New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy

Riess et al. The Astrophysical Journal, 2007

- Why we need supernovae with $z \geq 1$
	- Dark energy dominates for $z < 2$
	- Expansion models are increasingly disparate for large z
	- Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \geq 1$
	- Dark energy dominates for $z < 2$
	- Expansion models are increasingly disparate for large z
	- Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \geq 1$
	- Dark energy dominates for $z < 2$
	- Expansion models are increasingly disparate for large z
	- Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \geq 1$
	- Dark energy dominates for $z < 2$
	- Expansion models are increasingly disparate for large z
	- Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \geq 1$
	- Dark energy dominates for $z < 2$
	- Expansion models are increasingly disparate for large z
	- Equation of state for dark energy may change with time
- Hubble is critical for these observations

- Why we need supernovae with $z \geq 1$
	- Dark energy dominates for $z < 2$
	- Expansion models are increasingly disparate for large z
	- Equation of state for dark energy may change with time
- Hubble is critical for these observations

The Data

- Hubble (ACS and NICMOS)
- Hubble Deep Field-North & Chandra Deep Field-South
- Combined 23 supernovae at $z \ge 1$
- Light curves and spectroscopy for each candidate

Hubble Diagram

Results: Acceleration vs. Others

^a Best χ^2 after marginalizing over H_0 .
^b Best χ^2 for best H_0 .

Results: Time Dependence of w

- "First order expansion": $w(z) = w_0 + w_a z / (1 + z)$
	- No strong support for time evolution
- Expand w(z) into orthogonal vectors Wi
	- Bin w(z) and remove dependence on earlier values
	- Consistent with constant w(z)

Results: Time Dependence of w

- "First order expansion": $w(z) = w_0 + w_a z / (1 + z)$
	- No strong support for time evolution
- Expand w(z) into orthogonal vectors Wi
	- Bin w(z) and remove dependence on earlier values
	- Consistent with constant w(z)

A Kinematic Approach to Dark Energy Studies

David Rapetti, Steven W. Allen, Mustafa A. Amin, & Roger D. Blanford Monthly Notices of the Royal Astronomical Society, 2007

Kinematic Framework

- Allows for characterization of the expansion history without assumptions
- Parameters are the dimensionless time derivatives of the scale factor
	- Deceleration (2nd): $q(t) = -$ ä /(H² a)
	- Jerk $(3rd): j(t) = \frac{1}{d} / (H^3 a)$.
- Evolving jerk model
	- Higher order evolution of $j(t)$ using Chebychev polynomials

Data and Analysis

- Combines data from supernovae and x-ray clusters
- Exploring the parameter space
	- MCMC
	- limiting parameter choices

Results

- No support for evolving jerk models
- Highlighted values correspond to:

 $\Omega_{\rm m} = 0.306^{+0.042}_{-0.040}$ $w = -1.15^{+0.14}_{-0.18}$

Results

Clusters

SNLS SNeIa

Gold SNeIa

Gold+SNLS+Cl

112.1/113

182.8/155

300.8/272

 -0.289 ± 0.062

 -0.391 ± 0.045

U.O.

 -0.86 ± 0.21

 -0.81 ± 0.14

z

 $2.75^{+1.22}_{-1.10}$

 $2.16^{+0.81}_{-0.75}$

 1.21

I.I

 8.2

10.7

111.0/11.

174.6/154

290.1/271

3.0

5.1

69.4

99.1

99.8

 0.4

 0.5

0.4

 0.5

Results

- No support for evolving jerk models
- Highlighted values correspond to:

 $\Omega_{\rm m} = 0.306^{+0.042}_{-0.040}$ $w = -1.15^{+0.14}_{-0.18}$

