Searching for Particle Dark Matter with the GLAST-LAT

Conrad, 2007

Presented by AJ Richards

WIMPs

- WIMPs are the most promising candidate for a dark-matter particle
- Eluded direct discovery or identification
- Perhaps we can detect them indirectly?
 - Look at the products of WIMP self-annihilation

WIMP-annihilation Products

$$\frac{dN_{\gamma}}{dE} = \frac{dN_{\text{cont}}}{dE}(E) + \sum_{\chi} b_{\gamma\chi} n_{\gamma} \delta \left(E - m_{\chi} (1 - m_{\chi}^2/4m_{\chi}^2)\right)$$

First term from tree-level final states

- "Cascades" and many-body final states
- For Majorana WIMPs, light fermion production suppressed
 - Primary fermionic products are bb, $t\bar{t}$, and $\tau\bar{\tau}$

WIMP-annihilation Products

$$\frac{dN_{\gamma}}{dE} = \frac{dN_{\text{cont}}}{dE}(E) + \sum_{X} b_{\gamma X} n_{\gamma} \delta \left(E - m_{\chi} (1 - m_{\chi}^2 / 4m_{\chi}^2) \right)$$

• Second term from 2-body final states $\gamma + X$ or 2γ

• In this paper, assume bb and 2γ dominate

GLAST

- Detect γ-rays in 20 MeV to 300 GeV range
- 50 times more sensitive; 10 times greater energy range; and 2 times better energy and angular resolution than EGRET
- Silicon detectors rather than spark chambers (EGRET)

Detection

- "Golden" signal
 - Spectral line at WIMP mass
 - Difficult to explain through other causes
 - Very small astrophysical uncertainties
 - Loop-suppressed
 - Low photon count expected

- Particle physicists must find σ and M_{γ}
- $\frac{dN_{\gamma}}{dE}$ from before
- This goes as DM density squared
 "Clumpiness" strongly affects signal strength

Halo Substructure

- N-body simulations show small subhalos
- Greater density means more WIMP annihilation products
 - Greater flux of gamma rays
- This can be used to detect satellites within the Milky Way halo

Conclusions

 GLAST can help constrain the crosssection for the WIMP self-annihilation

Conclusions

 GLAST can also give us insight into the existence or absence of subhalos

