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ABSTRACT

We present the results of numerical simulations of nonlinear gravitational clustering in universes dominat-
ed by weakly interacting, “cold ” dark matter (e.g., axions or photinos). These studies employ a high resolution
N-body code with periodic boundary conditions and 32,768 particles; they can accurately represent the theo-
retical initial conditions over a factor of 16 in length scale. We have followed the evolution of ensembles of
models with Q =1 and Q <1 from the initial conditions predicted for a “constant curvature” primordial
fluctuation spectrum. We also ran one model of a flat universe with a positive cosmological constant. Large
filamentary structures, superclusters of clumps, and large low-density regions appear at certain times in all our
simulations; however, we do not find large regions as extreme as the apparent void in Bootes. The evolution
of the two-point correlation function, £(r), is not self-similar; its effective power-law index becomes more nega-
tive with time. Models with Q = 1 are inconsistent with observation if galaxies are assumed to be unbiased
tracers of the underlying mass distribution. The peculiar velocities of galaxies are predicted to be much too
large. In addition, at times when the shape of £(r) matches that observed, the amplitude of clustering is
inferred to be too small for any acceptable value of the Hubble constant. Better agreement is obtained for
Q = 0.2, but in both cases the rms relative peculiar velocity of particle pairs decreases markedly with pair
separation, whereas the corresponding quantity for galaxies is observed to increase slowly. In all models the
three-point correlation function { is found to fit the observed form, { oc Q&2, but with Q depending weakly on
scale. On small scales Q substantially exceeds its observed value. Consistent with this, the mass distribution of
clusters is very broad, showing the presence of clumps with a very wide range in mass at any given time. The
model with a positive cosmological constant closely resembles an open model with the same value of Q. If
galaxies are a random sampling of the mass distribution, none of our models is fully consistent with observa-
tion. An alternative hypothesis is that galaxies formed only at high peaks of the initial density field. The clus-
tering properties of such “galaxies” are biased; they appear preferentially in high-density regions and so are
more correlated than the overall mass distribution. Their two- and three-point correlation functions and their
relative peculiar velocity distribution may be consistent with observation even in a universe with Q = 1. If this
is an appropriate model for galaxy formation, it may be possible to reconcile a flat universe with most aspects

of the observed galaxy distribution.

Subject headings: galaxies: clustering — galaxies: formation — numerical methods

I. INTRODUCTION

The fundamental problem of understanding the structure of
our universe can be approached by phenomenological study of
its present configuration or by analytical study of its origins. In
recent years considerable progress has been made on both
these fronts, but it has become clear that a major difficulty lies
in bridging the gap between them. Large-scale surveys of
galaxy redshifts have revealed many aspects of the three-
dimensional morphology of the galaxy distribution. (See the
recent reviews Oort 1983; Davis 1984.) At the same time there
has been widespread enthusiasm in the cosmological com-
munity over new ideas injected both by Grand Unified Theo-
ries and by the possibility of an early inflationary epoch. The
present ratio of photons to baryons may be explained by non-
equilibrium particle interactions at grand unification energies
(Weinberg 1979), while inflation can account for the homo-
geneity and flatness of the universe and for the low abundance
of magnetic monopoles (Guth 1981). Thus some of the most
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fundamental parameters of our universe may be explained in a
natural fashion. Inflationary models make a specific prediction
for the form of the density perturbation spectrum from which
observed structure must grow (Guth and Pi 1982; Hawking
1982; Starobinskii 1982; Bardeen, Steinhardt, and Turner
1983). Perturbations in curvature arise from quantum fluctua-
tions during inflation. The time invariance of de Sitter space
ensures that their amplitude as they are swept across the event
horizon during the inflationary epoch, and consequently as
they return across it in the present Friedmann universe, is
independent of scale. Their distribution thus has the Harrison-
Zeldovich “constant curvature” form. Perturbations gener-
ated in this way are adiabatic, with no fluctuation in
photon-to-baryon ratio. So far inflationary models have been
able to predict the correct fluctuation amplitude only for very
specific and finely tuned theories for the underlying particle
physics. The prediction of an adiabatic scale-invariant spec-
trum is not, however, restricted to such models (see, e.g., Harri-
son 1970; Zel’dovich 1972; Kibble 1976; Turner and Schramm
1978; Press 1980).

If any inflationary model is valid, the present value of the
cosmological density parameter Q is expected to be very close
to unity. Constraints from Big Bang nucleosynthesis suggest,
however, that the density of baryonic material is an order of
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magnitude lower (Yang et al. 1984). Furthermore, in a purely
baryonic universe an adiabatic constant-curvature spectrum
leads to small-scale anisotropies in the microwave background
in excess of the reported upper limits (Wilson and Silk 1981;
Uson and Wilkinson 1984). These apparent inconsistencies are
avoided if the dark matter that appears to dominate the
dynamics of galaxy clusters and of the universe as a whole is
made up of weakly interacting, nonbaryonic elementary par-
ticles. Candidate particles can be grouped into three categories
on the basis of their effect on the fluctuation spectrum (Bond et
al. 1983). If the dark matter is composed of abundant light
particles which remain relativistic until shortly before recombi-
nation, then it may be termed “ hot.” The best candidate for hot
dark matter is a neutrino with a mass in the range 10 eV <
m, < 100 eV. The phase mixing of freely streaming relativistic
particles erases density fluctuations of scale smaller than the
horizon, and for massive neutrinos detailed calculations show
that fluctuations are damped out if their present wavelength is
less than the critical damping scale:

4, = 41(m,/30 V)~ ! Mpc )

(Peebles 1982; Bond and Szalay 1983). A second possibility is
for the dark matter particles to interact more weakly than
neutrinos, to be less abundant, and to have a mass of order 1
keV. Such particles are termed “warm” dark matter, because
they have lower thermal velocities than massive neutrinos and
are able to erase fluctuations only on wavelengths smaller than
about 1 Mpc, corresponding roughly to the mass of a bright
galaxy. There are, at present, few candidate particles which fit
this description. Gravitinos and photinos have been suggested
(Pagels and Primack 1982; Bond, Szalay, and Turner 1982),
but currently it seems more likely that supersymmetric par-
ticles have a mass in excess of 1 GeV. Any particles which
became nonrelativistic very early, and so were able to diffuse a
negligible distance, are termed “cold” dark matter (CDM).
There are many candidates for CDM, including super-
symmetric particles (with masses above 1 Gev) and axions with
amass of 10~ ° eV (Preskill, Wise, and Wilczek 1983).

A priori the most plausible elementary-particle candidate for
the dark matter would seem to be the neutrino. Extensive
studies of a neutrino-dominated universe have been carried out
using analytic and N-body techniques, while related studies
have focused on the hydrodynamics of pancake formation and
cooling (Klypin and Shandarin 1983; Frenk, White, and Davis
1983; Centrella and Melott 1983; White, Frenk, and Davis
1983; Shapiro, Struck-Marcell, and Melott 1983; Bond et al.
1983). The transient filamentary structure that forms in these
models is reminiscent of the long supercluster chains apparent
in the galaxy distribution. However, it is not possible to recon-
cile the relatively small length-scale of galaxy clustering with
the large length-scale of equation (1), unless galaxies formed at
unacceptably recent epochs and in a manner very different
from that predicted in the standard pancake picture. For these
and other reasons, it is very unlikely that stable massive neu-
trinos dominate the universe (White, Frenk, and Davis 1983,
White, Davis, and Frenk 1984).

Detailed calculations of the linear evolution of the CDM
density-perturbation spectrum have been given by several
authors (Peebles 1982, 1984; Blumenthal and Primack 1983;
Bond and Efstathiou 1984). During the radiation-dominated
epoch, fluctuations grow significantly only while their wave-
length exceeds the horizon scale. However, once the universe is
matter-dominated, all linear modes grow at the same rate. As a
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result the fluctuation spectrum develops a bend at a scale cor-
responding to the horizon size at the transition between the
two epochs. For a constant-curvature initial spectrum, the
power density at late times at comoving wavenumber k tilts
gradually from the Harrison-Zel'dovich form, |6,|? oc k, to
[ 6,12 oc k=3 over more than two decades in scale. It is well
approximated by the following expression:

|8 ]? = Ak/(1 + ak + Bk + yk?)*, 2

where A is a normalization constant. If k is expressed in terms
of present length units, the parameters in equation (2) take the
values o = 1.7, B =9.01*% y = 1.01?, where | = (Qh*6~ %!
Mpc, h = Hy/100 km s™! Mpc™?!, Q is the present cosmo-
logical density parameter, and 6 is the microwave background
temperature in units of 2.7 K. This fit is based on the numerical
calculations of Blumenthal and Primack (1983) and of Bond
and Efstathiou (1984), which have Q = 1 and 6 = 1 and include
three massless neutrino flavors. If the baryon density is small
compared to that of the CDM, Silk damping has a negligible
effect on the CDM fluctuation spectrum and the scaling with [
becomes exact; otherwise it is approximate. The scaling of [
with Qh?0~ 2 simply reflects that of the horizon diameter when
matter and radiation had equal energy density; it is indepen-
dent of the nature of the CDM. As a result, it may be possible
to constrain this combination of cosmological parameters by
requiring the nonlinear structure that forms at late times to
agree with observation. Alternatively, it may be possible to
reject the CDM model, if we find no match to the observations
for acceptable values of the cosmological parameters. Since the
overall amplitude of fluctuations cannot, at present, be calcu-
lated a priori, we are free to adjust it to give the correct level of
clustering today. This is the only free parameter of the model.

In this paper we study the nonlinear evolution of clustering
from the linear initial conditions characterized by equation (2).
Analytic treatments of this problem can be carried through
only for simple, highly symmetric models of clusters or voids.
Pecebles (1984) and Blumenthal et al. (1984) have investigated
the cosmogony of CDM universes by applying scaling argu-
ments based on such models to the predictions of linear theory.
While these studies give considerable insight into galaxy for-
mation, clustering patterns in the real universe show no special
symmetry, and direct simulations are required to study their
morphology and their statistical properties. We have studied
the full nonlinear problem by running ensembles of N-body
simulations of Finstein—de Sitter, and of open Friedmann
models, together with one simulation with zero curvature but
with a nonzero cosmological constant, A > 0. Our models
have an initial resolution limit corresponding to a present scale
in excess of 2 Mpc and so are insensitive to details of the initial
spectrum below this wavelength. As a result, the nonlinear
clustering that they develop differs very little from that
expected in a universe dominated by warm dark matter.

Results from a single simulation of an “axion/gravitino/
photino—dominated universe ” have been published previously
by Melott et al. (1983). Unfortunately, these authors chose an
initial power spectrum (power-law segments with n = 1 and
n = —3 separated by a sharp break) which is an extremely
poor approximation to that expected in a universe dominated
by cold dark matter (eq. [2]). In addition they used a particle-
mesh code on a 323 grid, and so had too little resolution to be
able to follow the hierarchical growth of structure from small
scales (see Efstathiou et al. 1985, hereafter EDFW). As a result,
the relevance of their work to CDM universes is unclear.
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In § II we describe our numerical methods and the way in
which we generate initial conditions, and we catalog the simu-
lations we have performed. The evolution of the fundamental
statistical properties of the models (power spectra, two- and
three-point correlation functions, velocity correlations, multi-
plicity functions, cluster properties, and cell-count
distributions) is described in § III, where we also discuss their
compatibility with observation. In § IV we present graphical
comparisons of our open models with the observed galaxy
distribution in a large redshift survey. We conclude from the
data in these two sections that an Q = 1 model is quite unac-
ceptable if galaxies trace the mass distribution and that models
with Q ~ 0.2, while better, still do not provide a fully accept-
able match to observation. Finally, in § V we investigate the
consequences of relaxing the assumption that the galaxy dis-
tribution follows the mass. Instead we identify “ galaxies ” with
high peaks in the initial density distribution; such points form
a biased subset of the overall mass distribution and have
enhanced correlation properties. This procedure models a situ-
ation in which galaxy formation was suppressed except in suffi-
ciently dense regions. It leads to models which can agree with
observation quite well even for Q = 1. Conclusions and general
remarks are givenin § VL.

II. THE SIMULATIONS

All the simulations discussed here were done on VAX com-
puters using a particle-particle/particle-mesh code (P3*M;
Efstathiou and Eastwood 1981; Hockney and Eastwood 1981).
This code was designed to have high force resolution and uses
a comoving formulation of the equations of motion to follow
evolution within the fundamental cube of a triply periodic uni-
verse; a detailed examination of its performance and a com-
parison with simpler particle-mesh codes are given by EDFW.
In our models the long-range force field was calculated by
Fourier methods on a grid of 64° cells. Inclusion of a short-
range force correction resulted in point-mass interactions
between particles separated by more than a softening length,
n = L/213, where L is the comoving length of the side of our
computational volume. At separations smaller than 5 our force
law corresponded to the interaction of two interpenetrating
spheres with radii /2 and linear density profiles. We applied
the short-range correction only at separations below 97; the
discontinuity in the total force at this separation was less than
2%, and the force field was isotropic on all scales to much
better accuracy than this. All our simulations integrated the
motion of 32,768 particles using a leapfrog scheme with a, the
expansion parameter, as the time variable and a timestep of
Aa = 0.02. Their accuracy can be judged using the Layzer-
Irvine cosmic energy equation; typically the integration con-
stant in the integral form of this equation had changed by less
than 0.1% of the current potential energy at any stage of a run
(see EDFW). The longest simulations were integrated until
a = 8.4 and took about 70 hours of CPU time on a VAX
11/750.

We generated initial conditions using the Zel’dovich (1970)
approximation, following the algorithm described by EDFW.
Starting with the particles on a cubic lattice, we assigned a
displacement and peculiar velocity to each in proportion to the
gradient of the potential derived from a random realization of
the linear fluctuation distribution. The latter corresponded to a
superposition of 64° waves with random phases and with
amplitudes distributed normally with variance given by equa-
tion (2). In all cases velocities were set so that only the growing
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mode was present. Since we used 323 particles, waves with a
projected wavelength along any coordinate axis less than L/16
were undersampled; initial perturbations cannot be generated
at such high frequencies. We therefore chose the amplitude of
the initial perturbations so that the theoretically predicted
power would be equal to the white-noise level at a wavelength
of L/16. Tests show that this choice leads to the best possible
random-phase representation of the theoretical spectrum and
that the subsequent evolution of all structures made up of more
than a few particles is unaffected by residual artificialities of the
method (see EDFW § V, and Figs. 2 and 5 below). For our
Einstein—de Sitter models we used equation (2) with the par-
ameters as given; for our open models we used parameters
obtained by fitting this equation to Blumenthal and Primack’s
(1983) results for Q = 0.2. The resulting spectra agree quite well
with the expected scaling; small residual differences are reflec-
ted in a reduction of power in the open models by about 10%
at long wavelengths (see Fig. 2b).

Because the linear CDM fluctuation spectrum has consider-
able power on large scales, statistically equivalent initial condi-
tions can lead to substantially different levels of clustering even
after expansion by quite a modest factor. Thus several simula-
tions from different realizations of the same initial spectrum
must be compared to assess the statistical uncertainties in the
results. Furthermore, although the spectrum behaves asymp-
totically as | §; | oc k", with n = 1 on large scaleandn = —3 on
small scale, the transition between these two regimes is quite
slow; the length scales where n = 0.5 and n = —2.5 differ by a
factor of 100 (cf. eq. [2]). Since we can reproduce this spectrum
only over a factor of 16 in scale, simulations in different-size
“boxes ” are useful to extend the dynamic range of our results
and to study the effect of their limited resolution.

We ran three ensembles of simulations with the physical
parameters given in Table 1. While h and 6 affect the simula-
tions only through their relation to the length scale L, the value
of Q influences the dynamical evolution and so must be speci-
fied separately. Henceforth we assume 6 = 1. Models EdS1-5
represent an Q = 1 universe with L = 32.5h~2 Mpc in present
units. Models O1-4 were evolved from similar initial condi-
tions, but the mass of each particle was reduced so that Q = 0.2
after an expansion of 3.2. If this time is identified with the
present, then L = 162.5h~2 Mpc. Output times were chosen so
that the linear growth factors in the two ensembles would
match. Models EdS6-8 also had Q = 1, but the present size of
the box was taken to be L = 65h~2 Mpc. Again the output
times were chosen so that one could compare these results to
EdS1-5 at the same linear fluctuation amplitude. Finally, we
ran a single model (L1) of a universe with zero curvature and a

TABLE 1
MODEL PARAMETERS

L n M, m,

Model 1) o (m) (10~ *m) Q
EdS1-EdSS ......... 32.5 0.15 94 29 1
EdS6-EdSS ......... 65.0 0.30 75 23 1
| ) S 32.5 0.15 94 29 0.796
0O1-04 .............. 325 0.15 9.4 29 0.446

NoTE—L is the side of the computational box, M the total mass it
contains, 7 the softening length of the force law, and m, the mass of an
individual particle. The length and mass units are defined by
I = (Qh?0~%)~! Mpc and m = 10'5(Qh?)"26° M, where Q, h, and 6
denote the present value of the cosmological parameters. € is the value
of Q at the start of the simulations.
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positive cosmological constant. Its initial condition matched
those of EdS1 and O1, and the initial values of Q and A were
chosen so that when Q = 0.2 the linear fluctuation growth
factors in O1 and L1 would agree. Because of our adopted
normalization there are substantial initial fluctuations on small
scales, so that many small objects collapse immediately after
the start of a simulation. The steep initial spectrum then results
in the rapid formation of larger structures as evolution pro-
ceeds. For models EdS1-5 the clustering scale approaches the
box size for a > 4 and the experiments must be terminated.

III. THE EVOLUTION OF CLUSTERING

a) Morphology of Clustering

We begin by examining pictures of the models to get a quali-
tative feel for the results. Figure 1 shows four projections of
model EdS1 and two of O1; the times plotted for O1 were
chosen so that its linear-fluctuation amplitude corresponded to
that of EdS1 at the two intermediate times. The initial condi-
tions of the two models are almost indistinguishable, so only
those of EdS1 are shown. Note that they have substantial
large-scale fluctuations, and that careful examination reveals a
trace of the underlying grid from which the particles were per-
turbed. As the simulation evolves, structure appears very
rapidly, and filaments, superclusters of clumps, and large low-
density regions develop. The range of structure present is much
richer than in similar models evolved from white-noise initial
conditions (Efstathiou and Eastwood 1981; Efstathiou and
Barnes 1983). Because of the strong subclustering which is
present, the filaments and voids in these models are less con-
spicuous than in simulations of neutrino-dominated universes.
At times a = 1.8 in EdS1 and a = 3.2 in Ol, the two-point
correlation function is close to a power law, & ocr™?, with
y = 1.8; under an appropriate scaling, these pictures might
therefore be considered a reasonable statistical match to the
observed galaxy distribution (however, see our more detailed
analysis below). At later times much of the substructure is
erased as clumps merge into larger and larger systems. By the
end of the integration of EdS1, at a = 4.5, the distribution is
dominated by a few large clumps with little apparent substruc-
ture. Note how closely the structure matches in the two models
with different values of Q. Nevertheless, it is clear that clusters
are more concentrated in the open model. The simulation with
a positive cosmological constant matches O1 very closely at
the time when Q = 0.2 and the linear growth factor is 1.8 in
both models.

b) Power Spectra and Two-Point Correlation Functions

In this section we consider the power spectrum | ;| of our
simulations and its Fourier transform, the two-point correla-
tion function &(r). To obtain power spectra we derived a
density field from the point distribution using a nearest-grid-
point mass assignment on a 64 grid; we then Fourier trans-
formed the result and binned the power density to the nearest
integral wavenumber (see EDFW). The evolution of the power
spectrum for EdS1-5 is shown in Figure 2a. At the initial time
the spectrum flattens to the white noise level for k > 16, the
Nyquist frequency corresponding to the initial particle grid,

but is otherwise very close to the input theoretical power spec-
trum; remaining differences at small k are due to sampling
noise. (Here and below we quote values of k in units such that

= 1 corresponds to the fundamental wave of our box.) The
effective spectral index for this initial condition ranges from
n~ —1forl <k<6tonx —2for6 <k < 12. At later times
and at high wave number (k > 16), the power in excess of white
noise is reduced somewhat as a result of the smoothing intro-
duced by the mass assignment; it is also affected slightly by
aliasing from wavenumbers with k > 32. In linear theory, all
Fourier modes grow at the same rate, and | 6, |2 oc a? for Q = 1.
We can check that the models remain linear on the largest
scales by measuring the growth rate of the k = 1 mode and
checking that it follows this scaling. In Figure 2a the growth
expected is 12.2, slightly greater than the factor 10.5 found
from the data; the discrepancy appears only at the end of the
simulations. Once the fundamental mode becomes nonlinear,
its growth rate is expected to decrease in this way (cf. EDFW).
In the present models the fundamental mode saturates and
grows very slowly for a > 4. At this stage, the periodic bound-
ary conditions are becoming unrealistic, and the integration
must be stopped. This reflects the fact that there is only a
relatively small time window between the collapse of the small-
est and largest structures in our models.

Figure 2b shows the evolution of the power spectrum of our
ensemble of open models. The corresponding results from
Figure 2a are superposed in order to facilitate comparison and
have been multiplied by 0.9 to account for the slight difference
between the theoretical input spectra (see § II). The growth of
large-scale perturbations (k < 8) matches extremely well in the
two sets of models, even though nonlinearities appear to have
affected the evolution significantly for k > 4. At higher fre-
quencies (k > 8) and at later times, there is an excess of power
in the open models. This excess -eflects the difference in cluster
concentration visible in Figure | and is a consequence of the
larger expansion of the open models after cluster collapse.
When times with the same linear growth factor are compared,
the power spectrum of the model with a positive cosmological
constant is very similar to that of the corresponding open
model but with slightly less power at high frequency.

An important test of the simulations comes from compari-
son of the power spectra for calculations in boxes of different
size. Figure 3 shows the evolution of the power spectrum of the
“large box ” ensemble superposed on the appropriately shifted
version of the data from Figure 2a. There are no free-fitting
parameters in this comparison and, in the absence of spurious
effects due to the finite particle number and the finite box size,
the two power spectra should coincide. At large k there are
slight differences due to the smoothing inherent in our method
for calculating the power spectrum, but in the range 2 < k < 8
the agreement is very good. This shows that the evolution of
the Fourier components accessible to the “small box” calcu-
lation is not affected by its finite size. In principle, we could
thus use linear theory to specify the evolution of longer wave-
length components and so embed our models in an “infinite”
universe. We have not bothered to do this because the
neglected large-scale power is quite small at the times that
interest us. The evolution of the power spectra in Figures 2 and

FI1G. 1.—Two-dimensional projections of the particle positions in an Einstein—de Sitter and an open CDM simulation. The initial conditions for EdS1 are shown
at top left. Subsequent plots show the model after expansion by factors, a = 1.8 (center left), a = 2.4 (bottom left), and a = 4.5 (top right). The remaining two plots
show O1 at a = 3.2 when the linear growth factor from its initial conditions is 1.8 and Q = 0.2 (center right), and at a = 8.4 when the growth factor is 2.4 and
Q = 0.09. Note that the side of the box corresponds to 32.5(Qh?)~! Mpc in these models, where Q and h are the present values of the cosmological parameters.
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FiG. 3—The evolution of the power spectrum of the “big box” models, EdS6-8, is compared with appropriately shifted results for our “standard ” models,
EdS1-5 (shown as solid lines). The agreement at small wavenumber shows that the evolution of large-scale structure in the standard models has not been adversely
affected by the absence of wavelengths larger than the box size.
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FiG. 4—Two-point correlation functions &(r) are shown for models (a) EdS1-5 and (b) O1-4, for various values of the expansion parameter a. The separation r is
given in units of the side of the computational volume. The error bars give errors in the mean derived from the scatter within each ensemble. The dotted line is a
power law with the index y = 1.8, which fits the galaxy distribution. The solid lines in (b) repeat the results in (a) after multiplication by 0.9. An arrow in each panel
marks the softening length of our simulations.
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3 is such that as short-wavelength modes go nonlinear, they
grow more rapidly than the linear mode, resulting in a pro-
gressive flattening of the power spectra. The power spectra do
not evolve in a self-similar fashion.

A corresponding lack of self-similarity is shown by the evol-
ution of the two-point correlation function &(r), which we plot
in Figure 4a for models EdS1-5. In order to achieve the highest
possible resolution, correlation functions were computed by
pair counts rather than by a Fourier transform of the power
spectrum; all pairs were used for log (r/L) < —1, and about
10% of pairs were used for larger separations. The effects of
force softening are apparent as a slight flattening of &(r) on the
smallest scales shown [recall that log (y/L) = —2.3],but gener-
ally the correlations have near power-law form on large scales.
Note that &(r) steepens with time and has a power-law index
y = 1.8 at a = 1.8. By the end of the run y = 2.1, which is much
steeper than the observed galaxy function. Power law fits to &
over the range 30 > ¢ > 0.3 are given in Table 2 for all three of
our ensembles. In Figure 4a the growth of &(r) on large scale
matches the linear expectation, & oc @, while on small scale
[log (r/L) = —2.5], ¢ is growing as a2, This reflects the accel-
erated growth seen also in the power spectrum. As we discuss
in the next section, the nonlinear clustering in these models
does not match the predictions of earlier similarity arguments
(Peebles 1974, 1980; Davis and Peebles 1977).

Two-point correlation functions for the open models are
shown in Figure 4b and are compared with those of EdS1-5 at

TABLE 2
Power-Law FITs TO &(r) OVER THE RANGE 0.3 < ¢ < 30
A. EdS1-EdSS

a A v log (ro/L)
14......... 14 1.70 £ 0.01 —1.55+0.01
1.8......... 1.8 1.84 + 0.01 —1.41 +0.01
24......... 24 1.96 + 0.02 —1.29 +£0.02
30, ...t 3.0 2.09 + 0.02 —1.19 £ 0.02
40......... 4.0 2.14 + 0.04 —1.06 £+ 0.03

B. EdS6-EdS8

a A ¥ log (ro/L)

1.3........ N 1.8 1.65 + 0.01 —1.76 + 0.01

L7 24 2.02 £+ 0.01 —1.60 + 0.02

21t 3.0 2.14 + 0.02 —1.50 £ 0.02

24......... 35 2.17 £ 0.03 —1.43 +0.03

2.8 ... 4.0 2.21 £ 0.03 —1.37 £ 0.03
C. “Galaxies”

a A ¥ log (ro/L)
14......... 1.4 1.96 + 0.04 —1.17 £ 0.04
18......... 1.8 1.99 + 0.05 —1.13 + 0.04
24......... 24 1.92 + 0.05 —1.07 + 0.04
30......... 3.0 2.09 + 0.07 —1.01 +0.05

D. 01-04

a A y log (ro/L) Q
14......... 1.2 1.52 £ 0.01 —1.72 £ 0.02 0.37
1.8......... 14 1.73 £ 0.01 —1.59 +0.01 0.31
32, 1.8 1.82 + 0.02 —1.45 +0.02 0.20
Sloo.. 2.1 1.75 £ 0.02 —1.39 + 0.03 0.14
84......... 24 1.75 £ 0.02 —1.33 +£0.02 0.09

NoOTE—A is the amplitude of mass fluctuations in the linear
regime relative to that in the initial conditions of EdS1-5. The
quoted errors come from least-squares fits to log [&(r)].
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log £(r)

-2
log(r/L)

FiG. 5—A test of boundary and discreteness effects. The points show ¢
averaged over the ensemble EdS6-8 at various values of the expansion vari-
able. The box length in these models is L = 65h™% Mpc. The correlation
functions for the ensemble EdS1-5 at corresponding linear fluctuation ampli-
tudes are shown as solid lines. These have been shifted by a factor of 2 to the
left to enable a direct comparison with the points. Note the excellent agree-
ment at late times and the size of the error bars (these are often smaller than
the symbols plotted).

times chosen to have the same linear growth from the initial
conditions. The correlations in the EdS models have been
multiplied by 0.9 to account in the mean for the slight differ-
ence in the initial power spectra discussed in § II. As we found
in earlier work (Frenk, White, and Davis 1983), the correlation
functions agree well when times are matched in this way. For
the open and positive A models, £ is somewhat larger on small
scales, and smaller on intermediate scales, than in the flat
models, consistent with the excess power seen at high fre-
quencies in Figure 2b. As Q becomes small this disagreement
becomes worse; &(r) steepens on small scales but stops growing
at large scale. At late times its shape is not well fit by a single
power law, so that the exponents given in Table 2D must be
treated with some caution.

Figure 5 compares the two-point functions of our two
ensembles with Q = 1 and boxes of differing size. The lines
representing our “standard” models (EdS1-5) have been
shifted to the left by a factor of 2 to account for the difference in
box size, and the times plotted were chosen so that the linear
fluctuation amplitudes on large scale should match. Once
again we have no freedom to adjust the fit in this diagram; the
curves should coincide, as indeed they do once initial transients
have had time to subside. Slight differences on very small scale
show the effect of the larger softening in the “ big box ” models.
This test confirms the similar test carried out above for the
power spectra and demonstrates that the rapid steepening of
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&(r) in the smaller simulations is an intrinsic property of the
nonlinear clustering process rather than a consequence of their
finite size. (This behavior is expected because of the non-self-
similarity of the initial conditions.) This test also shows that the
statistical properties of the small-scale structure are very
similar in models where the particle masses differ by a factor of
8 and the softening lengths by a factor of 2. Thus, discreteness
and two-body relaxation effects do not seem to be important
on the scales which concern us (cf. Fall 1979). Figure 5 suggests
that we can use periodic boxes of different size to extend our
dynamic range; however, this technique is of limited use in
practice, because we can never evolve a simulation beyond the
time when the k = 1 modes begin to go nonlinear.

Under the hypothesis that the galaxies are an unbiased
tracer of the mass distribution in the universe, we must require
&(r) in our models to have the form of the observed galaxy
function. In addition, we must scale the models so that its
amplitude is correct. The correlation length, r,, defined by
&(ro) = 1, is measured to be 5+ 0.7h~ ' Mpc for the galaxy
distribution (Davis and Peebles 1983). At the time when the
slope of the correlation function in our models has the
observed power-law index, y = 1.8, we find ro = 1.27h~ 2 Mpc
for the Q = 1 ensemble (at a = 1.8) and r, = 5.8h~ 2 Mpc for
the open ensemble (at a = 3.2, when Q = 0.2). Thus, for consis-
tency with the observations, h = 0.25 is required if Q = 1 and
h =11 if Q=0.2; both these values are outside the range
covered by most modern determinations. For acceptable
values of h, our models do not simultaneously reproduce the
correct shape and the correct amplitude for &(r). For example,
when a =4 in the EdS1-5 ensemble, we find h = 0.57 and
y = 2.14 (see Table 2A). The uncertainty as to which model
time should be identified with the present is probably sufficient
to allow large, but acceptable, values of h for the open models.
Matching the correlation length of the positive A model to
observation when Q = 0.2 also leads to & = 1.1, but in this case
the age of the universe is 2.3 times the usual Einstein—de Sitter
value, 2H, .
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A more direct test of whether the simulations match the
observed shape of ¢ is illustrated in Figure 6. Here we show the
projected correlation function,

wir,) = f ayellr,? + )1, o)

for the Q = 1 models at a = 1.8 and for the open models at
a = 3.2. In evaluating the integral in equation (3), we used the
mean values of log & shown in Figures 4a and 4b. Note that the
results are significantly affected by our force softening to the
left of the vertical arrow. The filled circles in Figure 6 show
observational estimates of w(r,) from the CfA redshift survey
(Davis and Peebles 1983, Fig. 2). Our Q = 1 results fit the data
very well, provided h = 0.22. The open arrows in the figure
show how the model function shifts if it is scaled using h = 0.3.
Clearly the value of h required for agreement at any given
model time is determined to about 10%. The major uncer-
tainty lies in deciding which model times could be consistent
with the observational data. At a = 3.5 the amplitude of w(r,)
matches the data if 1 = 0.47, but its dependence on r, is much
too steep to be acceptable. The amplitude of w(r,) shown for
the Q = 0.2 ensemble in Figure 6 corresponds to the choice
h = 1.1. In this case its shape deviates significantly from a
power law, but the model still represents the CfA data fairly
well. A value of Q in the range 0.2 < Q < 1 would clearly
produce rough agreement with both the shape and the ampli-
tude of the observed correlation function for any of the cur-
rently popular values of h. However, as we now discuss, such
models would predict peculiar velocities for galaxies which are
considerably larger than those observed.

¢) Velocity Moments

The relative peculiar velocity distribution of pairs provides
another important diagnostic for the simulations. Consider the
moments of this distribution as a function of pair separation.
The first moment points along the separation vector of the
pairs and must cancel the Hubble flow if the pairs are to

T T T T T T T
25— e
L]
— L
o 25—
a,
--z r
'\_5 L
~ L
A
— -
e
Z 1.5 —
Qo -
2
1 °
I~
1 1 1 1 [ 1 1 1
-1 -5

0
log [r,/(h 'Mpc)]

F1G. 6.—The projected correlation function w(r,) (eq. [3]). The filled circles show the results from the CfA redshift survey (Davis and Peebles 1983, Fig. 2), while
the curves show results from our open and Einstein—de Sitter ensembles at a = 3.2 and a = 1.8 respectively. The vertical arrow marks the softening length of our
simulations, and the diagonal arrows show how the results for a flat universe would change if they were scaled using h = 0.3 rather than h = 0.22.
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F1G. 7—Velocity moments are shown in (a) for the Q = 1 ensemble EdS1-5 at a = 1.8, and in (b) for the open ensemble O1-4 at a = 3.2. The velocities have been
scaled to units in which the Hubble velocity across the computational box is unity. A velocity of one thus corresponds to 3250(Qh)~* km s~ . The solid line shows
the Hubble flow v = Hr. {v;?)"* and <v . 2>1/2 are the rms peculiar relative velocities of pairs in the radial and tangential directions respectively. A vertical arrow in

each panel marks the point where & = 1.

remain, on average, at fixed physical separation. The second
moments form a symmetric second-rank tensor; its two inde-
pendent eigenvalues correspond to the radial and transverse
velocity dispersions. In Figures 7a and 7b we plot these
moments as a function of separation for models EdS1-5 (at
a = 1.8) and for models O1-4 (at a = 3.2) respectively; the
solid line is the Hubble line v = Hr, and arrows mark the
correlation length r,. As discussed above, &(r) for both ensem-
bles is approximately described by a power law of index
y = 1.8 at these times. Plots similar to Figure 7 have been given
by Davis and Peebles (1977) for BBGKY models, and by Efsta-
thiou and Eastwood (1981) for N-body simulations with white
noise and subrandom initial conditions.

Our results are very similar to those of Efstathiou and East-
wood (1981) but differ substantially from the predictions of the
BBGKY similarity solutions. The first moment, {v,,(r), rises
above the Hubble line for &(r) > 1 in both ensembles, and lies
well above it for Q = 1, indicating that, on average, pairs on
these scales are physically moving together. On the smallest
scales {v,,(r)> = — Hr, as expected for stable bound structures.
The peculiar velocity dispersion tensor is slightly radially
biased on all scales. (In accord with previous practice the radial
dispersion plotted is not a central moment, and so should have
the mean motion subtracted in quadrature when computing
the anisotropy.) In our simulations, as in those of Efstathiou
and Eastwood, the dispersions fall substantially with increas-
ing separation, whereas the BBGKY solutions rise slowly. This
discrepancy is probably the consequence of some of the sim-
plifying assumptions which Davis and Peebles adopted in
order to make the BBGKY equations tractable. The rms veloc-
ity difference drops slightly more rapidly with separation in the
open models than in the closed models. This is yet another
reflection of the fact that clusters are relatively more compact

in the open models. The decrease of the dispersions at the
smallest scales [log (r/L) < —2.3] can be at least partly
ascribed to the softening of the particles.

In order to test the effects of softening on the velocity dis-
tribution, we ran one simulation with Q =1 and a severely
softened force law. The potential was taken to vary logarithmi-
cally for separations less than L/32 and was further softened to
approach a constant at separations smaller than L/430. It thus
corresponded approximately to the interaction of truncated
isothermal spheres. This model developed a correlation func-
tion with a pronounced bend at the outer softening length, and
it had considerably reduced peculiar velocities on small scales.
However, the qualitative nature of the velocity field remained
unchanged; the dispersions decreased with separation for
log (r/L) > — 1.7, and (v,,(r)) exceeded the Hubble flow in the
region where ¢ ~ 1. The velocity field at these separations is
thus insensitive to the behavior of the interaction law on
smaller scales. This model produced weakly concentrated clus-
ters and a correlation function that is quite inconsistent with
observations of galaxies.

A useful test that the velocities shown in Figure 7 are not
unduly influenced by the discreteness of our particles (their
individual mass exceeds that of an axion by a factor of order
108%) is to compare them with the velocities found for the “big
box” models EdS6-8. If this is done at times later than that
plotted in Figure 7a, good agreement is found over the range
0.01 < r/L < 0.3. However, a = 1.8 in EdS1-5 corresponds to
a = 1.27 in EdS6-8, and at such an early time transients from
the initial conditions are still visible in the velocity correlations
of the “big box” models; corresponding effects may be seen in
the two-point functions plotted in Figure 5. The good agree-
ment at later times confirms that discreteness effects are indeed
negligible in our models. This might also be inferred from the
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fact that the dispersion on all scales in Figure 7 substantially
exceed the Keplerian velocity of a binary. The dispersions must
therefore result from virial motions within more massive aggre-
gates.

To scale our models to physical units we set the Hubble
velocity across the correlation length to its observed value of
500 km s~ !. (As discussed above, this corresponds to an
unrealistically small value of h in EdS1-5.) For Q = 1, particles
at small separation are then inferred to be moving with one-
dimensional rms relative velocities up to 1100 km s~*, while
velocities up to 550 km s~ ! are found in the open ensemble. As
we discuss in § IV, values of 200-300 km s ~! are required to fit
observations of galaxies, and the trend of the observed disper-
sions with separation disagrees with that seen in our models.
Smaller velocities would be obtained if we considered models
with lower Q, but the scale discrepancy discussed in the pre-
vious section would then be worse. If one associates the
observed galaxy distribution with the mass distribution of the
simulations, then velocities in the Einstein—de Sitter models are
clearly much too high to be consistent with observation. This
disagreement is exacerbated if the present is identified with a
larger expansion factor in EdS1-5 (the correlation amplitude of
galaxies could then be matched for a larger value of h). It just
reflects the well-known fact that the mass-to-light ratios
obtained from dynamical analyses of groups and clusters of
galaxies are much too small to close the universe. The open
models give acceptable velocities at large separations (~5h™!
Mpc) but velocities which are still too large on smaller scales.
The positive A model has very similar velocity correlations to
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O1 if the two models are compared when Q = 0.2, and so
agrees no better with observation.

d) Three-Point Correlation Function

We have estimated the three-point correlation function {(r,,
r,, r3) for our models. This may be parameterized in terms of
the usual “size ” and “shape ” parameters defined by

r=ry, u=ryfry, v=_(F3—r)r, (ry<r,<ry)

(cf. Peebles and Groth 1975). Observational estimates from the
galaxy distribution show that { is closely approximated by

Urys 735 13) = QLE(r)E(r2) + &(ra)e(rs) + E(ra)E(r)] . (4

where Q is a constant. Groth and Peebles (1977) find
Q = 1.3 £+ 0.2 from an analysis of the angular correlation func-
tions measured from the Zwicky and Lick catalogues. Efsta-
thiou and Jedredjewski (1985) have estimated Q directly from
the three-dimensional distribution using four independent red-
shift surveys; they find Q = 0.8 + 0.2, consistent with the
Groth and Peebles’ result. In our models { obeys the scaling
with u and v implied by equation (4) very well. In Figure 8, we
therefore plot Q, averaged over u and v, against the size par-
ameter r for EAS1-5 and O1-4. In each case, the value of Q on
small scales is significantly higher than that observed, and
declines to Q ~ 1 where { ~ 1. Thus the scale dependence of {
in the N-body models disagrees slightly with observation. In
the most extreme cases we find Q > 2 on small scales, well
outside the observational limits. Note that as the models
evolve, the small-scale values of Q decline. This behavior, and
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FiG. 8—The dimensionless amplitude of the three-point correlation function Q (eq. [4]) plotted against the size parameter r. We have averaged Q over u and v
because we find it to be almost independent of the triangle shape parameters. Results for the ensemble EdS1-5 are given in (a), and for O1-4 in (b). Values of Q for
different expansion factors are plotted using different symbols as labeled in each panel. Arrows mark the softening length of our simulations.
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the high initial values of Q, reflect the shape of the initial
fluctuation spectrum. In the hierarchical model of equation (4),
Q provides a measure of the dispersion in the number of neigh-
bors found within a sphere of radius r centered on a randomly
chosen particle. This dispersion is large compared to the mean
number of neighbors if the initial fluctuation spectrum has
considerable power on large scales (cf. the discussion of the
multiplicity function below). Thus we expect Q to be larger in
these models than the value Q = 1.2 + 0.1 found by Efstathiou
and Eastwood for simulations with white noise initial condi-
tions. Similarly, the gradual decrease in the value of Q with
time is probably a result of the non—power-law initial condi-
tions in our models. It is worth mentioning that Fry (1984)
finds a dependence of Q on primordial spectral index n that is
qualitatively similar to the results found here. Fry’s calculation
is based on second-order perturbation theory, and is not,
however, directly applicable to the regime { > 1.

e) Multiplicity Functions

Correlation studies of structure in our models may be com-
plemented by an analysis of the distribution of cluster masses.
This distribution, often known as the multiplicity function, is
heavily influenced by correlations of very high order which
cannot be estimated directly. We have found groups in our
simulations by linking all particle pairs separated by less than a
fraction b of the mean interparticle separation; each distinct
subset of connected particles is then defined as a group. This
method of cluster analysis has several advantages. In the first
place it produces a unique group catalog for any chosen value
of b. Second, these catalogs obey a nesting condition; all the
members of any group defined for one particular b are also
members of the same group in any catalog defined by a larger b
(cf. Efstathiou, Fall, and Hogan 1979). Finally, the method
makes no a priori assumption about the shapes of groups. We
have found that if relatively large values of b are used (b = 0.5),
the resulting groups are often quite irregular with several
separate centers of concentration. Smaller values of b
(b < 0.25) tend to pick out objects with a well-defined center

and relatively regular structure. If the points had a fractal dis-
tribution, the shape of groups would be independent of b, so
this behavior demonstrates a departure from spatial self-
similarity in our models; further work will be required to deter-
mine whether this is real or is a consequence of our force
softening on small scales (b = 0.25 corresponds to a separation
of 1.7y in our models). Nevertheless it is interesting that the
distribution of nearby galaxies appears to show a similar
behavior (Einasto et al. 1984).

In Figure 9 we plot the multiplicity functions for our ensem-
ble of Einstein—de Sitter models at two times and for b = 0.5
and 0.25. We have followed White and Negroponte (1982) and
Einasto et al. (1984) in plotting the number of particles as a
function of the multiplicity of the group to which they belong;
we have also chosen logarithmic bins such that the first con-
tains singles, the second pairs, the third triplets and quadru-
ples, the fourth quintuples to octuples, etc. The most striking
aspect of the distributions in Figure 9 is that as the simulations
evolve they become flat over the entire multiplicity range
2-1000; a particle is thus equally likely to find itself in a group
in each logarithmic mass interval over this range. Multiplicity
functions for our ensemble of open models resemble those
shown in Figure 9; these seem to be characteristic of CDM
models. Evolution from initial conditions with a large coher-
ence length leads to U-shaped distributions in which particles
are likely either to be singles or members of very large clusters.
This may be seen clearly in the diagrams shown by Einasto et
al. (1984) for models of a neutrino-dominated universe, and we
have found similar results for the neutrino models of White,
Frenk, and Davis (1983). Scale-free initial conditions with less
power on large scales (e.g., white-noise models) produce con-
figurations in which most particles tend to be in systems of
intermediate multiplicity; they look rather like the non-
dynamical hierarchical models illustrated by Einasto et al.
Thus, as emphasized by Bhavsar, Gott, and Aarseth (1981),
multiplicity functions seem to discriminate clearly between dif-
ferent kinds of linear initial condition. The flat multiplicity
functions of Figure 9 are very similar to the histograms
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F1G. 9.—The number of particles in ensemble EdS1-5 in groups of a given multiplicity is plotted as a function of that multiplicity. The multiplicity parameter is
defined to be the integral part of log, (N,) + 1, where N, is the number of particles in a group. It is thus equal to 1 for singles, to 2 for pairs, to 3 for triplets and
quadruples, and so on. Results are shown for a = 1.8 in (a) and for a = 3.0 in (b). In both plots filled squares give results for b = 0.25 and stars give results for b = 0.5,
where b is the maximum separation at which particles are linked into a group; b is expressed in units of the mean interparticle separation.
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obtained for the nearby galaxy distribution by Einasto et al. for
corresponding values of b. We hope to come back to this ques-
tion and make a detailed comparison with a larger sample of
observational data in a later paper.

The groups in our simulations correspond to the bound
clumps of cold dark matter which must make up the halos of
individual galaxies and of groups and clusters of galaxies in the
real universe. For small values of b our group-finding algo-
rithm picks out single, well-defined clumps that can be identi-
fied with such structures. Although we do not have space here
to present a thorough discussion of clump properties, we show
some results in Figure 10 to give an idea of what is possible.
For each group found by our algorithm we calculated a mass
m,, an inertia tensor with principal components m, a,;?>
m,a,* > m,a,”, an internal velocity dispersion (v*», and an
angular momentum vector J. From these quantities we derive a
mean density, two shape parameters, and a spin parameter
using the formulae:

p= 3mg/(47t53/2a1(12 03) s

e, = as/a,,
A= J((v2>/2)1/2/Gmg2 . (5)

In these equations p is the density of a uniform ellipsoid with
the same mass and inertia tensor as the group, and A’ differs
from the usual spin parameter in that it is defined using the
kinetic energy of the group rather than its total energy. For an
oblate system e; = 1, while for a prolate system e, = 1. Figure
10 shows the distribution of some of these quantities for the
273 groups with 30 or more members in models EdS1-5 at
a = 1.8. We give p in units of the mean density of the calcu-
lation and m, in units of the particle mass. For the value
b = 0.25 used here, the algorithm clearly picks out groups at a
fairly well-defined density contrast of about 200. There is no
correlation of density with mass except for a slight tendency for
the very largest groups to have low density. The spin par-
ameter also shows at most a very slight anticorrelation with
mass, and has a median value of about 0.045. The lack of trend
agrees with the results of Efstathiou and Barnes (1983) for
simulations from white noise initial conditions, but our charac-
teristic value is 30% lower. This difference would be interesting
if corréct, but it is almost certainly due to the effects of soften-
ing in the present calculations; the mean separation of particles
in our groups is approximately equal to #. The problem merits
further careful investigation using higher resolution simula-
tions. The groups tend to be quite strongly aspherical; axial
ratios greater than 2 are quite common. Their generic shape is
neither oblate nor prolate, although a clear majority of groups
have e, > e,, showing some preference for a prolate figure.
Again this merits further study to investigate the influence of
tides, of internal substructure, and of force-softening on the
measured quantities. We have found very similar distributions
for a = 3 in models EdS1-5, the main difference being that the
mass distribution then extends to higher masses (see Fig. 9).
The properties of groups in our open models are very similar to
those shown in Figure 10, but since these groups are rather
more compact, they are even more strongly affected by force
softening.

A final problem which we have addressed with our group-
finding algorithm is the derivation of the value of b for which
linked structures extend across our computational volume and
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percolation occurs. Einasto et al. (1984) suggest this to be a
useful measure of structure both in N-body models and in data
catalogs; Dekel and West (1985), on the other hand, point out
a number of difficulties in interpreting percolation properties.
Models EdS1-5 percolate for values of b in the neighborhood
of 0.7, both at a = 1.8 and at a = 3. Percolation is slightly
harder at the later time and is also slightly harder in the open
ensemble. This value of b is smaller than the value b = 0.86
required for percolation in a three-dimensional Poisson dis-
tribution. Thus by the criteria of Einasto et al. the present
models appear filamentary rather than hierarchical, even
though Figure 1 shows that clusters do grow in a hierarchical
fashion. For the nearby galaxy distribution Einasto et al. found
percolation to occur for b = 0.65, quite close to the value we
obtain for our models.

f) Countsin Cells

Further information about galaxy clustering is contained in
the distribution of counts in cells, and, in particular, in its
departure from a Gaussian curve. For the N-body simulations
this statistic is very easy to generate, but for the data it is
essential to use volume-limited catalogs; this reduces the size of
available surveys and makes comparison quite difficult. Figure
11 shows the distribution of counts in cubes of side L/8 and L/4
for EdS1-5 at a = 1.8. At this epoch ro/L = 1/26, so these
cubes should be compared with regions of the real universe
which are 16h~! and 32h~! Mpc on a side. For the smaller
cube the distribution is extremely non-Gaussian; there are an
extended tail at high density and an excess of low density
regions. For the larger cube the distribution is much closer to a
Gaussian, but even here the departures are quite substantial.
The expected rms fluctuation in the number in a cube is
(60/0)ems = €112, where £ is the average of the correlation func-
tion over the cube. From our cell counts we find rms fluctua-
tions of 70% and 35% for the small and large cubes
respectively.

The dashed histogram in Figure 11 corresponds to the dis-
tribution of counts in cells of redshift space for cubes of side
L/4. This curve was generated by displacing each particle in the
z-direction by its z-component of peculiar velocity divided by
the model Hubble constant and then using the same algorithm
as before; this procedure approximates the construction of a
volume-limited redshift catalog, the z-axis being the redshift
direction. Observational catalogs of large-scale clusters and
holes are, of course, measured in redshift space, not real space,
and should be compared to this histogram. The difference
between the redshift-space and the real-space histograms is
seen mainly in the low-density cells. Because of the coherent
outflowing of material from low-density regions, cells tend to
appear emptier in redshift space than in real space. This effect
can be substantial, particularly in a high-density universe.

From the cumulative distribution corresponding to Figure
11, we find that 4% of cubes of side L/4 have n/n < 0.5 in real
space, versus 8% in redshift space. However, even in redshift
space, the fraction of very empty cubes is very small; only 0.6%
of cubes of side L/4 have n/n < 0.3. A very similar result is
found in models EdS6-38, if we analyze them at a = 1.3 when
the correlations are similar to those of EdS1-5 at a = 1.8. In
these models, 10% of 32h~! Mpc cubes in redshift space have
density less than half the mean. In the open models, the dis-
tribution of counts in large cells is virtually identical to that for
the Q = 1 models, provided times with the same linear growth
factor are compared. At late times, linear fluctuations cease to
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FiG. 11.—Histograms of counts in cells for the ensemble EdS1-5. The distribution of counts in cubes of side one-eighth that of the simulation volume is shown in
(a), while (b) shows the corresponding distribution for cubes of side one-quarter that of the box. The dashed histogram in (b) shows the result of making the counts in

“redshift ” space rather than in real space.

grow in an open universe, and large holes would no longer
expand in comoving coordinates.

It is difficult to find observational data to compare with
these results. In a subset of the CfA redshift survey (Davis et al.
1982; Huchra et al. 1983) volume-limited to 6000 km s~ ! and
magnitude-limited to 7500 km s~ !, an analysis of counts in
randomly placed spheres suggests that 20% of spheres of
radius 20k~ ! Mpc (i.e., with the same volume as a 32k~ Mpc
cube) have density less than half the mean. There is thus a
discrepancy with the CDM prediction by about a factor of 2.
Note, however, that the total volume of the survey is less than
that of eight such spheres, so that the statistics are very poor.
Nevertheless the number and sizes of voids within the CfA data
set appears to be quite representative (cf. Oort 1983). If really
large voids in the galaxy distribution such as the 30h~! Mpc
radius void in Bodtes reported by Kirshner et al. (1981, 1983)
turn out to be common, they may be difficult to explain within
a CDM model. The Bodtes region has not been fully surveyed,
but Kirshner et al. claim the density of bright galaxies there to
be less than 25% of the mean. This is particularly startling
because the volume of the void is about 10% of all space that
has been fully surveyed to date! Within our simulations we see
no low-density regions of this size despite the fact that the total
simulation “volume” (in units of r,3) is greater than the
volume of “known ” space.

IV. COMPARISON WITH A REDSHIFT CATALOG

In the previous section, we showed that CDM models with
Q = 1 give excessively high velocities and two- and three-point
correlation functions incompatible with observation. The
amplitudes of the relative peculiar velocities, and of ¢, are
better reproduced in models with Q =~ 0.2, but the discrepancy
in the value of Q is worse. Since these open models (at a ~ 3.2)
are the best approximation to the observed galaxy distribution

we have found so far, we now compare some of them with the
CfA redshift survey by generating “redshift ” catalogs follow-
ing the procedure of Davis et al. (1982). We situate the observer
within the computational box and choose points at random in
such a way as to mimic the selection function appropriate to
the CfA northern catalog, when it is volume-limited to a dis-
tance of 4000 km s~ !, and magnitude-limited at m, = 14.5
from 4000 km s~ ! to 10,000 km s~ !, Further details are given
by Davis and Huchra (1982). We recall that y = 1.8 at a = 3.2
in O1-4, and that setting the model correlation length to its
observed value then requires h = 1.07 and a physical box size
of 142 Mpc.

Redshift catalogs constructed in this way from runs O2 and
O3 (at a = 3.2) and projected onto the sky are shown in
Figures 12a and 12b. The semi—volume-limited CfA northern
catalog, which these samples model, is shown in Figure 12¢. To
illustrate the kind of fluctuation which may be expected, we
have situated the origin near a prominent cluster in model O3,
in much the same way as we happen to be near the Virgo
supercluster. The selection criteria were unchanged between
models O2 and O3, so this procedure results in the number of
selected “galaxies” being considerably higher in O3. Wedge
diagrams of these three catalogs are shown in Figures 13a—c.
The simulation data have been plotted in redshift space, which
includes the peculiar velocity distortion in the radial direction;
the rms value of this velocity is 256 km s~ ! for the catalog from
02 and 357 km s~ ! for that from O3. A comparison of these
three catalogs is quite instructive. “Fingers of God” can be
seen in all three samples, as can long filamentary structures.
The cluster we chose in O3 is clearly richer than Virgo, and
there is as much difference between the two simulated catalogs
as between them and the real data. The large-scale power in the
perturbation spectrum produces significant fluctuations in
volumes the size of the CfA catalog, so that it is difficult to
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Fi6. 13.—Wedge diagrams for the three catalogs illustrated in Fig. 12. The radial coordinate in these plots is recession velocity with successive circles
corresponding to increments of 1000 km s~ *. The angular coordinate is right ascension with a line plotted for each hour. All “galaxies” in the declination range
0° < 6 < 45° are shown, with squares corresponding to 0° < & < 15°, stars to 15° < & < 30°, and crosses to 30° < & < 45°. The three slices of this pie are labeled to
correspond to Fig. 12. Note the large cluster in O3 and the Virgo Cluster in the CfA data.
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judge the acceptability of a model on the basis of one rep-
resentation. Such fluctuations also affect the observations, as
may be seen by comparing galaxy distributions in the northern
and southern hemispheres out to a distance of 50h~* Mpc.
Figures 12 and 13 give the overall impression that our open
models match the observed galaxy distribution very well.

We produced the redshift catalogs for O2 and O3 by scaling
the simulations so that the two-point correlation function of
the open ensemble matches that of the observations. However,
since the redshift catalogs contain only 3%-4% of the original
particles, we can expect substantial fluctuations in estimates of
&(r) derived from them. In Figure 14 we plot &(r) computed
from the three redshift catalogs in a fashion that attempts to
give equal weight to each volume element; this was the method
used by Davis and Peebles (1983) for the CfA data. We give &
as a function of the apparent spatial separation in redshift
space; this is a biased estimator of the true &(r). The catalog
from O3 has correlations quite similar to the CfA data, but that
from O2 has a smaller correlation length. Since the models
have larger peculiar velocities on small scale than the real data
(Fig. 7b), their correlation function in redshift space is shal-
lower than that observed. This effect is evident in the O3 catalog
for r < 5h~* Mpc. Note also that the CfA data become nega-
tive for r > 28h~! Mpc, that the same is true for the O3 catalog
at r > 20h ™!, but that the O2 catalog is positive on almost all
scales. The true &(r) is actually positive over all these scales in
models O2 and O3. The negative correlation seen in the O3
redshift catalog, and perhaps also that in the CfA data, results
from the substantial inhomogeneity of these data sets and from
the method of estimation. In the analysis of redshift catalogs,
one solves for the mean density n, as well as for &(r). Despite the
use of a density estimator that is minimally biased by inhomo-
geneity effects (see Davis and Huchra 1982 for details), the
derived n for the O3 catalog is slightly higher than the true
mean; this reduces the correlations on large scale. In addition,
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the foreground cluster in this catalog “beats” against a large
low-density region just behind it (cf. Fig. 13b); this beating
produces most of the anticorrelation seen on intermediate
scales. One should clearly be cautious when interpreting
reports of anticlustering in redshift surveys (Davis and Peebles
1983; Shanks et al. 1983).

The distribution of peculiar velocities provides the most
stringent observational test of our models. In redshift surveys
one can study &(r,, Av), the two-point correlation of pairs as a
function of their projected separation r, and their line-of-sight
velocity difference Av. The rms distortion of £ in the v direction
as a function of r, is termed o(r,); its square is a linear com-
bination of the radial and transverse components of {v,,2),
suitably averaged over projection factors. There is excellent
agreement between the estimates of a(r,) from the CfA and
AAT redshift surveys (Davis and Peebles 1983; Bean et al.
1983). Both groups report the velocity field to be smooth; the
CfA data are best fit by a slowly rising o(r,), while the AAT
data are consistent with this, but are better fit by a constant
o(r,). We have applied the procedure of Davis and Peebles
(1983) to our artificial “redshift” catalogs, and the results are
plotted in Figure 15. The error bars are formal errors from fits
to an exponential broadening function, which represents both
the CfA data and the models quite well. The f parameter used
by Davis and Peebles is here set to unity, which agrees with
{v,,(r)) as plotted in Figure 7b. It was to be expected from the
behavior of the full peculiar velocity-dispersion tensor that
o(r,) would fall with radius; Figure 15 demonstrates that it is
indeed possible to see this trend in a redshift catalog, and that
it is inconsistent with the CfA and AAT data. We showed in §
IIIc that the falling dispersions of our models are not a conse-
quence of their experimental limitations; they must therefore
be considered a serious disagreement with observation. The
substantial difference between o(r,) in the two simulations is
caused by the large cluster in the foreground of the O3 catalog.

¢ (r)+1

1
log[r/(h""Mpc)]

FiG. 14.—Correlation functions calculated in redshift space for the three catalogs of Fig. 12. Note that r is not a true physical distance in this plot since it includes
distortions caused by peculiar velocities. The scaling of the simulations assumes h = 1.1, the value required to get &(r) for the ensemble of open models to match

observation (see Fig. 6).
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FIG. 15.—The rms line-of-sight peculiar relative velocity as a function of projected separation for catalogs made from O2 (open squares), from O3 (open triangles),
from the CfA redshift survey (filled squares; from Davis and Peebles 1983), and from the “galaxies” found in EdS1-5 by the algorithm described in § V. The two
open models have been scaled using h = 1.1, while the biased formation ensemble has been scaled using h = 0.44.

The velocity moments are computed on a pair-weighted basis,
and the presence of this cluster skews the results. This effect is
undoubtedly larger in the O3 catalog than in the real data,
because of the richness of the cluster we chose to sit next to.
We have found that no CDM model is in complete agree-
ment with observation if galaxies are distributed in the same
way as the mass; the open models are a better fit than models
with Q = 1, but are still not fully acceptable. To try and cir-
cumvent these problems, we now explore the effect of relaxing
the assumption that galaxies trace the mass. This is clearly
necessary if we wish to find a viable model with Q = 1.

V. BIASED GALAXY FORMATION

In a universe dominated by CDM, galaxy formation pre-
sumably occurs at peaks of the matter-density field. Now
suppose that galaxy formation is a process that can go to
completion only under favorable circumstances and can be
suppressed if the environment changes. This might occur, for
example, if the first generation of stars photoionizes, or shock
heats to high temperature, those regions that were somewhat
slower to collapse, cool, and fragment. It is then reasonable to
expect that the highest peaks (which have the shortest cooling
and collapse times) will be the most likely to complete the
process of galaxy formation successfully. A similar biasing of
the bright-galaxy distribution might occur if the stellar initial
mass function is sensitive to local environment, or perhaps
simply if galaxy formation is sufficiently sensitive to protoga-
lactic cooling time.

To simulate this kind of situation, we applied a low-pass
filter to the initial random-density field of our models and
tabulated the result on a 643 grid. We then identified all peaks
of amplitude at least v times the rms density fluctuation and
tagged the particle whose Lagrangian position lay nearest each
one as a “galaxy.” Only one “galaxy” was allowed for each
connected region above the threshold. The tagged particles
were followed over the course of the simulation. This identifi-

cation procedure involves two parameters, the dispersion r, of
the Gaussian filter exp (—r?/2r,%) used to smooth the density
field, and the threshold v. The scale parameter defines the size
of the regions from which a galaxy forms, while the threshold is
some measure of the “difficulty ” of galaxy formation. Because
there is so much power on large scales in the CDM models, it is
significantly more probable for a local peak to rise above a
fixed threshold if it lies in an incipient protocluster than if it lies
in an incipient void. As a result our “galaxies” are a biased
subset and are more strongly clustered than the simulation as a
whole. We find the strength of this bias to increase strongly
with v, but only rather weakly with r; the number of particles
tagged as galaxies depends strongly on both parameters. A
similar effect has recently been explored by Kaiser (1984a) as a
possible explanation for the large correlation length of the
distribution of rich galaxy clusters. Analytic discussions of
biasing in the present context are given by Bardeen (1984) and
Kaiser (1984b). With r, = L/192 and v = 2.5, we obtain about
1000 tagged points, or about 3% of the original. After adopting
a suitable scaling, this turns out to be comparable to, or some-
what less than, the expected number of bright galaxies in a
volume the size of our box (i.e., to a density ~0.003h*> Mpc™3).
The result of applying this procedure to run EdSl1 is illus-
trated in Figure 16, which compares the distribution of
“galaxies” with that of the dark matter at a = 14. The
“galaxies” follow the clustering structure of the underlying
matter field but with greatly enhanced amplitude. The effect of
this bias on &(r) is shown in Figure 17a, where we plot the
evolution of the “galaxy” correlation function in models
EdS1-5 and compare it with the unbiased results obtained
when all particles are used; power-law fits to these correlation
functions are given in Table 2C. The “galaxy” correlations
substantially exceed the mass correlations on all scales, but the
effect is most marked at small separations and produces an
increase in the effective power-law index y. Much of the clus-
tering of the “galaxies” is due to the pattern imposed by the
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FiG. 17—Correlation properties of “ galaxies” in EdS1-5 on the biased galaxy formation model. (a) compares the evolution of &(r) for the “galaxies” (symbols
with error bars) with that of the mass distribution as a whole (solid lines). (b) shows Q values for the “ galaxies ” in the same format as Fig. 8.

statistical properties of the linear density field rather than to
the effects of gravity. This is particularly evident on large
scales, where correlations grow very little until the underlying
matter distribution has become significantly clustered. As a
result, &(r) for the “galaxies ” steepens even more rapidly than
for the simulation as a whole. By a = 1.4, our models have an
effective y which exceeds 1.8, and by a = 1.8, the galaxy correl-
ation function is clearly too steep to match observation. The
correlation length r, for the “galaxies” exceeds that of the
underlying mass distribution by a factor of 2.4 at a = 1.4. The
two- and three-point correlations of the “ galaxies” obey the
empirical formula of equation (4) at least as well as those of the
mass, and, as shown in Figure 17b, they imply Q values which
agree better with observation. The relative peculiar velocities
of the “ galaxies” behave in a similar way to those of the simu-
lations as a whole; the bias is evident only as a slight increase
in the dispersions. This may be seen in Figure 18, as may the
fact that the dispersion profiles for the “galaxies” are some-
what flatter than those of Figure 7a.

To scale these “ galaxy ” catalogs to the real world, we again
set the correlation length r, to 54~ ' Mpc. Unfortunately, while
the correlation exponent y is about 1.8 at a = 1.2, the peculiar
velocity distribution shows the effects of initial transients until
about a = 1.8. As a compromise we identify the present with
a = 1.4 when ¢ is only slightly steeper than the observations
and velocity transients have already subsided to a relatively
low level. At this time r, = 0.07L, leading to a value of 0.44 for
h and to a box size L = 168 Mpc. With this scaling the velocity
unit in Figure 18 is 7400 km s~ !, and the one-dimensional
dispersion has a maximum of 575 km s~ 1, from which it drops
to values of order 400 km s~!. When redshift catalogs are
made from the “galaxy” distributions, these dispersions are

found to lead to the values of g(r,) shown in Figure 15, which
are in as good agreement with observation as those for
unbiased models with Q = 0.2. The redshift catalogs for our
“galaxies” are too sparse for visual comparison with the CfA
survey (as in Figs. 12 and 13), but we can get some information
about the probability of large low-density regions from the
distribution of counts in cells. In EdS1-5, we find only one
cube out of 40 with side 7r, (35h~* Mpc) to have a density less
than half the mean. Holes appear to be relatively less abundant
in these “ galaxy ” samples than in the overall mass distribution
(cf. § IIIf). Thus voids as large as the one in Bodtes may be
hard to accommodate in our model. Simulations of larger scale
are required to obtain a definitive answer on this point.
Although our prescription for galaxy formation is very
crude, it is clear that the biases which arise if there is an effec-
tive threshold for galaxy formation can be very strong. Fur-
thermore, their effects are of the kind required to bring an
Einstein—de Sitter CDM universe into agreement with obser-
vation. The particular models which we discuss above have
two-point correlations and peculiar velocity distributions
which are quite similar to those that we obtained earlier for our
open models. They are more successful than the open models
in reproducing the observed three-point correlations, and they
imply an age for the universe which is not uncomfortably short.
Furthermore, they satisfy the theoretical desire for a flat uni-
verse without contradicting dynamical studies of galaxy clus-
tering. Finally, they lead to predicted fluctuations in the
microwave background which are far below the current obser-
vational upper limits (Bond and Efstathiou 1984; Vittorio and
Silk 1984). On the negative side, the biased models seem less
able to produce large-scale voids than the open models, and
they predict that galaxies formed at quite recent epochs—this
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FIG. 18 —Moments of the relative peculiar velocity distribution of pairs of “ galaxies ” in EdS1-5 at a = 1.4 in the same format as Fig. 7.

may conflict with observation. Clearly, what is now required is
a proper physical model for galaxy formation which can be
grafted onto simulations to see if the distribution of our
“galaxies” is indeed realistic. These biased galaxy-formation
models are in many ways the closest we have come to matching
the observed galaxy distribution, and they involve the
minimum gravitational interaction!

VI. CONCLUSIONS

The numerical simulations discussed in this paper were
designed to study nonlinear gravitational clustering in a uni-
verse dominated by cold dark matter. We assumed adiabatic
primordial density fluctuations with a constant-curvature spec-
trum. We followed the evolution of two ensembles of simula-
tions with Q = 1, another ensemble with Q < 1, and a single
simulation of a flat universe with a nonzero cosmological con-
stant. Our main conclusions are as follows:

1. Initial conditions of this kind lead to a very rapid growth
in the characteristic scale of clustering. As a result, nonlinear
structures on a wide range of scales are present at any given
moment. This is reflected in the filamentary structures, the
superclusters of clumps, and the large low-density regions
which are visible in pictures of the particle distribution. This
large-scale morphology is clearly a very general consequence of
nonlinear evolution from such initial conditions. While its
scale and its evolution rate depend on Q, A, and h, its form is
almost independent of them.

2. The particle two-point correlation function &(r) steepens
with time in all the models, showing that their evolution is not
self-similar. The good agreement we find between ensembles of
different scale argues strongly that this result is not a conse-
quence of the limited spatial and temporal resolution of our
experiments, but rather reflects the lack of spatial self-
similarity in the theoretical initial conditions. In each ensemble

of simulations, a time interval can be chosen so that & provides
an acceptable match to the shape of the observed galaxy two-
point function over a limited range of scales. The amplitude of
the observed function can then be matched by choosing h
appropriately. For Einstein—de Sitter models we require
h = 0.22, which is unacceptably low. On the other hand, for
models in which ¢ has the right shape when Q = 0.2, we need
h = 1.1; this seems rather high. Our model with zero spatial
curvature and positive cosmological constant has very similar
properties to open models with the same value of Q; however,
it implies a considerably greater age for the universe.

3. The peculiar velocity distribution in our simulations does
not give a good match to observations of galaxies. For Q = 1
we find rms one-dimensional relative peculiar velocities of
6 ~ 1000 km s~ ' at separations r ~ 1h~! Mpc, much in excess
of the observational estimates, o ~ 200-300 km s~ !; this is a
reflection of the well-known fact that the mass-to-light ratios of
small groups and clusters appear much smaller than that
needed to close the universe. For Q = 0.2 we find ¢ ~ 500 km
s~ ! on small scales, which is still rather too big. At r ~ 5h~1
Mpc, however, peculiar velocities in the open models are quite
similar to those observed. In the simulation with a nonzero
cosmological constant, the peculiar velocity distribution
resembles that in an open model with the same value of Q. In
all the models o is found to decline markedly with increasing
pair separation, whereas the observations show it to be con-
stant, or to increase slightly with scale.

4. If we write the irreducible three-point correlation func-
tion as { = Q&2 we find that, although Q is independent of
triangle shape, it decreases slowly with triangle size in all our
models. On scales r < 5h~! Mpc, we find values of Q for the
mass distribution which are considerably greater than those
estimated for galaxies. This discrepancy gets smaller as our
models evolve, but it always remains significant.

5. The distribution of cluster masses is very broad in our
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models and is quite different from that found either in simula-
tions with white-noise initial conditions or in models where the
initial density field has a large coherence length. Despite the
fact that structure grows hierarchically in the present models,
percolation across them is easier than across a Poisson dis-
tribution of points; in this sense our models show filamentary
structure. These properties correspond quite closely to the
results of Einasto et al. (1984) for the galaxy distribution in the
neighborhood of the Local Supercluster.

6. The distribution of particle counts in cells is found to
have significantly non-Gaussian tails, even for cubic cells with
side exceeding 6r, (where &(rg) = 1). 4% of such cubes are
underdense by a factor of 2. This frequency doubles if the
distribution is analyzed in “redshift space.” The observed fre-
quency of such large low-density regions is very poorly known
but appears to be about a factor of 2 larger than in our models.
None of our simulations contains an underdense region as
extreme as the apparent void in Bootes.

7. Artificial redshift catalogs of points, chosen from our
simulations in a way which mimics the selection of galaxies for
the CfA redshift survey, show considerable resemblance to the
real data. These samples also show that substantial fluctua-
tions are to be expected in estimates of clustering statistics
derived from samples of this size. In particular it is quite likely
that the anticorrelation seen in the CfA survey at separations
of order 20h ™! Mpc is an artifact of the relatively small volume
surveyed.

8. In all the above comparisons with observation, we
assume that the distribution of galaxies may be identified with
the mass distribution in our models. Observed galaxies may,
however, be a biased reflection of the real underlying mass
distribution. We have investigated the kind of bias to be
expected if bright galaxies form only at relatively high peaks of
the linear density distribution. If this is the case, their large-
scale clustering follows that of the dark matter, but with
strongly enhanced amplitude. For plausible parameters we find
that the correlation length of galaxies in the present universe
may exceed that of the dark matter by a factor of about 2.5.
The peculiar velocities of galaxies are then smaller than those
expected for an unbiased distribution by a similar factor.
Applying a simple model of biased galaxy formation to our
Einstein—de Sitter simulations, we find a “ galaxy ” distribution
which fits the observed two- and three-point correlations and
the observed peculiar velocity distribution quite well. This kind
of model may therefore reconcile the theoretical imperative of
a flat universe with the low density values implied by observa-
tions of galaxy motions.

The evolution of a universe dominated by cold dark matter
is difficult to simulate because of the speed with which the
characteristic scale of clustering grows. Even with a very large
increase in computing resources, it would be possible to follow
clustering at times before the start of our models over expan-
sion by at most a factor of 2. Nevertheless, models with higher
spatial resolution than those of the present paper are desirable
in order to study the formation of galactic halos in greater
detail. This is clearly a prerequisite for any more detailed
theory of galaxy formation, and it would also be useful for a
more thorough investigation of the consequences of our own
very simple prescription. Models with a larger dynamic range
are necessary to study the large-scale morphology of the
“galaxy” distribution because small-scale resolution must be
retained to locate the initial density peaks on which “ galaxies”
form. Until we have made such models, we cannot be sure that
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we can reproduce not only the correlation functions and other
small-scale statistics of galaxies but also the filaments and
voids which characterize their large-scale distribution. Higher
resolution models would also help us to pin down the epoch of
galaxy formation. This is important because it appears to be
quite recent, particularly in the biased formation models, and
so may be in conflict with observation.

Structure forms in a universe dominated by CDM in a well-
specified way, and it is worth mentioning several aspects of its
evolution which may be amenable to direct observational
testing. The rapid increase in the characteristic scale of clus-
tering might be observable on Mpc scales if Q@ = 1 and galaxies
trace the mass distribution; however, such models are already
ruled out by the kinematics of nearby galaxies. If the universe is
open, or if our biased galaxy formation model is appropriate,
the correlation function is a much weaker function of lookback
time. Existing data on angular correlations of galaxies at
z ~ 0.3 (Koo and Szalay 1984) may put significant constraints
on these possibilities. The biased formation model implies that
“failed ” galaxies should be visible in our local region of space.
The voids should contain some baryons either in low-density
gas clouds or in low-surface-brightness galaxies. Space Tele-
scope will be an excellent tool to search for such clouds. One
would look for low-redshift Lya absorption clouds in the
spectra of distant QSOs. It is known that the Lya clouds
observed at z = 2 are more weakly clustered than bright gal-
axies (Sargent et al. 1980); this may already be evidence for
biased galaxy formation. At low redshift the distribution of
clouds found by Space Telescope could be correlated with the
galaxy distribution measured by redshift surveys; if the clouds
clustered only weakly with galaxies, and lay preferentially in
“voids,” it would be clear evidence that galaxy formation is
biased on large scales.

The distribution of rich clusters of galaxies and of large voids
presumably gives us information about initial fluctuations on
large scale. The correlation function of Abell clusters can be
understood as reflecting the enhanced clustering of rare peaks
in the matter distribution if the underlying mass distribution is
positively correlated on the relevant scales (Kaiser 1984a;
Barnes et al. 1985). The linear correlation function correspond-
ing to equation (2) is negative for r > 18(Qh?)~! Mpc, so that if
Abell clusters are indeed positively correlated at r = 100h ™!
Mpc (Bahcall and Soneira 1983), then we must conclude that
Qh < 0.18. The Bootes void appears incompatible with CDM
models in which galaxies are assumed to follow the mass dis-
tribution, as well as with the recipe for biased galaxy formation
which we have considered. It is not clear whether an alternative
recipe could explain the low density of galaxies in such a large
region of space.

Further constraints on the CDM model come from observa-
tional limits on the anisotropy of the microwave background
radiation. Recent calculations have shown that the stringent
limit of Uson and Wilkinson (1984) is able to rule out CDM
models with Qh'-3 < 0.2 at the 95% confidence level unless the
universe was reionized at z > 50 (Bond and Efstathiou 1984;
Vittorio and Silk 1984). The energy requirements for reioniza-
tion are quite extreme, and if this loophole is discounted, the
microwave background limits exclude all unbiased models for
which we find even rough agreement with the observed pecu-
liar velocity distribution of galaxies. The microwave limits are,
however, very far from constraining the kind of biased forma-
tion model we have considered.

A great virtue of the general theoretical framework investi-
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gated in this article is the fact that it makes very specific predic-
tions for the initial conditions from which structure must form.
It may therefore be possible to disprove it, in the same way as
we found the standard neutrino-dominated universe to be
untenable once its observational consequences were analyzed
sufficiently carefully (White, Frenk, and Davis 1983; White,
Davis, and Frenk 1984). Conversely, if the properties of a uni-
verse filled with CDM are found to agree with observation, this
must be considered a significant success, since there is very
little freedom to adjust the theoretical predictions. The direct
detection of most of the elementary-particle candidates for
CDM remains a remote possibility, so their cosmological
implications may be the strongest indication of their existence.
The major uncertainty in these implications comes from the
fact that while we can predict the distribution of mass, what we
see is the distribution of galaxies. As we have shown, the latter
may be strongly influenced by the details of galaxy formation,
a process which we are unlikely to understand fully in the
foreseeable future. Nevertheless, it is remarkable how many
aspects of the observed galaxy distribution are reflected quite

faithfully by the distribution of CDM, and our crude attempts
to model galaxy formation suggest that Q = 1 might even be
required to get good agreement with observation. This seems
too good to be true, but perhaps it hints that we are at last
approaching a correct resolution of the missing mass problem.
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many people. We would like to extend particular thanks to all
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by funds from the National Aeronautics and Space
Administration), and by Department of Energy contract AT03-
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