New Hubble Space Telescope Discoveries of Type Ia Supernovae at $z \ge 1$: Narrowing Constraints on the Early Behavior of Dark Energy

Riess et al. The Astrophysical Journal, 2007

- Why we need supernovae with $z \ge I$
 - Dark energy dominates for z < 2
 - Expansion models are increasingly disparate for large z
 - Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \ge I$
 - Dark energy dominates for z < 2
 - Expansion models are increasingly disparate for large z
 - Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \ge 1$
 - Dark energy dominates for z < 2
 - Expansion models are increasingly disparate for large z
 - Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \ge I$
 - Dark energy dominates for z < 2
 - Expansion models are increasingly disparate for large z
 - Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \ge I$
 - Dark energy dominates for z < 2
 - Expansion models are increasingly disparate for large z
 - Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \ge I$
 - Dark energy dominates for z < 2
 - Expansion models are increasingly disparate for large z
 - Equation of state for dark energy may change with time
- Hubble is critical for these observations

The Data

- Hubble (ACS and NICMOS)
- Hubble Deep Field-North & Chandra Deep Field-South
- Combined 23 supernovae at $z \ge 1$
- Light curves and spectroscopy for each candidate

Hubble Diagram

Results: Acceleration vs. Others

TABLE 5							
χ^2 Comparison of Gol	SET DATA TO N	Models, $cz > 7000$ ki	$m s^{-1}$				

Model	χ^2 (for 184 SNe Ia		
$\Omega_M = 0.29, \ \Omega_\Lambda = 0.71$	150 ^a		
$\Omega_M = 1.00, \ \Omega_\Lambda = 0.00 \dots$	285 ^a		
$\Omega_M = 0.00, \ \Omega_\Lambda = 0.00 \dots$	164 ^a		
High-redshift gray dust (with $\Omega_M = 1.00$, $\Omega_{\Lambda} = 0.00$)	344 ^b		
Replenishing dust (with $\Omega_M = 1.00$, $\Omega_{\Lambda} = 0.00$)	150 ^b		
Dimming $\propto z$ (with $\Omega_M = 1.00$, $\Omega_{\Lambda} = 0.00$)	266 ^b		

^a Best χ^2 after marginalizing over H_0 . ^b Best χ^2 for best H_0 .

Results: Time Dependence of w

- "First order expansion": $w(z) = w_0 + w_a z / (1 + z)$
 - No strong support for time evolution
- Expand w(z) into orthogonal vectors W_i
 - Bin w(z) and remove dependence on earlier values
 - Consistent with constant w(z)

Results: Time Dependence of w

- "First order expansion": $w(z) = w_0 + w_a z / (1 + z)$
 - No strong support for time evolution
- Expand w(z) into orthogonal vectors W_i
 - Bin w(z) and remove dependence on earlier values
 - Consistent with constant w(z)

	LIKELIHOO	TABLE 6 D Regions For W_z	
W ₂	Peak	1 σ	2 σ
	Prior=Weak	k, Sample=All Gold	
W0.25	-1.05	-1.15 to -0.95	-1.26 to -0.85
W _{0.70}	-0.45	-0.86 to -0.06	-1.49 to 0.32
W _{1.35}	0.59	-2.62 to 3.03	-16.6 to 6.15
1	Prior=Weak, Sa	imple=Gold minus HS	Т
W0.25	-1.06	-1.16 to -0.95	-1.27 to -0.86
W _{0.70}	0.11	-0.43 to 0.61	-1.17 to 1.17
W1.35	10.77	1.86 to 18.55	-20.1 to 27.92
	Prior=Stron	g, Sample=All Gold	
W0.25	-1.02	-1.12 to -0.93	-1.23 to -0.84
W0.70	-0.15	-0.57 to 0.131	-1.05 to 0.46
W _{1.35}	-0.76	-1.78 to -0.16	-15.8 to 0.51
F	rior=Strong, S	ample=Gold minus HS	T
W _{0.25}	-1.03	-1.14 to -0.94	-1.25 to -0.85
W _{0,70}	0.151	-0.26 to 0.61	-0.80 to 1.00
W _{1.35}	-1.95	-5.89 to -0.70	-17.8 to 0.35
	Prior-Strong	est, Sample-All Gold	
W0.25	-1.02	-1.11 to -0.92	-1.21 to -0.83
W _{0.70}	-0.13	-0.47 to 0.17	-0.88 to 0.48
W _{1.35}	-0.85	-1.81 to -0.46	-17.0 to -0.30
Pr	ior=Strongest,	Sample=Gold minus H	IST
W _{0.25}	-1.03	-1.13 to -0.94	-1.24 to -0.85
W _{0.70}	0.24	-0.17 to 0.64	-0.70 to 1.06
W _{1.35}	-1.89	-5.50 to -0.80	-18.0 to -0.34
Prior=Strong,	Sample=All G	old with MLCS2k2 Fit	s to SNLS SNe
W _{0.25}	-1.05	-1.14 to -0.94	-1.26 to -0.84
W _{0.70}	-0.09	-0.45 to 0.23	-0.91 to 0.56
W1.35	-1.01	-2.23 to -0.26	-15.8 to 0.37

A Kinematic Approach to Dark Energy Studies

David Rapetti, Steven W. Allen, Mustafa A. Amin, & Roger D. Blanford Monthly Notices of the Royal Astronomical Society, 2007

Kinematic Framework

- Allows for characterization of the expansion history without assumptions
- Parameters are the dimensionless time derivatives of the scale factor
 - Deceleration (2nd): $q(t) = \ddot{a} / (H^2 a)$
 - Jerk (3rd): $j(t) = \frac{\dot{a}}{a} / (H^3 a)$
- Evolving jerk model
 - Higher order evolution of j(t) using Chebychev polynomials

Data and Analysis

- Combines data from supernovae and x-ray clusters
- Exploring the parameter space
 - MCMC
 - limiting parameter choices

Results

- No support for evolving jerk models
- Highlighted values correspond to:

 $\Omega_{\rm m} = 0.306^{+0.042}_{-0.040}$ $w = -1.15^{+0.14}_{-0.18}$

Data set	Q model		\mathcal{J} model			Improvement			
	q_0	χ^2_Q /d.o.f.	q_0	j	$\chi^2_{\mathcal{J}}$ /d.o.f.	$\Delta \chi^2_{\mathcal{J} \mathcal{Q}}$	F-test (per cent)	ΔBIC	$\ln B_{\mathcal{J}Q}$
Clusters	-0.55 ± 0.14	39.6/39	$-0.61\substack{+0.38\\-0.41}$	$0.51^{+2.55}_{-2.00}$	39.6/38	0.01	5.6	-3.7	-3.2
SNLS SNeIa	-0.417 ± 0.062	112.1/113	-0.65 ± 0.23	$1.32^{+1.37}_{-1.21}$	111.0/112	1.1	69.4	-3.6	-2.5
Gold SNeIa	-0.289 ± 0.062	182.8/155	-0.86 ± 0.21	$2.75^{+1.22}_{-1.10}$	174.6/154	8.2	99.1	3.1	1.2
Gold+SNLS+Cl	-0.391 ± 0.045	300.8/272	-0.81 ± 0.14	$2.16\substack{+0.81 \\ -0.75}$	290.1/271	10.7	99.8	5.1	3.0

Results

HST Discovered

♦ Ground Discovered

N

Gold+SNLS+Cl

 -0.391 ± 0.045

300.8/272

.

3.0

5.1

ev	45		ان من المرادية			, ė	-	0.4	0.5
• Hi co	40		Binned Gold o	lata	h-z gray dust	volution		t	
Ω, w	ת 35	0.5 (m-W) (mag) 0.5 -0.5	$ \sum_{n=1}^{n} \Omega_n = 0.29 $	$\Lambda = 1.0, \Omega_{\Lambda} = 0$ ($\Omega = 0$) ($\Omega_{\Lambda} = 0.71$	pure acce w=- w=- 0.0 ~ pure decele	leration: $q(z)$: 1.2, dw/dz : 0.8, dw/dz : eration: $q(z) = 0$	=-0.5 =+0.5	0.4	0.5
	30	0.0	0.5	· · · · · ·	.0 ¹	1.5	2.0		
Data set		0	.5	1.0	1.	5	2.0	∆BIC	$\ln B_{\mathcal{J}Q}$
Clusters				z				-3.7	-3.2
SNLS SNeIa	-0.417 ± 0.062	2 112.1/113	-0.65 ± 0.23	$1.32^{+1.01}_{-1.21}$	111.0/112	1.1	69.4	-3.6	-2.5
Gold SNeIa	-0.289 ± 0.062	2 182.8/155	-0.86 ± 0.21	$2.75^{+1.22}_{-1.10}$	174.6/154	8.2	99.1	3.1	1.2

 $2.16\substack{+0.81 \\ -0.75}$

 -0.81 ± 0.14

290.1/271

10.7

99.8

Results

- No support for evolving jerk models
- Highlighted values correspond to:

 $\Omega_{\rm m} = 0.306^{+0.042}_{-0.040}$ $w = -1.15^{+0.14}_{-0.18}$

Data set	Q model		\mathcal{J} model			Improvement			
	q_0	χ^2_Q /d.o.f.	q_0	j	$\chi^2_{\mathcal{J}}$ /d.o.f.	$\Delta \chi^2_{\mathcal{J} \mathcal{Q}}$	F-test (per cent)	ΔBIC	$\ln B_{\mathcal{J}Q}$
Clusters	-0.55 ± 0.14	39.6/39	$-0.61\substack{+0.38\\-0.41}$	$0.51^{+2.55}_{-2.00}$	39.6/38	0.01	5.6	-3.7	-3.2
SNLS SNeIa	-0.417 ± 0.062	112.1/113	-0.65 ± 0.23	$1.32^{+1.37}_{-1.21}$	111.0/112	1.1	69.4	-3.6	-2.5
Gold SNeIa	-0.289 ± 0.062	182.8/155	-0.86 ± 0.21	$2.75^{+1.22}_{-1.10}$	174.6/154	8.2	99.1	3.1	1.2
Gold+SNLS+Cl	-0.391 ± 0.045	300.8/272	-0.81 ± 0.14	$2.16\substack{+0.81 \\ -0.75}$	290.1/271	10.7	99.8	5.1	3.0