mgy)| (unpolarized target)
R ~ gaema le\/I
~ =5

X

- —1
Pdet Im (polarized target) ,

E(Ma)

* Polarized targets haven’t been considered before!
* Two advantages
* Can spin polarize a system to remove background

* Absorption higher on resonances

Alex Millar
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Absorption: Wind

* Axion absorption onto magnons is not new (arXiv:2005.10256)

* Only been done from first principles calculations

* More generally one can just consider an arbitrary magnetized medium
* Magnetic equivalent of the “energy loss function”

R ~ (gae ’UDM)2 Ppom Im—'——l- |
HB Pdct - M-

* Anything with p close to zero may be an interesting detector!
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Takeaways from Induced Currents

Media effects contain all the microphysics
Can just measure the materials

Axion induced currents provide viable new
detection strategies
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"~ Spin-Dependent Scattering
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Light Dark Matter

Can be boson or fermion

Typically scattering kinematics

Model Lagrangian form factor F*
2 , 2
Magnetic dipole DM I T, oW, F, + g U A*T A 2 IxGe_ lal” (69 — g*g")
4m,y gl i a q|2 +m2 4, 4 My M
9 = 5 / = / 9x 9 . |(l|3 2
A le DM — U AHNTL OV F 4 ge Uy T AN, 2 _IXJe 59— &t
napoile 4?71% X il X I +g B / (lqlz_l_,rn?ned) (S‘rni'me) ( qq)
Axial vector mediator V), Vi (95 U Y'Y ¥y + ge Ty y° W) 2 IxYe ; 5t
|q|2 + Mmed
5 : g N gy
Pseudoscalar mediator ¢ b (gy Wiy Wy + ge Weiy”W,) 2 - j T; 5 gy q’'q’
q med X
939 calal e
CP violating scal sdiator ¢ v, U e Uoin W, ) dx e ai
violating scalar mediator ¢ ¢ (gx V5 Uy + ge Wiy W) (lqlz_l_m%md) (2me) qa‘q
g 939 g AR
Dark elect EDM W AT AT T T M AT, F 9 IxGe_ Xy
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Magnon Scattering

DM DM
Bpwm
> > >
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Susceptibility

* We can consider some general interaction via
He(x,t) = —P(x,1) - s.(X, t)
* Where the potential is given by

1/V (scatter)
1/4/2m,V (absorb)

P(x,t) = O(q,wq) e 47" x {

¢
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Susceptibility

* The electron spin simply pulls out the magnetic susceptibility

| _
e —x((=1"+aq)"

Hp
d3q y
L(v) = [ G P (@wa) i@ wa)
- 9 . .
F(q,wq) = YR 2:(’)J (q,wq) O (q, wq)

* How do we measure y?

¢
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Neutron Scattering £

* Neutron scattering can be dominated by the magnetic dipole

Tn€

LD

4dm,

* Can measure the 4D cross section information

don(v) p’|
dQAdE’ P

1 =g 1)

n

Sn (q, wq) Sn (qa (U) P;gX;; (q7 wQ)

~ N:8m2 (27)3

¢
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Scattering Rate

4

* For DM models which only depend on the transverse y we just get the rate from
data (i.e., dipole)

p_ _Px 9x9; N
- 324
2T P My Yne* (e

/dw d°q g(q, w)iSy(q,w)

Kinematics

* Longitudinal y can’t be measured without magnetic monopoles, requires
additional assumptions

Alex Millar
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Scattering Rate
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Conclusions

Spin dependent couplings still have lots to explore

Absorption and scattering can just be related to € and u

Magnetized dielectric haloscopes have interesting new
phenomenology to explore

Spin dependent dark matter rates can be taken directly from
existing experiments

More kinematic coverage needed for more robust rates

Alex Millar
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Axions

* Solution to the Strong CP problem: make 0 a
dynamical field so it can minimise the energy
and send 0 to zero

* Need a new anomalous U(1) chiral symmetry
(Peccei-Quinn), which is broken at high
temperature ~f, (around 1012 GeV)

Alex Millar

LZ;;tand mod + axion
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Axions

* The “axion” is the angular degree of
freedom: goldstone mode!

* At the QCD scale the potential tilts
as the axion acquires a mass — axion
rolls down to a CP conserving
minimum

* Can be produced by misalignment

or topological defects P

Alex Millar

V(a)
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echanisms

Axion ProductionM

Vacuum Misalignment Decay of topological detects

|‘. o M - ,-'- ?‘k -,"' \ ‘-_\ )

v = 1.2

I\ 2wt i
| l\“_,'_'/ |

V(a)

©
]

0
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Axion Production Mechanisms

Vacuum Misalignment Decay of topological detects

V(a)

arXiv:1809.09241
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Axion-Photon Coupling

1012GeV
Y ma = 5.70(7) peV —— °r
(9 ™
oy = ay = 2.04(3) x 107 GeV ™+ —= C,
q - —p — Gar 27Tfa07 04(3) x 107" GeV ueVCW’
E
a :__1.24,
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Theoretical formalisms

* Transfer matrices (classical calculation)
* All the action is at the interfaces

* Combination of axion and photon field satisfies axion-Maxwell equations: axion-photon wave
function

* Solving for the classical E-field everywhere
* Overlap integral (quantum field calculation)
* All space is involved

* Axion and photons wave functions treated separately: photon wave function satisfies regular
Maxwell equations

* Calculating transition probability

Alex Millar
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Overlap Integral Formalism

* The main trick is choosing the right free-photon wave functions: Garibian wave

functions,
ITTIIITTTIntte TITTTTTTTIO011T
> ) > < < <€
< < ol >
=1 1 =1 y Vi:C:ulm IeSe>C1rIC Vi,c:ulm y
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Overlap Integral formalism

* The E-field only encodes boundary conditions: in general it isn’t excited

Central Minimum

| | | | | | | |
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Example Solutions: 20 disks

103:| 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 I:
' — Auﬁ 200 MHz -

— Az =50 MHz -

— Avs =1 MHz
w0 I\ g E

24. 8 24 9 25 0 25 1 25 2
. |GHz]
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Optimization

80 Disks

50 [
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Case Two: Wind

* Full behavior needs a dedicated analysis
* Simple estimate extrapolated from N transparent slabs

* High frequency p needs an applied B-field (Landau-Liftshitz-Gilbert equation)

wo = 2up (Ho + BMo) , wn = v/wo (2u5 Mo + wp)

Alex Millar

56



Projections

* Axio-electric is easy: recast a high frequency haloscope like MuDHI or LAMPOST

* Axion wind is better at lower frequencies

* For the wind term we assume a MADMAX-like setup ignoring O(1) factors and daily
modulation

QM mg Tn UB
_ L—p™
! 1 4+1i+/e/p cot (nm,d/2)

Alex Millar
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Spurious EDMs

* Often the axion induced electronic EDM is overestimated (or assumed constant).

* You can do a field redefinition to get

LD —2m;garaViy’ V.

. .. . . LLooks like EDM
 With non-relativistic Hamiltonian

7.‘.2

H. i ~ |
alt sz qf qﬁ

qr B - - \V ) Ya f : . . q9f Ya f | D
o o —guf (Va) o im; {a,7- o} om,; aE- o
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Spurius EDMs

* But axion is derivatively coupled: can’t have a constant EDM

* Actually the field redefinitions to get the non-relativistic Hamiltonian also redefine
the position operator shifting the COM

X, = X, x, =X+ (d/q)o

* Doesn’t reappear at higher order (unlike Schift’s theorem)
* Need to be very careful with non-relativistic derivations

* Actual EDMs are suppressed by (m,/me)2, see arXiv:1312.6667
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