Dark Matter Capture and Annihilation on the First Stars: Preliminary Results

Fabio locco: 10 April 2008

Wimps on Fire

- Neutralinos annihilate in the stars core and add to energy output of the star.
- Stars treated as being formed classically without the dark matter stalling the collapse of the gas cloud.

Dark Matter Burners

- Only achieved today near galactic centers because the density of dark matter is the greatest.
- Not a lot of stars though...

The Young Ones

• Primordial Universe is a bit different...

 Primordial star at the center on the galaxy is formed with population III stars w/ little to no metals and masses on the order of 50-300 Solar Masses.

And the survey says...

- Simulations show 10 solar masses of dark matter in primordial stars with a radius of 10^15 cm.
- Primordial galaxies have 10^6 solar mass halos according to Turk's cosmology.

Uniformity

- Capture rates of 75-100 Solar mass population III stars differ less that an order of magnitude.
- Radii of both 75 and 100 solar mass stars are roughly the same during the helium burning stage (~100 solar radii).

Simulation Values

$M_*(M_{\odot})$	$L_{\chi}(\text{erg/s})$	$r_{\chi}(cm)$	$R_*(\text{cm})$	$L_{\chi}/L_{\star}^{ZAMS}$
50	4×10^{40}	2×10^{9}	2×10 ¹¹	25
70	7×10^{40}	3×10^{9}	2×10 ¹¹	22
100	1×10 ⁴¹	4×10^{9}	3×10 ¹¹	21
200	3×10^{41}	5×10^{9}	4×10 ¹¹	20
300	5×10^{41}	5×10^{9}	5×10^{11}	21
500	1×10^{42}	6×10^{9}	7×10 ¹¹	23
600	2×10^{42}	6×10^{9}	8×10 ¹¹	24

TABLE 3 SAME AS IN TABLE 1 FOR ZAMS METAL-FREE STARS.

An	$L_{\chi}(\text{erg/s})$	$\tau_{\chi}(s)$	$r_{\chi}(cm)$	$n_{\chi}^{c}({ m GeV/cm}^{3})$	$\epsilon_{\chi}({\rm erg/s/cm^3})$
1	10 ⁴⁰	107	10 ¹⁰	10 ¹⁸	10 ³
4	10 ³⁸	10 ⁸	10 ⁹	10 ¹⁷	-10 ²
1	10 ³⁸	10 ¹⁰	1011	10 ¹⁶	1

TABLE 1

Values for a 75 M_{\odot}, initial metallicity Z=10⁻⁴, in a neutralino case with m_{χ} =100GeV. \mathcal{D} =10⁻³²(/10⁻³⁷)GeV s/cm² for the spin dependent(/independent) case. Last line refers to the H shell during helium burning.

Discussion

- Dark matter luminosity may start before fusion.
- Dark matter may stabilize population III stars in late stages.
- Nucleosynthesis...