Searching for light dark matter with magnetic materials

Alex Millar

Asher Berlin, AM, Tanner Trickle, Kevin Zhou, <u>2312.11601</u> Asher Berlin, AM, Tanner Trickle, Kevin Zhou, <u>2504.02927</u>

Introduction Axion induced cur Spin dependent sca Roadma

Alex Millar

Outline

- Introduction to light dark matter
- Axion induced currents: ϵ and μ engineering
- Spin dependent scattering: μ characterization
 - Roadmap to the future

Wavelike DM

Light DM

Wavelike Dark Matter

- Much lighter than WIMPs: ~µeV (GHz)
- Looking for dark matter is like tuning a radio to find the right station (dark matter mass)

•
$$\omega = m_a + \frac{1}{2}m_a v^2$$

Axions, ALPs, dark photons, scalars...

The Strong CP Problem

- The Strong force should have a CP violating term $\mathscr{L} \supset \bar{\theta} \frac{g^2}{32\pi^2} G\tilde{G}$
- In principle can be $\bar{\theta} \in [0, 2\pi]$, initial condition from vacuum topology
- Limit from neutron EDM is $\bar{\theta} \lesssim 10^{-10}$

Axions

• New U(1) chiral symmetry (PQ) spontaneously broken at some scale f_a and anomalous under QCD

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a + \frac{a}{f_a} \frac{g^2}{32\pi^2} G\tilde{G}$$

- Absorb the angle into a new field, the axion $a/f_a \rightarrow a/f_a \bar{\theta}$
- New pseudoscalar (parity odd) degree of freedom
- Can be produced early in the universe as coherent waves
- Also couple to photons and matter

Is PQ symmetry is broken before or after inflation?

peV neV μeV ТШ **kHz** MHZ GHz TTIIII

Too much DM

Tuned initial condition

Lots of details depend on the model but we will only focus on two interactions Magnetic Field Photon Axion

Coupling to electromagnetism

C	נ
Š	J

How Should We Look?

$$L_{\text{int}} \supset g_{a\gamma} a \mathbf{E} \cdot \mathbf{B} + g_{af} \left(\partial_{\mu} a \right) \bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi$$

Coupling to electromagnetism

Alex Millar

• Lots of details depend on the model but we will only focus on two interactions

Coupling to matter (mostly spin)

10

How Do You Find a Wave?

- Can't just look for scatterings
- Exploit the coherence of the field to increase the signal
- Analogue: finding the right radio station

11

Axion Induced Currents

Taking the Non-Relativistic Limit

- Matter tends to be slow: reduce to a non-relativistic description lacksquare
- Lowest order terms (σ is electron spin)

 $g_{af}\left(\partial_{\mu}a
ight)ar{\Psi}\gamma^{\mu}\gamma^{5}\Psi$, $H \supset -g_{af} (\nabla a) \cdot \boldsymbol{\sigma} - \frac{g_{af}}{m_f} \dot{a} \, \boldsymbol{\sigma} \cdot \boldsymbol{\pi} ,$ Axio-electric

Wind

Alex Millar

 $\pi \equiv \mathbf{p} - q_f \mathbf{A}$

Conjugate momentum

Axion-Induced Torques

- Most well known effect of axion-fermion couplings
- Acts on spins similarly to a B-field

$$\frac{d}{dt} \langle \mathbf{S} \rangle = \langle 2 \,\mu_f \, \mathbf{S} \times \mathbf{B} + 2g_{af} \, \mathbf{S} \times \nabla a \rangle$$
$$\mathbf{B}_{\text{eff}} = (g_{af}/\mu_f) \, \nabla a$$

- Most exploited fermion coupling
- Can use nuclear magnetic resonance techniques
- Includes CASPER WIND and ferromagnet haloscopes like QUAX
- Tends to be most important for low axion masses

15

Axion-Induced Forces

- $\mathbf{B}) + \mu_f \left(\boldsymbol{\sigma} \cdot \mathbf{B} \right) g_{af} \frac{d}{dt} \left(\dot{a} \, \boldsymbol{\sigma} \right)$ $\mathbf{E}_{\text{eff}} \simeq -(g_{af}/q) \frac{d}{dt} (\dot{a}\boldsymbol{\sigma})$
- How does the axio-electric term act on the electron? • We generalized the Lorentz force law, JHEP 05 (2024)

$$\mathbf{F} \equiv m_f \, \frac{d\mathbf{v}}{dt} \simeq q \, \mathbf{E} + q \, (\mathbf{v} \times \mathbf{I})$$

Axion-Induced Forces

- This looks like an E-field, but it couples to spin rather than to charge
- Not well studied in the literature
- How can we exploit an effective electric field?
- Turn it into a real electric field

https://www.shutterstock.com/

• New REAL currents to source Maxwell equations JHEP 05 (2024)

$$\mathbf{J}_a = \mathbf{J}_a^P + \mathbf{J}_a^M = (\varepsilon_{\sigma e} - 1)$$

- $\epsilon_{\sigma e}$ is spin version of dielectric constant
- Many ways to exploit currents
- Two main approaches: quasiparticle resonances and breaking translation invariance

Axion-Induced Currents

 $\partial_t \mathbf{E}_{\text{eff}} + \nabla \times \left((1 - \mu^{-1}) \mathbf{B}_{\text{eff}} \right)$

18

Dielectric Haloscopes

• Introduce a series of dielectric layers

Breaking translation invariance provides momentum

Alex Millar

*** Magnetic Field Photon

Dielectric Haloscopes

- Idea from the photon coupling Phys. Rev. Lett. 118 (2017)
- Arrange layers for constructive interference
- Tune frequencies by controlling disk spacings
- Many disks = strong signals

Constructing Construction 80 Disks β^2 100 000 Boost Factor 80 000 60 0 00 40 000

24.95

25.00

 ν [GHz]

AJM+, JCAP 10 (2017)

25.05

Power

20 000

24.90

- Can use classical transfer matrices or QFT overlap integral JCAP 01 (2017), **JCAP 09 (2017)**
- Simple for one or two disks, or transparent disks
- Numerical optimization for many layers and 3D effects JCAP 01 (2017), JCAP 08 (2019)

Dielectric Haloscopes

- Two versions being pursued: movable disks, GHz version (MADMAX, DALI)
- Thin film optical version (MuDHI, LAMPOST)

Alex Millar

Stefan Knirck

disks, GHz version (MADMAX, DALI)

Axio-Electric Effect

- Spin polarized slab emits propagating radiation *JHEP* **05 (2024)**
- Can directly map from the photon case
- Tends to be best for optical frequencies

Spins

 $g_{ae} \leftrightarrow g_{a\gamma\gamma} \left(e B_0 / m_a^2 \right)$

What About the Axion Wind?

- No bulk currents! JHEP 05 (2024)
- $\nabla \times \mathbf{B}_{\text{eff}} \propto \nabla \times (\nabla a/\mu)$
- Discontinuity in μ leads to boundary currents
- Doesn't directly map onto the photon coupling

- High frequency μ needs an applied B-field
- Can use larger size, lower Q materials than NMR
- Ferrites ideal JHEP 05 (2024)
- Magnon resonance tunable with B-field
- Can also be used on resonance similar to the quasiparticle haloscopes

Axion Wind

Magnetic Haloscope

• Introduce a series of magnetic layers

Boundary radiation emitted from each slab

Alex Millar

Sensitivity

Absorption

- More generally one can consider the absorption of an axion
- What if the system is polarized or magnetic?
- Can just consider the total energy dissipated by the axion into a material
- Easy to calculate from the axion equation of motion

$$(\partial^2 + m_a^2) a = -g_{ae} \left(\partial_t j_\sigma + \nabla \cdot \mathbf{n}_\sigma \right)$$
$$E_{\text{eff}} + (\varepsilon_{\sigma e} - 1) \partial_t \langle \mathbf{E} \cdot \hat{\mathbf{s}} \rangle \qquad \uparrow \qquad \uparrow$$
$$Axio-electric \quad Wind$$

$$(\partial^2 + m_a^2) a = -g_{ae} \left(\partial_t j_\sigma + \nabla \cdot \mathbf{n}_\sigma \right)$$

$$e j_\sigma = (\varepsilon - 1) \partial_t E_{\text{eff}} + (\varepsilon_{\sigma e} - 1) \partial_t \langle \mathbf{E} \cdot \hat{\mathbf{s}} \rangle$$

$$f \qquad f$$

$$\text{Millar} \qquad \text{Axio-electric} \quad \text{Wind}$$

Alex

28

Absorption: Axio-Electric

- Polarized targets haven't been considered before!
- Two advantages
- Can spin polarize a system to remove background
- Absorption higher on resonances

Alex Millar

 $R \simeq \frac{g_{ae}^2 m_a^2}{e^2} \frac{\rho_{\rm DM}}{\rho_{\rm det}} \times \begin{cases} 3 \, {\rm Im} \left[\varepsilon(m_a) \right] & \text{(unpolarized target)} \\ {\rm Im} \left[\frac{-1}{\varepsilon(m_a)} \right] & \text{(polarized target)} \end{cases},$

29

Absorption: Wind

- Axion absorption onto magnons is not new (arXiv:2005.10256)
- Only been done from first principles calculations
- More generally one can just consider an arbitrary magnetized medium
- Magnetic equivalent of the "energy loss function"

$$R \simeq \left(rac{g_{ae} \, v_{_{\rm DM}}}{\mu_B}
ight)^2 \, rac{
ho_{_{\rm DM}}}{
ho_{
m det}} \, {
m Im}\!\left[rac{-1}{\mu}
ight] \, ,$$

- Anything with μ close to zero may be an interesting detector!

30

Takeaways from Induced Currents

Media effects contain all the microphysics Can just measure the materials Axion induced currents provide viable new detection strategies

Spin-Dependent Scattering

Light Dark Matter

Can be boson or fermion Typically scattering kinematics

Model	Lagrangian
Magnetic dipole DM	${g_\chi\over 4m_\chi}ar{\Psi}_\chi\sigma^{\mu u}\Psi_\chiF'_{\mu u}$
Anapole DM	$rac{g_\chi}{4m_\chi^2}ar{\Psi}_\chi\gamma^\mu\gamma^5\Psi_\chi\partial^ u_\lambda$
Axial vector mediator V_{μ}	$V_{\mu}(g_{\chi}ar{\Psi}_{\chi}\gamma^{\mu}\gamma^{5}\Psi_{\chi}+$
Pseudoscalar mediator ϕ	$\phi(g_\chiar{\Psi}_\chi i\gamma^5\Psi_\chi+g_e)$
CP violating scalar mediator ϕ	$\phi \left(g_{\chi} ar{\Psi}_{\chi} \Psi_{\chi} + g_e ar{\Psi}_e i ight)$
Dark electron EDM	$g_\chi ar{\Psi}_\chi \gamma^\mu \Psi_\chi A'_\mu + {g_\lambda \over 4 n}$

Alex Millar

form factor \mathcal{F}^{ij} , $+ g_e \, ar{\Psi}_e \gamma^\mu \Psi_e A'_\mu$ $2 \left(rac{g_\chi g_e}{|\mathbf{q}|^2 + m_{
m med}^2}
ight)^2 \left(rac{|\mathbf{q}|^2}{4 \, m_\chi m_e}
ight)^2 (\delta^{ij} - \hat{\mathbf{q}}^i \hat{\mathbf{q}}^j)$ $(F'_{\mu
u} + g_e \, ar{\Psi}_e \gamma^\mu \Psi_e A'_\mu = 2 \left(rac{g_\chi g_e}{|\mathbf{q}|^2 + m_{
m mod}^2}
ight)^2 \left(rac{|\mathbf{q}|^3}{8 \, m_{
m v}^2 m_e}
ight)^2 (\delta^{ij} - \hat{\mathbf{q}}^i \hat{\mathbf{q}}^j) \, .$ $2\left(rac{g_{\chi}g_e}{|\mathbf{q}|^2+m_{
m mod}^2}
ight)^2\delta^{ij}$ $g_e \, ar{\Psi}_e \gamma^\mu \gamma^5 \Psi_e)$ $2\left(\frac{g_{\chi}g_e}{|\mathbf{q}|^2+m_{\rm max}^2}\right)^2\left(\frac{|\mathbf{q}|^2}{4\,m_{\chi}m_e}\right)^2\hat{\mathbf{q}}^i\hat{\mathbf{q}}^j$ $\bar{\Psi}_e i \gamma^5 \Psi_e)$ $-2\left(\frac{g_{\chi}g_e}{|\mathbf{q}|^2+m_{mod}^2}\right)^2\left(\frac{|\mathbf{q}|}{2\,m_e}\right)^2\hat{\mathbf{q}}^i\hat{\mathbf{q}}^j$ $i\gamma^5 \Psi_e)$ $rac{g_e}{m_e} i ar{\Psi}_e \sigma^{\mu
u} \gamma^5 \Psi_e \, F'_{\mu
u} = 2 \left(rac{g_\chi g_e}{|\mathbf{q}|^2 + m_{
m mod}^2}
ight)^2 \left(rac{|\mathbf{q}|}{2 \, m_e}
ight)^2 \hat{\mathbf{q}}^i \hat{\mathbf{q}}^j \, .$

33

Susceptibility

• We can consider some general interaction via

$$\mathcal{H}_e(\mathbf{x},t) = -\mathbf{\Phi}(\mathbf{x},t) \cdot \mathbf{s}_e(\mathbf{x},t)$$

• Where the potential is given by

$$\mathbf{\Phi}(\mathbf{x},t) = \mathbf{\mathcal{O}}(\mathbf{q},\omega_{\mathbf{q}}) e^{-iq \cdot x} \times \begin{cases} 1/V \\ 1/\sqrt{2m_{\chi}} \end{cases}$$

 $\mathbf{k}, t)$

(scatter) \overline{V} (absorb)

35

Susceptibility

• The electron spin simply pulls out the magnetic susceptibility $\chi \approx \frac{1}{\mu_B^2} \times \left((\mu - 1)^{-1} + \hat{\mathbf{q}} \hat{\mathbf{q}} \right)^{-1}$

$$egin{aligned} \Gamma_{
m s}(\mathbf{v}) &= \int rac{{
m d}^3 \mathbf{q}}{(2\pi)^3} \; \mathcal{F}^{ij}(\mathbf{q}, \ \mathcal{F}^{ij}(\mathbf{q}, \omega_{\mathbf{q}}) &\equiv rac{2}{2S_{_{
m DM}}+1} \sum_{ss'} \mathcal{O}^j \end{aligned}$$

• How do we measure χ ?

 $(\omega_{\mathbf{q}}) \, \chi_{ij}^{\prime\prime}(\mathbf{q},\omega_{\mathbf{q}})$

 $(\mathbf{q}, \omega_{\mathbf{q}}) \mathcal{O}^{*i}(\mathbf{q}, \omega_{\mathbf{q}})$

Neutron Scattering

• Neutron scattering can be dominated by the magnetic dipole

$$\mathcal{L} \supset \frac{\gamma_n e}{4m_n} \,\bar{n} \sigma^{\mu\nu} n \, F_{\mu\nu}$$

• Can measure the 4D cross section information

$$\frac{d\sigma_n(\mathbf{v})}{d\Omega dE'} = \frac{|\mathbf{p}'|}{|\mathbf{p}|} S_n(\mathbf{q}, \omega_{\mathbf{q}})$$

 $-eA_{\mu}\,\bar{e}\gamma^{\mu}e$

$$S_n(\mathbf{q}, \omega) = \frac{1}{N_{\rm f}} \frac{\gamma_n^2 e^4}{8 m_e^2} \frac{\Omega_c}{(2\pi)^3} P_T^{ij} \chi_{ij}^{\prime\prime}(\mathbf{q}, \omega_{\mathbf{q}})$$

Neutron Scattering

Alex Millar

 -10^{1}

 -10^{0}

 S_n

38

Data Limitations

Scattering Rate

data (i.e., dipole)

$$R = \frac{\rho_{\chi}}{2\pi\rho_{\rm T}} \frac{g_{\chi}^2 g_e^2}{m_{\chi}^3 \gamma_n^2 e^4} \frac{N_{\rm f}}{\Omega_c} \int$$

• Longitudinal χ can't be measured without magnetic monopoles, requires additional assumptions

• For DM models which only depend on the transverse χ we just get the rate from

 $\mathrm{d}\omega\,\mathrm{d}^{3}\mathbf{q}\,g(\mathbf{q},\omega)\,S_{n}(\mathbf{q},\omega)$

Kinematics

Scattering Rate

Conclusions

- Spin dependent couplings still have lots to explore
- Absorption and scattering can just be related to ϵ and μ
- Magnetized dielectric haloscopes have interesting new phenomenology to explore
- Spin dependent dark matter rates can be taken directly from existing experiments
- More kinematic coverage needed for more robust rates

Questions?

Backup Slides

44

- Solution to the Strong CP problem: make θ a dynamical field so it can minimise the energy and send θ to zero
- Need a new anomalous U(1) chiral symmetry (Peccei-Quinn), which is broken at high temperature $\sim f_a$ (around 10¹² GeV)

Axions

45

- The "axion" is the angular degree of freedom: goldstone mode!
- At the QCD scale the potential tilts as the axion acquires a mass – axion rolls down to a CP conserving minimum
- Can be produced by misalignment or topological defects

Axions

46

Axion Production Mechanisms

Vacuum Misalignment

Alex Millar

Decay of topological defects

Axion Production Mechanisms

Vacuum Misalignment

Alex Millar

Decay of topological defects

arXiv:1809.09241

48

Alex Millar

Axion-Photon Coupling

$$m_{a} = 5.70(7) \,\mu \text{eV} \,\frac{10^{12} \text{GeV}}{f_{a}} \,,$$

$$g_{a\gamma} = \frac{\alpha}{2\pi f_{a}} C_{a\gamma} = 2.04(3) \times 10^{-16} \,\text{GeV}^{-1} \,\frac{m_{a}}{\mu \text{eV}} \,,$$

$$C_{a\gamma} = \frac{E}{N} - 1.92(4) \,,$$

Theoretical formalisms

• Transfer matrices (classical calculation)

- All the action is at the interfaces
- function
- Solving for the classical E-field everywhere
- Overlap integral (quantum field calculation)
- All space is involved
- Maxwell equations
- Calculating transition probability

Alex Millar

• Combination of axion and photon field satisfies axion-Maxwell equations: axion-photon wave

• Axion and photons wave functions treated separately: photon wave function satisfies regular

50

Overlap Integral Formalism

functions,

Alex Millar

• The main trick is choosing the right free-photon wave functions: Garibian wave

51

Overlap Integral formalism

• The E-field only encodes boundary conditions: in general it isn't excited

Alex Millar

Alex Millar

Central Minimum

52

Example Solutions: 20 disks

53

Optimization

Alex Millar

 $\nu \, [\mathrm{GHz}]$

54

Example Scan

Alex Millar

 $\nu \, [\mathrm{GHz}]$

55

Case Two: Wind

- Full behavior needs a dedicated analysis
- Simple estimate extrapolated from N transparent slabs
- High frequency μ needs an applied B-field (Landau-Liftshitz-Gilbert equation)

$$1 - \mu^{-1} = -\frac{2\mu_B M_0 \omega_0}{\omega^2 - \omega_M^2 + i\omega \omega_M/Q_M}$$

$$\omega_0 \equiv 2\mu_B \left(H_0 + \beta M_0 \right) \; ,$$

$$\omega_M \equiv \sqrt{\omega_0 \left(2\mu_B \, M_0 + \omega_0\right)}$$

56

Projections

- Axio-electric is easy: recast a high frequency haloscope like MuDHI or LAMPOST • Axion wind is better at lower frequencies
- For the wind term we assume a MADMAX-like setup ignoring O(1) factors and daily modulation

$$SNR \sim \sqrt{\frac{Q_a}{Q_M}} \frac{t_e}{m_a} \frac{\rho_{\rm DM} A}{T_n} N^{3/2} \left(\frac{g_{ae} v_{\rm DM} \eta}{\mu_B}\right)^2$$
$$\eta = \left|\frac{1-\mu^{-1}}{1+i\sqrt{\varepsilon/\mu} \cot\left(n m_a d/2\right)}\right|$$

$$\left| \frac{Q_a}{Q_M} \frac{t_e}{m_a} \frac{\rho_{\rm DM} A}{T_n} N^{3/2} \left(\frac{g_{ae} v_{\rm DM} \eta}{\mu_B} \right)^2 \right|$$

$$\eta = \left| \frac{1 - \mu^{-1}}{1 + i \sqrt{\varepsilon/\mu} \cot\left(n m_a d/2\right)} \right|$$

Spurious EDMs

- You can do a field redefinition to get

$$\mathscr{L} \supset -2 m_f g_{af} a \overline{\Psi} i \gamma^5 \Psi.$$
Looks like EDM
$$\int_{f_{n_f}} \mathbf{B} \cdot \boldsymbol{\sigma} - g_{af} (\nabla a) \cdot \boldsymbol{\sigma} - \frac{g_{af}}{4m_f} \{\dot{a}, \boldsymbol{\pi} \cdot \boldsymbol{\sigma}\} + \frac{q_f g_{af}}{2m_f} a \mathbf{E} \cdot \boldsymbol{\sigma}$$

$$\begin{split} \mathscr{L} \supset -2 \, m_f \, g_{af} \, a \, \overline{\Psi} i \gamma^5 \Psi. \\ \text{With non-relativistic Hamiltonian} \\ H_{\text{alt}} \simeq \frac{\pi^2}{2m_f} + q_f \, \phi - \frac{q_f}{2m_f} \, \mathbf{B} \cdot \boldsymbol{\sigma} - g_{af} \, (\nabla a) \cdot \boldsymbol{\sigma} - \frac{g_{af}}{4m_f} \left\{ \dot{a}, \boldsymbol{\pi} \cdot \boldsymbol{\sigma} \right\} + \frac{q_f \, g_{af}}{2m_f} \, a \, \mathbf{E} \cdot \boldsymbol{\sigma} \end{split}$$

• Often the axion induced electronic EDM is overestimated (or assumed constant).

58

Spurius EDMs

- But axion is derivatively coupled: can't have a constant EDM
- Actually the field redefinitions to get the non-relativistic Hamiltonian also redefine the position operator shifting the COM

$$\mathbf{x}_q = \mathbf{x}, \qquad \mathbf{x}'_q$$

- Doesn't reappear at higher order (unlike Schiff's theorem)
- Need to be very careful with non-relativistic derivations
- Actual EDMs are suppressed by $(m_a/m_e)^2$, see arXiv:1312.6667

$$= \mathbf{x} + (d/q) \, \boldsymbol{\sigma}$$

59