

Where are the Missing Galactic Satellites?

Satellites of the MW and Andromeda

V_{cire} Milky Way (km s ⁻¹) (286/571 kpc)		Andromeda (286/571 kpc)	Average (286/571 kpc)	Comments		
10	11/13	13/15	12/14	Sculptor, Carina, Sextans, Leo II, And I-III, V, VI, CAS, Pegasus		
15	7/9	7/8	7/8.5	Phoenix, Fornax, Leo I, Urs Min, Draco, Sagit, Lgs3		
20	2/3	6/7	4/5	IC1613		
30	2/3	6/6	4/4.5	SMC, NGC 6822, IC 10, NGC 147, NGC 185		
50	1/1	3/3	2/2	LMC		
70	0/0	3/3	1.5/1.5	M33, M32, NGC 205		

Parameters of Simulations

Model	$\Omega_{ m o}$	h	σ_8	$m_{ m particle} \ (h^{-1} \ M_{\odot})$	$N_{ m steps}$	Resolution (h ⁻¹ pc)	Box (h ⁻¹ Mpc)	$N_{ m part}$
SCDM	1.0	0.5	1.0	2.05×10^{6}	650-40,000	150	2.5	128³
ΛCDM	0.3	0.7	1.0	1.66×10^{7}	650-40,000	450	7.5	128^{3}

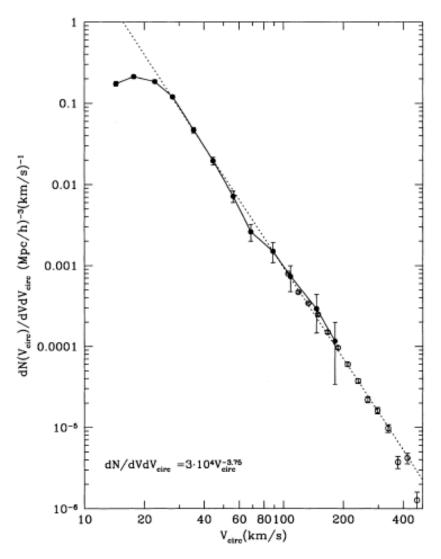
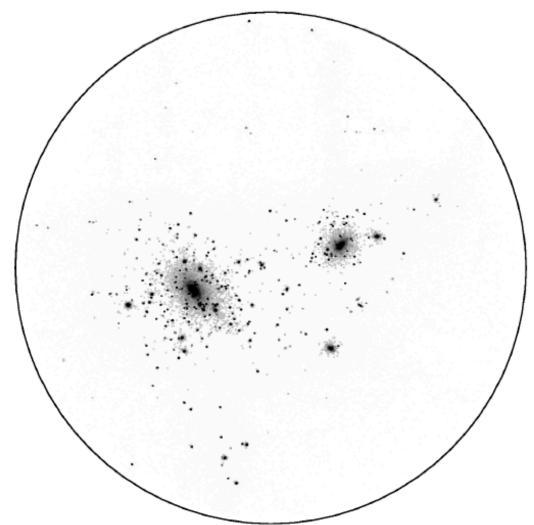
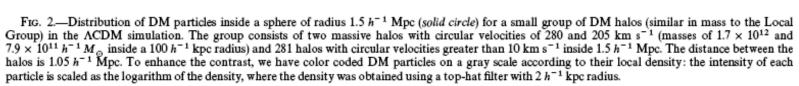
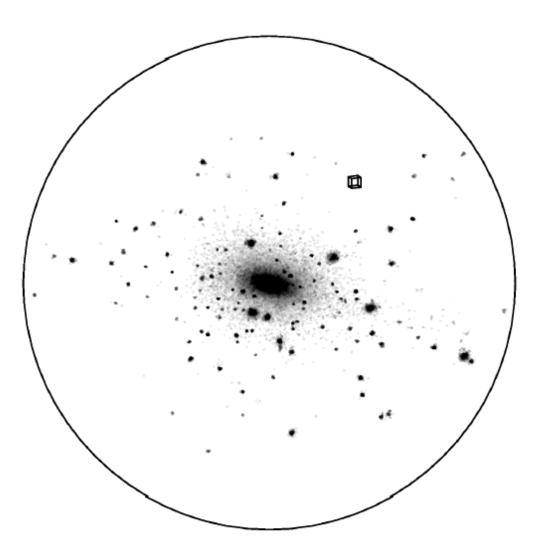
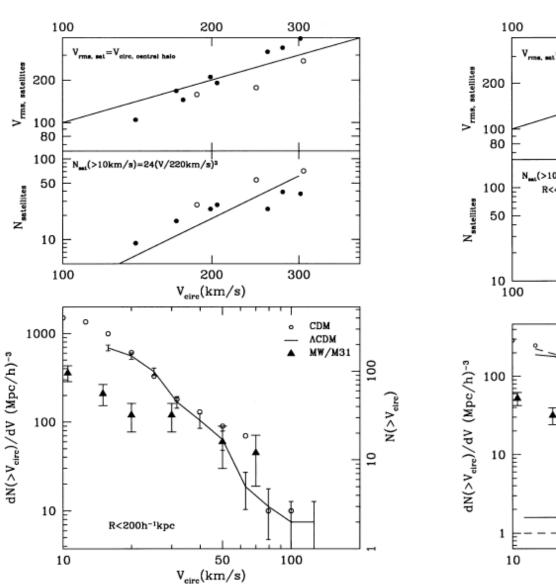




Fig. 1.—Differential circular velocity distribution function of DM halos in the Λ CDM model. The solid curve and the filled circles are results of the small box (box size of 7.5 h^{-1} Mpc) simulation. Open circles show the corresponding velocity function in a larger (box size of 60 h^{-1} Mpc) simulation. Error bars correspond to the Poisson noise. The dotted curve is the power law with the slope of -3.75 motivated by the Press-Schechter approximation (see § 4 for details).

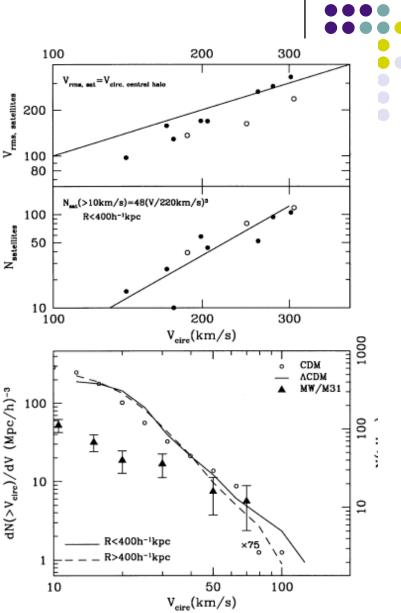
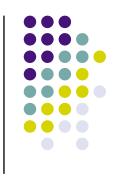

Fig. 3.—Distribution of DM particles inside a sphere of the radius of $0.5 h^{-1}$ Mpc (solid circle) centered on the more massive halo shown in Fig. 2. The small box in the figure has size $20 h^{-1}$ kpc. The color coding is similar to that in Fig. 2 except that the local density was obtained using a top-hat filter of $3 h^{-1}$ kpc radius.

TABLE 3 ${\rm Satellites~in~}\Lambda {\rm CDM~Model~inside~}R = 200/400~h^{-1}~{\rm kpc~from~}{\rm Central~Halo}$

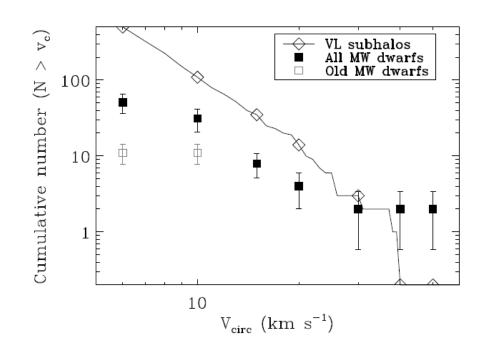
Halo $V_{\rm circ}$ (km s ⁻¹)	Halo Mass $(h^{-1}M_{\odot})$	Number of Satellites	Fraction of Mass in Satellites	$V_{\rm rms}$ (km s ⁻¹)	$V_{ m rotation} \ ({ m km~s}^{-1})$
140.5	2.93×10^{11}	9/15	0.053/0.112	99.4/94.4	28.6/15.0
278.2	3.90×10^{12}	39/94	0.041/0.049	334.9/287.6	29.8/11.8
205.2	1.22×10^{12}	27/44	0.025/0.051	191.7/168.0	20.0/11.3
175.2	6.26×10^{11}	5/10	0.105/0.135	129.1/120.5	41.5/45.2
259.5	2.74×10^{12}	24/52	0.017/0.029	305.0/257.3	97.1/16.8
302.3	5.12×10^{12}	37/105	0.055/0.112	394.6/331.6	39.4/15.7
198.9	1.33×10^{12}	24/58	0.048/0.049	206.1/169.3	17.7/12.1
169.8	7.91×10^{11}	17/26	0.053/0.067	162.8/156.0	9.3/5.0


Local Group
$$n(>V_{\rm circ}) = 385 \pm 83 \left(\frac{V_{\rm circ}}{10~{\rm km~s^{-1}}}\right)^{-1.3 \pm 0.4} (h^{-1}~{\rm Mpc})^{-3}$$
, for $R < 200~h^{-1}~{\rm kpc},~V_{\rm circ} > 10~{\rm km~s^{-1}}$, (1)

$$n(>V_{\rm circ}) = 55 \pm 11 \left(\frac{V_{\rm circ}}{10 \text{ km s}^{-1}}\right)^{-1.4 \pm 0.4} (h^{-1} \text{ Mpc})^{-3},$$
for $R < 400 h^{-1} \text{ kpc}$. (2)

Simulation
$$n(>V_{\text{circ}}) = 5000 \left(\frac{V_{\text{circ}}}{10 \text{ km s}^{-1}}\right)^{-2.75} (h^{-1} \text{ Mpc})^{-3},$$

for $R < 200 h^{-1} \text{ kpc}$, (3)


$$n(>V_{\rm circ}) = 1200 \left(\frac{V_{\rm circ}}{10 \text{ km s}^{-1}}\right)^{-2.75} (h^{-1} \text{ Mpc})^{-3},$$

for $R < 400 h^{-1} \text{ kpc}$. (4)

- High Velocity Clouds
- Dark Satellites
- Possible Observational Caveats

New ultra-faint dwarf galaxies are found (arXiv:0706.0516):

